Abstract
An insect gall inventory was carried out in two reserves of the Peruvian Amazon, Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, both situated in Iquitos, northeastern Peru. Four vegetation types were surveyed between December, 2021 and December, 2022: terra firme forest, white-sand wet forest, and white-sand dry forest in Allpahuayo-Mishana National Reserve, and palm swamp forest in Quistococha Regional Reserve. Overall, we found 262 gall morphotypes, distributed across 75 host species representing 66 plant genera and 30 families. Fabaceae was the plant family with the greatest number of gall morphotypes (n = 48), followed by Calophyllaceae (n = 21) and Euphorbiaceae (n = 20). The plant genera that supported the highest diversity of galls were Caraipa (n = 17), Eschweilera (n = 16), Tapirira (n = 16), Micrandra (n = 14), and Iryanthera (n = 10). The plant species Tapirira guianensis (n = 16), Caraipa utilis (n = 14), Micrandra elata (n = 14), Eschweilera coriacea (n = 11), and Sloanea parvifructa (n = 10) exhibited the highest richness of galls. Among the host plants, C. utilis stands alone as the only species noted as both endemic to the Amazonian region and bearing a Vulnerable (VU) conservation status. The leaves were the most attacked organs (90% of all galls). Most morphotypes are glabrous (89%), green (67%), globoid (53%), and one-chambered (91%). We found galling insects belonging to the orders Diptera, Thysanoptera, Lepidoptera, and Hemiptera. The galling insects of Cecidomyiidae (Diptera) were the most common, inducing 22% of the gall morphotypes. In addition to the gallers, we also observed the presence of successors, cecidophages, and parasitoids. Among the sampled vegetation types, the terra firme forest presented the highest richness of gall morphotypes and host plant species. This is the first systematic inventory of insect galls in this part of the Peruvian Amazon.
Keywords
Cecidomyiidae; Fabaceae; galls; host plant
Resumo
Um inventário de galhas de insetos foi realizado em duas reservas da Amazônia peruana, Reserva Nacional Allpahuayo-Mishana e Reserva Regional Quistococha, ambas situadas em Iquitos, nordeste do Peru. Quatro tipos de vegetação foram pesquisados entre dezembro de 2021 e dezembro de 2022: floresta de terra firme, floresta úmida de areia branca e floresta seca de areia branca na Reserva Nacional Allpahuayo-Mishana, e floresta de pântano de palmeiras na Reserva Regional Quistococha. No total, encontramos 262 morfotipos de galhas, distribuídos em 75 espécies hospedeiras representando 66 gêneros de plantas e 30 famílias. Fabaceae foi a família de plantas com o maior número de morfotipos de galhas (n = 48), seguida por Calophyllaceae (n = 21) e Euphorbiaceae (n = 20). Os gêneros de plantas que apresentaram a maior diversidade de galhas foram Caraipa (n = 17), Eschweilera (n = 16), Tapirira (n = 16), Micrandra (n = 14) e Iryanthera (n = 10). As espécies de plantas Tapirira guianensis (n = 16), Caraipa utilis (n = 14), Micrandra elata (n = 14), Eschweilera coriacea (n = 11) e Sloanea parvifructa (n = 10) apresentaram a maior riqueza de galhas. Dentre as plantas hospedeiras, C. utilis destaca-se como a única espécie listada como endêmica da região amazônica e com um status de conservação Vulnerável (VU). As folhas foram os órgãos mais atacados (90% de todas as galhas). A maioria dos morfotipos é glabra (89%), verde (67%), globoide (53%) e possui apenas uma câmara interna (91%). Encontramos insetos galhadores pertencentes às ordens Diptera, Thysanoptera, Lepidoptera e Hemiptera. Os insetos galhadores da família Cecidomyiidae (Diptera) foram os mais comuns, induzindo 22% dos morfotipos de galhas. Além dos galhadores, também observamos a presença de sucessores, cecidófagos e parasitoides. Entre os tipos de vegetação amostrados, a floresta de terra firme apresentou a maior riqueza de morfotipos de galhas e espécies de plantas hospedeiras. Este é o primeiro inventário sistemático de galhas de insetos nesta região da Amazônia peruana.
Palavras-chave:
Cecidomyiidae; Fabaceae; galha; planta hospedeira
Introduction
Peru is a mega-diverse country in terms of species richness, and comprises a large part of the Amazon forest, which constitutes over 70% of the national territory (Gagliardi-Urrutia et al. 2022GAGLIARDI-URRUTIA, G., GARCÍA DÁVILA, C., JARAMILLO-MARTINEZ, A., ROJAS-PADILLA, O., RÍOS-ALVA, E., AGUILAR-MANIHUARI, R., PÉREZ-PEÑA, P.E., TUPINAMBÁ, P., CASTROVIEJO-FISHER, S., SIMÕES, P.I. & ESTIVALS, G. 2022. Anfibios de Loreto. 1 ed. Instituto de Investigación de la Amazonía Peruana, Peru.). Estimates based on floristic inventories in the Peruvian Amazon suggest that there are approximately 5,000 plant species (Cardoso et al. 2017CARDOSO, D., SÄRKINEN, T., ALEXANDER, S., AMORIM, A.M., BITTRICH, V., CELIS, M., DALY, D.C., FIASCHI, P., VIANA, P.L., STEHMANN, … STEVENS, W.D. 2017. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl. Acad. Sci. 114(40):10695–10700.), almost 756 (13%) of which are endemic (Leon et al. 2006LEÓN, B., PITMAN, N. & ROQUE, J. 2006. Introducción a las plantas endémicas del Perú. Rev. Peru. Biol. 13(2):9s–22s.). This high number of plant species represents a great diversity of potential niches for gall-inducing insects (Mendonça 2007MENDONÇA, M.D.S. 2007. Plant diversity and galling arthropod diversity searching for taxonomic patterns in an animal-plant interaction in the Neotropics. Bol. Soc. Argent. Bot. 42(3–4):347–357.). Galling insects are very specialized herbivores and tend to be species-specific with respect to host plants (Stone & Schönrogge 2003STONE, G.N. & SCHÖNROGGE, K. 2003. The adaptive significance of insect gall morphology. Trends in Ecology & Evolution 18(10):512–522., Carneiro et al. 2009CARNEIRO, M.A.A., BRANCO, C.S.A., BRAGA, C.E.D., ALMADA, E.D., COSTA, M.B.M., MAIA, V.C. & FERNANDES, G.W. 2009. Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev. Bras. Entomol. 53(3):365–378.). These insects are also very diverse, with some estimates indicating that there could be as many as 132,000 species worldwide (Espírito-Santo & Fernandes 2007ESPIRITO-SANTO, M.M. & FERNANDES, G.W. 2007. How many species of gall-inducing insects ere there on earth, and where are they? Annals of the Entomological Society of America 100(2):95–99.), and 3,090 in Peru (Grandez-Rios et al. 2015GRANDEZ-RIOS, J.M., GARCÍA-VILLACORTA, R., CUEVAS-REYES, P. & ARAÚJO, W.S. 2015. Insectos inductores de Agallas en América Latina: Ecología, Importancia y Nuevas Perspectivas. Rev. Biol. Neotrop. 12(2):92–103.).
Taxonomic knowledge of gall-inducing insects in the Amazon forest is scarce, largely because of taxonomic uncertainties and difficulty of identification, or else because the species have yet to be described (review in Grandez-Rios et al. 2015GRANDEZ-RIOS, J.M., GARCÍA-VILLACORTA, R., CUEVAS-REYES, P. & ARAÚJO, W.S. 2015. Insectos inductores de Agallas en América Latina: Ecología, Importancia y Nuevas Perspectivas. Rev. Biol. Neotrop. 12(2):92–103.). Most inventories of galling insects therefore identify taxa only to the order or family level (Yukawa et al. 2001YUKAWA, J., TOKUDA, M., UECHI, N. & SATO, S. 2001. Species richness of galling arthropods in Manaus, Amazon and the surroundings of the Iguassu Falls. Esakia 41:11–15., Almada & Fernandes 2011ALMADA, E.D. & FERNANDES, G.W.A. 2011. Insetos indutores de galhas em florestas de terra firme e em reflorestamentos com espécies nativas na Amazônia Oriental, Pará, Brasil. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 6(2):163–196.), or rarely to genus (Maia 2011MAIA, V.C. 2011. Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop. 11(4):37–53.). Galling insects recorded in the Amazon forest belong to Diptera, Hemiptera, Coleoptera, Lepidoptera and Hymenoptera, with the Dipteran family Cecidomyiidae particularly well represented (Julião et al. 2014bJULIÃO, G.R., ALMADA, E.D. & FERNANDES, G.W. 2014b. Galling insects in the Pantanal wetland and Amazonian rainforest. In Neotropical Insect Galls (G. W. Fernandes & J. C. Santos, eds) Springer Netherlands, Dordrecht, p.377–403.). Cecidomyiidae comprise more than 6,500 described species worldwide (Gagné & Jaschhof 2021GAGNÉ, R.J. & JASCHHOF, M. 2021. A Catalog of the Cecidomyiidae (Diptera) of the World. 5th ed. Digital. 813 pp.), and achieves its greatest diversity in Amazonia (Grandez-Rios et al. 2015GRANDEZ-RIOS, J.M., GARCÍA-VILLACORTA, R., CUEVAS-REYES, P. & ARAÚJO, W.S. 2015. Insectos inductores de Agallas en América Latina: Ecología, Importancia y Nuevas Perspectivas. Rev. Biol. Neotrop. 12(2):92–103.). Insect gall inventories in Amazonia have found that Fabaceae is the most important host plant family (Almada & Fernandes 2011ALMADA, E.D. & FERNANDES, G.W.A. 2011. Insetos indutores de galhas em florestas de terra firme e em reflorestamentos com espécies nativas na Amazônia Oriental, Pará, Brasil. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 6(2):163–196., Maia 2011MAIA, V.C. 2011. Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop. 11(4):37–53., Silva et al. 2011SILVA, P.S.D., ALMEIDA-SANTOS, B., TABARELLI, M. & ALMEIDA-CORTEZ, J.S. 2011. Occurrence of gall complexes along a topographic gradient in an undisturbed lowland forest of central Amazonia. Revista Brasileira de Biociências 9(2):133–138., Araújo et al. 2012ARAÚJO, W.S.D., PORFÍRIO-JÚNIOR, É.D., JORGE, V.A. & ESPÍRITO-SANTO FILHO, K.D. 2012. Plantas hospedeiras e galhas entomógenas em sub-bosques de florestas tropicais do Pará, Brasil. INSULA (41):59–72., Julião et al. 2017JULIÃO, G.R., ALMADA, E.D., COSTA, F.R.C., CARNEIRO, M.A.A. & FERNANDES, G.W. 2017. Understory host plant and insect gall diversity changes across topographic habitats differing in nutrient and water stress in the Brazilian Amazon rainforest. Acta Amaz. 47(3):237–246.). Other host plant families include Burseraceae, Chrysobalanaceae, Sapotaceae and Lecythidaceae (Julião et al. 2014bJULIÃO, G.R., ALMADA, E.D. & FERNANDES, G.W. 2014b. Galling insects in the Pantanal wetland and Amazonian rainforest. In Neotropical Insect Galls (G. W. Fernandes & J. C. Santos, eds) Springer Netherlands, Dordrecht, p.377–403.). Each of these families is notably species-rich in Amazonian forests.
Studies carried out in the Amazonian region have also show that the diversity of gall-inducing insects is highest in terra firme forests in comparison with other vegetation types (Julião et al. 2014aJULIÃO, G.R., VENTICINQUE, E.M., FERNANDES, G.W. & PRICE, P.W. 2014a. Unexpected high Diversity of Galling insects in the Amazonian upper canopy: the savanna out there. PLoS ONE 9(12):e114986.). The reason behind this greater diversity of gall-inducing insects in terra firme forest lies in the unique characteristics of this habitat (e.g., plant diversity and soil fertility) (Julião et al. 2014bJULIÃO, G.R., ALMADA, E.D. & FERNANDES, G.W. 2014b. Galling insects in the Pantanal wetland and Amazonian rainforest. In Neotropical Insect Galls (G. W. Fernandes & J. C. Santos, eds) Springer Netherlands, Dordrecht, p.377–403.). Furthermore, terra firme forest exhibits a remarkable diversity array of plants, providing a wide range availability of ecological niches and an abundant source of resources when compared to the more limited environments, such as white-sand and palm swamp forests (Draper et al. 2018DRAPER, F.C., HONORIO CORONADO, E.N., ROUCOUX, K.H., LAWSON, I.T., NIGEL, N.C., PAUL, P.V., PHILLIPS, O.L., TORRES MONTENEGRO, L.A., VALDERRAMA SANDOVAL, E., MESONES, I., GARCÍA-VILLACORTA, R., ARÉVALO, F.R.R. & BAKER, T.R. 2018. Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional beta-diversity. Ecography 41(8):1256–1269.). In this context, the terra firme forest is expected to have a higher diversity of gall-inducing insect than other Amazonian vegetation.
Over the last 30 years, several insect gall inventories have been carried out in different phytogeographic domains of the Neotropics, including in the Amazon, although it is one of the least studied (Araújo 2018ARAÚJO, W.S.D. 2018. 30 years of research on insect galls in Brazil: a scientometric review. Pap. Avulsos Zool. 58:1–11.). In fact, there is a significant bias for studies in Southeast Brazil, where the most important Brazilian research centers regarding galls and galling insects are located, as shown by Araújo (2018)ARAÚJO, W.S.D. 2018. 30 years of research on insect galls in Brazil: a scientometric review. Pap. Avulsos Zool. 58:1–11.. Araújo et al. (2019)ARAÚJO, W.S.D., FERNANDES, G.W. & SANTOS, J.C. 2019. An overview of inventories of gall-inducing insects in Brazil: looking for patterns and identifying knowledge gaps. An. Acad. Bras. Ciênc. 91(1):e20180162. compiled data of four inventories performed in the Brazilian Amazon. Despite this small number of published inventories, the galling species richness was greater than in other Brazilian biomes, such as Cerrado. These results show that Amazonian forests host a high galling insect diversity, likely due to the high specialization associated with the remarkable richness of host plants. However, in other parts of the Amazon, such as Peru, insect gall inventories are lacking, and little is known about host plant associations. The objective of the present study was to inventory the galling insects, associated fauna, and their host plants in the Peruvian Amazon.
Materials and Methods
1. Study area
The study was realized southwest of the city of Iquitos, in the province of Loreto in the Peruvian Amazon. The area exhibits a warm and moist climate with an average annual temperature 26 °C and average annual precipitation of 3,087 mm (Marengo 1998MARENGO, J.A. 1998. Climatologia de la zona de Iquitos, Peru. In Geoecologia y desarrollo amazónico: estudio integrado en la zona de Iquitos, Peru (R. Kalliola & S. Flores Paitan, eds) Annales Universitatis Turkuensis Ser A, 114. University of Turku, Finland, p.35–57.). The site is characterized by a long wet season with monthly precipitations > 300 mm in November, March and April, and a weak dry season in June and September. (Marengo 1998MARENGO, J.A. 1998. Climatologia de la zona de Iquitos, Peru. In Geoecologia y desarrollo amazónico: estudio integrado en la zona de Iquitos, Peru (R. Kalliola & S. Flores Paitan, eds) Annales Universitatis Turkuensis Ser A, 114. University of Turku, Finland, p.35–57.). Humidity is 80–90% all year round.
The research was conducted in three vegetation types in the Allpahuayo-Mishana National Reserve (RNAM): terra firme forest (S 03° 57.056′, W 073° 26.002′; S 03° 57.051′, W 073° 26.320′; TF), white-sand wet forest (S 03° 57.062′ W 073° 24.586′; WSw) and white-sand dry forest (S 03° 57.253′, W 073° 25.617′; WSd). In addition, one vegetation type was assessed in the Quistococha Regional Reserve (RRQ): palm swamp forest (S 03° 50.037′, W 073° 19.254′; S 03° 50.082′, W 073° 19.019′; PS) (Figure 1). The Allpahuayo-Mishana National Reserve (58,069.90 ha.), exhibits a high degree of both endemism and biodiversity, largely owing to a complex mosaic of habitats—ranging from white sand forest patch growing on nutrient-poor soils, to seasonally-inundated floodplain forests, and terra firme forests growing on nutrient-rich clay soils (Salo & Pyhälä 2007SALO, M. & PYHÄLÄ, A. 2007. Exploring the gap between conservation science and protected area establishment in the Allpahuayo-Mishana National Reserve (Peruvian Amazonia). Envir. Conserv. 34(1):23–32.). Meanwhile, Quistococha Regional Reserve (369 ha), is characterized by palm swamp forests, with poorly drained soils that are often flooded (Encarnación 1985ENCARNACIÓN, F. 1985. Introductión a la flora y vegetatión de la Amazonia peruana : estado actual de los estudios, medio natural y ensayo de una clave de determinación de las formaciones vegetales en la llanura amazónica. Candollea 40(1):237–252.). These areas are dominated by the palms Mauritia flexuosa and Mauritiella armata (both Arecaceae), and by the broadleaf tree Tabebuia insignis (Bignoniaceae) (Roucoux et al. 2013ROUCOUX, K.H., LAWSON, I.T., JONES, T.D., BAKER, T.R., CORONADO, E.N.H., GOSLING, W.D. & LÄHTEENOJA, O. 2013. Vegetation development in an Amazonian peatland. Palaeogeography, Palaeoclimatology, Palaeoecology 374:242–255.).
Map of the distribution of sampling areas in four different types of vegetation in the National Reserve Allpahuayo-Mishana and Regional Reserve Quistococha, Iquitos, Peru.
2. Sampling of galling insects and host plants
Sampling in the different vegetation types was done bi-monthly between December 2021 and December 2022, with 8 plots of 5 × 20 m each, separated from one another by 20 m, totaling 800 m2 sampled for each site, in accord with the methodology proposed by Julião et al. (2014a)JULIÃO, G.R., VENTICINQUE, E.M., FERNANDES, G.W. & PRICE, P.W. 2014a. Unexpected high Diversity of Galling insects in the Amazonian upper canopy: the savanna out there. PLoS ONE 9(12):e114986.. In each plot, only woody plants with a diameter at breast height (dbh, 1.3 m) equal to or greater than 10 cm were measured and collected, using the standard methods described in the RAINFOR protocol (Phillips et al. 2009PHILLIPS, O., BAKER, T., FELDPAUSCH, T. & BRIENEN, R. 2009. RAINFOR: field manual for plot establishment and remeasurement. The Royal Society, Leeds, UK.). Altogether 32 plots were established, being 24 plots for RNAM (8 plots in terra firme forest; 8 plots in white sand wet forest and 8 plots in white sand dry forest) and 8 plots for RRQ (all in palm swamp forest). The woody plant species sampled in the plots were already identified in species as part of a previous floristic project, when each individual received a permanent metal tag, whose related data were downloaded via ForestPlots.net online database (Lopez-Gonzalez et al. 2011LOPEZ-GONZALEZ, G., LEWIS, S.L., BURKITT, M. & PHILLIPS, O.L. 2011. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science 22(4):610–613., ForestPlots.net et al. 2021FORESTPLOTS.NET, BLUNDO, C., CARILLA, J., GRAU, R., MALIZIA, A., MALIZIA, L., OSINAGA-ACOSTA, O., BIRD, M., BRADFORD, M., CATCHPOLE, … TRAN, H.D. 2021. Taking the pulse of Earth’s tropical forests using networks of highly distributed plots. Biological Conservation 260:108849.). Data on the conservation status and endemism of each host plant species were retrieved from the IUCN Red List of Threatened Species (IUCN 2023IUCN (INTERNATIONAL UNION FOR CONSERVATION OF NATURE). 2023. The IUCN Red List of threatened species. Version 2023–1. http://www. iucnredlist.org/ (last access on 14/12/2023).
http://www. iucnredlist.org/...
) and Leon et al. (2006)LEÓN, B., PITMAN, N. & ROQUE, J. 2006. Introducción a las plantas endémicas del Perú. Rev. Peru. Biol. 13(2):9s–22s..
All the plots were established in the understory vegetation and then visually projected onto the canopy, delimiting the sampling area to collect the tree crown above each individual. Ten terminal units of the plant were randomly collected by climbing, and with a 10 m telescoping aluminum pole pruner. In the field, all gall morphotypes were characterized with respect to external morphology, and by shape, color, presence of trichomes, number of chambers, and the host plant organ attacked, as proposed by Isaias et al. (2014).
Galled branches were photographed, collected and transported to the Natural Products Chemistry Laboratory of the Peruvian Amazon Research Institute (IIAP) in closed and labeled transparent plastic bags. Some specimens of each gall morphotype were dissected using a stylet under a Leica Wild M3C stereoscopic microscope, to observe the number of internal chambers and obtain the immature insects (larvae and pupae). These immatures were initially preserved in 70% alcohol in labeled microtubes. The remainder of the sample was used for rearing galling insects and associated fauna (successor, inquilines, cecidophages, and parasitoids). To distinguish these guilds in this study, we used the interaction parameters proposed by Luz & Mendonça Júnior (2019)LUZ, F.A. & MENDONÇA JÚNIOR, M.S. 2019. Guilds in Insect Galls: Who is Who. Florida Entomol. 102(1):207.. Successors are organisms that utilize the gall after the inducer departs (Mani 1964MANI, M.S. 1964. Ecology of Plant Galls. 1nd ed, Junk, Haia. 434p.), and they use gall tissues for both food and shelter. Inquilines and cecidophages utilize galls alongside the gall inducer. Both feed on plant tissues and consume gall tissues, but only the inquilines stimulate the growth of new tissues (Luz & Mendonça Júnior 2019LUZ, F.A. & MENDONÇA JÚNIOR, M.S. 2019. Guilds in Insect Galls: Who is Who. Florida Entomol. 102(1):207.). Parasitoids are organisms that closely associate with the host, exploiting the host’s resources, eventually leading to the host’s demise upon the completion of the parasitoid development (Maia 2022MAIA, V.C. 2022. Review of the inquilinous fauna associated with insect galls in Brazilian restingas. Brazilian J. Biol. 821–15.). Furthermore, each gall morphotype was placed in a closed transparent plastic pot, labeled and with moistened paper at the bottom. All pots were checked daily for adult emergence.
All insects were preserved in 70% alcohol. The gall midges (Diptera: Cecidomyiidae) were later mounted on slides for microscope, following the methodology outlined in Gagné (1994)GAGNÉ, R.J. 1994. The gall midges of the Neotropical Region, 1st ed., Cornell Univ Press: Ithaca, New York. 325p.. Cecidomyiidae genera were determined based on the keys of Gagné available for the Neotropical region (1994). Micro-Hymenoptera were identified to the family and genus levels using Gibson’s key (Gibson et al. 1997GIBSON, G. A. P., HUBER, J. T. & WOOLLEY, J. B. 1997. Annotated keys to the genera o Nearctic Chalcidoidea (Hymenoptera). NRC Research Press, Ottawa.). Hymenoptera obtained only in the larval or pupal stage remained identified only to order. All the specimens were deposited in the Diptera collection of Museu Nacional (MNNRJ)/ Universidade Federal do Rio de Janeiro, and at the Peruvian Amazon Research Institute (IIAP). The other insects were sent to specialists for identification.
Results
We found 262 gall morphotypes, distributed across 30 botanical families and comprising 66 genera and 75 species (Table 1, Figures 2–12). The average number of gall morphotypes per host plant species was 3.5. The plant families that showed the greatest richness of insect galls were Fabaceae with 48 morphotypes, Calophyllaceae with 21, Euphorbiaceae with 20, Lecythidaceae with 18, Lauraceae with 17, Anacardiaceae with 16, Sapotaceae with 14, Malvaceae and Myristicaceae with 12, Phyllanthaceae with 11, and Elaeocarpaceae with 10 morphotypes. The remaining families had less than 10 insect gall morphotypes each. The plant genera Caraipa Aubl. (Calophyllaceae), Eschweilera Mart. ex DC. (Lecythidaceae), Tapirira Aubl. (Anacardiaceae), Micrandra Benth. (Euphorbiaceae) and Iryanthera (A. DC.) Warb. (Myristicaceae) hosted the highest numbers of insect gall morphotypes (17, 16, 16, 14 and 10, respectively). The most important host plant species were T. guianensis Aubl., C. utilis Vásquez, M. elata (Didr.) Müll. Arg., E. coriacea (DC.) S.A. Mori, and Sloanea parvifructa Steyerm., hosting 16, 14, 14, 11 and 10 insect gall morphotypes, respectively (Table 2). On the other hand, among all host plant species, only C. utilis is mentioned as endemic to the Amazonian region with a Vulnerable (VU) conservation status, while T. insignis (Miq.) Sandwith was categorized as Near Threatened (NT). The rest of the plant species were categorized as Least Concern (LC), with some not being classified within the IUCN list (Table 2).
Number of host plant species and insect gall morphotypes per host plant family in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru.
Galls found in four vegetation types in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru. 1–16; Tapirira guianensis (1. globoid-leaf, 2. conical-leaf, 3. fusiform-leaf, 4. lenticular-leaf, 5. globoid-leaf, 6. globoid-leaf (rachis), 7. fusiform-leaf, 8. globoid-leaf (petiole), 9. globoid-leaf, 10. lenticular-leaf, 11. marginal roll-leaf, 12. conical-leaf, 13. globoid-stem, 14. globoid-leaf (rachis), 15. conical-leaf (rachis), 16. fusiform-leaf), 17–18; Diclinanona tessmannii (17. globoid-leaf, 18. globoid-stem), 19–21; Guatteria megalophylla (19. conical-leaf, 20. globoid-leaf, 21. globoid-leaf), 22; Porcelia nitidifolia (22. globoid-leaf), 23; Unonopsis spectabilis (23. globoid-leaf), 24; Aspidosperma excelsum (24. lenticular-leaf).
Galls found in four vegetation types in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru. 25–26; Aspidosperma excelsum (25. lenticular-leaf, 26. globoid-leaf), 27–28; Parahancornia peruviana (27. lenticular-leaf, 28. fusiform-leaf), 29–31; Dendropanax umbellatus (29. globoid-leaf, 30. lenticular-leaf, 31. fusiform-leaf), 32–36; Tabebuia insignis (32. globoid-leaf, 33. fusiform-leaf, 34. globoid-leaf, 35. lenticular-leaf, 36. globoid-leaf), 37; Protium crassipetalum (37. marginal roll-leaf), 38–40; Caraipa tereticaulis (38. fusiform-leaf, 39. Globoid-leaf, 40. marginal roll-leaf), 41–48; Caraipa utilis (41. lenticular-leaf, 42. globoid-stem, 43. globoid-leaf, 44. marginal roll-leaf, 45. globoid-leaf, 46. globoid-leaf, 47. globoid-leaf, 48. globoid-leaf (petiole)).
Galls found in four vegetation types in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru. 49–54; Caraipa utilis (49. globoid-leaf (petiole), 50. globoid-leaf, 51. globoid-stem, 52. globoid-stem, 53. globoid-leaf, 54. globoid-stem), 55–58; Haploclathra cordata (55. lenticular-leaf, 56. globoid-leaf, 57. globoid-leaf, 58. conical-leaf), 59–61; Couepia williamsii (59. marginal roll-leaf, 60. globoid-leaf, 61. globoid-bud), 62–71; Sloanea parvifructa (62. lenticular-leaf, 63. marginal roll-leaf, 64. globoid-leaf, 65. globoid-stem, 66. globoid-leaf, 67. fusiform-leaf, 68. fusiform-leaf, 69. globoid-leaf, 70. globoid-leaf, 71. lenticular-leaf), 72; Alchorneopsis floribunda (72. lenticular-leaf).
Galls found in four vegetation types in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru. 73; Alchorneopsis floribunda (73. globoid-leaf), 74; Hevea guianensis (74. globoid-leaf), 75–88; Micrandra elata (75. globoid-leaf, 76. lenticular-leaf, 77. globoid-leaf, 78. amorphous-leaf, 79. globoid-stem, 80. marginal roll-leaf, 81. fusiform-stem, 82. globoid-leaf, 83. globoid-leaf, 84. fusiform-leaf, 85. globoid-leaf, 86. globoid-stem, 87. globoid-leaf, 88. globoid-stem), 89–91; Nealchornea yapurensis (89. fusiform-leaf, 90. lenticular-leaf, 91. lenticular-leaf), 92–93; Abarema auriculata (92. globoid-leaf, 93. lenticular-leaf), 94–96; Cynometra bauhiniifolia (94. fusiform-leaf, 95. marginal roll-leafl, 96. globoid-leaf).
Galls found in four vegetation types in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru. 97; Cynometra bauhiniifolia (97. fusiform-stem), 98–101; Dialium guianense (98. fusiform-leaf, 99. globoid-leaf, 100. lenticular-leaf, 101. conical-leaf), 102–103; Dicymbe uaiparuensis (102. conical-leaf, 103. lenticular-leaf), 104–111; Dimorphandra macrostachya (104. globoid-leaf, 105. lenticular-leaf, 106. globoid-leaf, 107. pocket-leaf, 108. globoid-leaf, 109. globoid-leaf, 110. globoid-leaf, 111. globoid-leaf (rachis)), 112–114; Hymenaea courbaril (112. globoid-stem, 113. conical-leaf, 114. lenticular-leaf), 115; Inga nobilis (115. globoid-leaf), 116–119; Macrolobium limbatum (116. globoid-leaf, 117. fusiform-leaf, 118. lenticular-fruit, 119. lenticular-leaf), 120; Macrolobium microcalyx (120. globoid-leaf).
Galls found in four vegetation types in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru. 121–125; Macrolobium microcalyx (121. lenticular-leaf, 122. globoid-leaf, 123. conical-leaf, 124. globoid-leaf, 125. fusiform-leaf), 126–130; Parkia igneiflora (126. fusiform-leaf, 127. cup-leaf, 128. lenticular-leaf, 129. globoid-leaf, 130. globoid-leaf), 131–136; Tachigali loretensis (131. globoid-leaf, 132. lenticular-leaf, 133. marginal roll-leaf, 134. globoid-leaf, 135. globoid-leaf, 136. rosette-leaf), 137–139; Vatairea erythrocarpa (137. globoid-leaf, 138. globoid-leaf, 139. lenticular-leaf), 140–141; Vantanea parviflora (140. globoid-leaf, 141. fusiform-leaf), 142–144; Aniba taubertiana (142. lenticular-leaf, 143. globoid-leaf, 144. fusiform-leaf).
Galls found in four vegetation types in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru. 145; Aniba taubertiana (145. globoid-bud), 146–150; Nectandra longifolia (146. lenticular-leaf, 147, globoid-leaf, 148. globoid-leaf, 149. fusiform-leaf, 150. marginal roll-leaf), 151–154; Ocotea argyrophylla (151. globoid-leaf, 152. globoid-leaf, 153. conical-leaf, 154. fusiform-leaf), 155–156; Persea boliviensis (155. lenticular-leaf, 156. globoid-bud), 157–158; Pleurothyrium cuneifolium (157. lenticular-stem, 158. fusiform-leaf), 159; Allantoma pluriflora (159. lenticular-leaf), 160–168; Eschweilera coriacea (160. globoid-leaf, 161. globoid-petiole/leaf, 162. globoid-stem, 163. globoid-leaf, 164. globoid-leaf, 165. globoid-leaf, 166. globoid-leaf, 167. lenticular-leaf, 168. marginal roll-leaf).
Galls found in four vegetation types in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru. 169–170; Eschweilera coriacea (169. globoid-leaf, 170. globoid-leaf), 171–175; Eschweilera rufifolia (171. globoid-leaf, 172, globoid-leaf, 173. lenticular-leaf, 174. lenticular-leaf, 175. globoid-leaf), 176; Gustavia longifolia (176. fusiform-leaf), 177; Ruptiliocarpon caracolito (177. globoid-leaf), 178–179; Bunchosia argentea (178. globoid-leaf, 179. globoid-leaf), 180–184; Luheopsis hoehnei (180. globoid-leaf, 181. globoid-leaf, 182. 183. globoid-leaf, 184. fusiform-leaf), 185–188; Pachira brevipes (185. lenticular-leaf, 186. globoid-stem, 187. globoid-leaf, 188. fusiform-stem), 189–191; Theobroma subincanum (189. globoid-leaf, 190. globoid-leaf, 191. fusiform-leaf), 192; Mouriri vernicosa (192. lenticular-leaf).
Galls found in four vegetation types in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru. 193; Mouriri vernicosa (193. Marginal roll-leaf), 194–196; Carapa procera (194. lenticular-leaf, 195, fusiform-leaf, 196. globoid-leaf), 197–198; Emmotum floribundum (197. fusiform-leaf, 198. lenticular-leaf), 199; Brosimum utile (199. lenticular-leaf), 200; Perebea xanthochyma (200. globoid-leaf), 201; Trymatococcus amazonicus (201. lenticular-fruit), 202–203; Iryanthera juruensis (202. lenticular-leaf, 203. fusiform-leaf), 204–205; Iryanthera laevis (204. fusiform-leaf, 205. lenticular-leaf), 206–211; Iryanthera lancifolia (206. lenticular-leaf, 207. lenticular-leaf, 208. lenticular-leaf, 209. fusiform-leaf, 210. conical-leaf, 211. globoid-leaf), 212–213; Virola pavonis (212. lenticular-leaf, 213. Conical-leaf), 214; Blepharocalyx eggersii (214. lenticular-leaf); 215–216; Eugenia riparia (215. globoid-leaf, 216. fusiform-leaf).
Galls found in four vegetation types in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru. 217; Eugenia riparia (217. globoid-leaf), 218–219; Myrcia cebra (218. lenticular-leaf, 219, globoid-stem), 220–222; Neea spruceana (220. lenticular-leaf, 221. globoid-leaf, 222. lenticular-leaf), 223–224; Neea verticillata (223. globoid-leaf, 224. lenticular-leaf), 225–226; Cathedra acuminata (225. lenticular-leaf, 226. globoid-stem), 227–230; Amanoa guianensis (227. lenticular-leaf, 228. marginal roll-leaf, 229. lenticular-leaf, 230. globoid-stem), 231–232; Hieronyma oblonga (231. globoid-leaf, 232. globoid-leaf), 233–237; Richeria grandis (233. globoid-leaf, 234. globoid-leaf, 235. globoid-leaf, 236. globoid-leaf, 237. globoid-leaf), 238–240; Casearia arborea (238. fusiform-leaf, 239. lenticular-leaf, 240. fusiform-stem).
Galls found in four vegetation types in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru. 241; Cupania diphylla (241. conical-leaf), 242–243; Cupania latifolia (242. Marginal roll-leaf, 243, fusiform-leaf), 244–245; Talisia firma (244. fusiform-leaf, 245. lenticular-leaf), 246–251; Chrysophyllum sanguinolentum (246. globoid-leaf, 247. fusiform-leaf, 248. globoid-leaf, 249. globoid-leaf, 250. lenticular-leaf, 251. Fusiform-leaf), 252–255; Manilkara bidentata (252. globoid-leaf, 253. globoid-stem, 254. lenticular-leaf, 255. Marginal roll-leaf), 256–258; Pouteria subrotata (256. conical-leaf, 257. clavate-leaf, 258. globoid-leaf), 259; Pouteria torta (259. fusiform-leaf), 260; Cecropia distachya (260. globoid-leaf), 261–262; Pouroma bicolor (261. clavate-leaf, 262. globoid-leaf).
Characterization of insect galls in four vegetation type in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru. Legends: P = Parasitoid, S = Successor, C = Cecidophages; TF = Terra firme forest, WSd = White-sand dry forest, WSw= White-sand wet forest, and PS = Palm swamp forest.
Galls were found in leaves (n = 235), stems (n = 21), buds (n = 3) and fruits (n = 2), with 90% of all galls occurring on leaves. All morphotypes occurred in just one plant organ, except one morphotype that was found in both leaves and petioles of E. coriacea.
Ten distinct gall shapes were found: globoid, lenticular, fusiform, marginal roll, conical, clavate, amorphous, cup, pocket, and rosette. The globoid, lenticular and fusiform shapes were the most frequent ones, with 130, 58 and 39 morphoytpes, respectively, followed by marginal roll (n = 15), conical (n = 14), clavate (n = 2), and others (n = 1). The gall morphotypes included green, brown, black, and yellow coloration with green color predominant (67%), followed by brown (32%). The majority of galls were glabrous, with 232 morphotypes (89%); the remainder were hairy, with 30 morphotypes (11%). About 91% (238 morphotypes) of galls were one-chambered, often occupied by a single larva; just 9% (24 morphotypes) were multi-chambered.
The galling insects were distributed across four orders: Diptera (n = 58), Thysanoptera (n = 2), Lepidoptera (n = 2), and Hemiptera (n = 1) (Table 3). The Cecidomyiidae (Diptera) was responsible for 22% of all morphotypes. In 199 (76%) of the gall morphotypes we did not find the gall-inducing insect, either because the galls were empty, contained parasitoids, or were occupied by multiple potentially gall-inducing taxa. Eigtheen species of gall midges were identified, in two genera: Contarinia Rondani, 1860 with five morphospecies and Bruggmanniella Tavares, 1909 with one morphospecies. The tribes: Asphondyliini and Lasiopteridi both contained two morphospecies, while Clinodiplosini and Lopesiini had three and five morphospecies, respectively. This is due to scarcity of material, either because one or both sexes were absent, or because no immature specimens were observed. Additionally, the inducer of two gall morphotypes was identified as Plagiothrips sp. 2 (Thysanoptera).
Number and percentage of gall morphotypes in the different taxa of galling insects recorded in the Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, Iquitos, Peru.
The associated fauna comprised successors, cecidophages and parasitoids. Successors, represented by Thysanoptera (Adraneothrips sp., Holothrips sp. 1, and Plagiothrips sp. 1), Hymenoptera (Formicidae and Apidae), Collembola and Acari, were found in 8, 8, 5 and 3 morphotypes, respectively. Cecidophages, Curculionidae (Coleoptera) and Sciaridae (Diptera) were found in only one morphotype. The parasitoids obtained from 55 morphotypes (21% of the total) represented 11 families and 23 genera of Hymenoptera: Aphelinidae (Coccobius sp.), Braconidae (Allorhogas sp. 1, 2), Encyrtidae (Metaphycus sp.), Eulophidae (Aranobroter sp.; Baryscapus sp.; Chrysonotomyia sp.; Euderus sp.; Euderomphale sp.; Galeopsomyia sp.; Horismenus sp.; Neopomphale sp. 1, 2), Eupelmidae (Lambdobregma sp.), Eurytomidae (Calorileya sp.; Phylloxeroxenus sp.; Platyrileya sp. 1; Prodecatoma sp.; Tenuipetiolus sp.), Mymaridae (Polynema sp.), Torymidae (Torymus sp. 1, 2), Platygastridae (Magellanium sp. 1, 2), Pteromalidae (Cerocephala sp.; Euteloidea sp.), and Scelionidae (Baryconus sp.).
In the Allpahuayo-Mishana National Reserve, a total of 240 gall morphotypes were found across 68 plant species, representing 29 botanical families and 59 genera. Meanwhile, in the Quistococha Regional Reserve, 22 gall morphotypes were found, distributed among 8 families, 8 genera, and 8 species. These data were also analyzed based on the type of vegetation present in each reserve.
The terra firme forest showed the greatest diversity of galls and host plants, with 111 different morphotypes found on 39 host plant species, followed by white-sand wet forest, white-sand dry forest and palm swamp forest, which had 73, 56 and 22 morphotypes, among 16, 16 and 8 host plant species respectively (Table 2). In terra firme forest, leaves (n = 104) were the most commonly galled plant organ; the most common gall morphologies included the globoid shape (n = 51), green color (n = 70), glabrous surface (n = 94) and single internal chamber (n = 104). In white-sand wet forest, leaves are most commonly attacked (n = 65), and morphologies are mostly globoid (n = 41), green (n = 52), glabrous (n = 67) and with a single inner chamber (n = 66). In white-sand dry forest: leaves (n = 45), globoid (n = 29), green (n = 35), glabrous (n = 52), and a single inner chamber (n = 48). For palm swamp forest: leaves (n = 21), globoid (n = 9), green (n = 18), glabrous (n = 19), and a single inner chamber (n = 20) (Table 2).
The terra firme forest also showed the richest gall-inducing insect fauna, represented by Diptera (n = 18), Thysanoptera (n = 2), Hemiptera (n = 1), and Lepidoptera (n = 1) (Table 2); white-sand dry forest was next, with Diptera (n = 15) and Lepidoptera (n = 1) as gall-inducing taxa. White-sand wet forest and palm swamp forest had only Diptera (n = 19 and n = 4, respectively). Additionally, two gall-inducing insects (Diptera) were found in two types of vegetation, one in palm swamp and white-sand dry forests on Virola pavonis (A. DC.) A.C. Sm. (Myristicaceae), and other in terra firme and white-sand dry forests on Aspidosperma excelsum Benth. (Apocynaceae).
The associated fauna was found in 66 gall morphotypes, with the highest frequency of occurrence observed in the white-sand wet forest (n = 23 morphotypes), followed by terrra firme forest (n = 18), white-sand dry forest (n = 17), and palm swamp forest (n = 6).
Discussion
We recorded 262 gall morphotypes across our sites in the Peruvian Amazon, a relatively high number compared to other areas with similar vegetation. For example, Almada & Fernandes (2011)ALMADA, E.D. & FERNANDES, G.W.A. 2011. Insetos indutores de galhas em florestas de terra firme e em reflorestamentos com espécies nativas na Amazônia Oriental, Pará, Brasil. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 6(2):163–196. reported the highest insect gall diversity (n = 309 insect gall morphogypes) in an Amazonian forest site, FLONA-Saracá Taquera, Brazil. Other studies in the Brazilian Amazon recorded from 27 to 236 morphotypes (Almada & Fernandes 2011ALMADA, E.D. & FERNANDES, G.W.A. 2011. Insetos indutores de galhas em florestas de terra firme e em reflorestamentos com espécies nativas na Amazônia Oriental, Pará, Brasil. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 6(2):163–196., Maia 2011MAIA, V.C. 2011. Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop. 11(4):37–53., Silva et al. 2011SILVA, P.S.D., ALMEIDA-SANTOS, B., TABARELLI, M. & ALMEIDA-CORTEZ, J.S. 2011. Occurrence of gall complexes along a topographic gradient in an undisturbed lowland forest of central Amazonia. Revista Brasileira de Biociências 9(2):133–138., Araújo et al. 2012ARAÚJO, W.S.D., PORFÍRIO-JÚNIOR, É.D., JORGE, V.A. & ESPÍRITO-SANTO FILHO, K.D. 2012. Plantas hospedeiras e galhas entomógenas em sub-bosques de florestas tropicais do Pará, Brasil. INSULA (41):59–72., Julião et al. 2017JULIÃO, G.R., ALMADA, E.D., COSTA, F.R.C., CARNEIRO, M.A.A. & FERNANDES, G.W. 2017. Understory host plant and insect gall diversity changes across topographic habitats differing in nutrient and water stress in the Brazilian Amazon rainforest. Acta Amaz. 47(3):237–246., Carvalho & Mota 2018CARVALHO, A.N. & MOTA, J.S.D. 2018. Ocorrência e caracterização de galhas entomógenas em um fragmento florestal em estágio de sucessão ecológica na Amazônia. EntomoBrasilis 11(2):118–123.). Thus, our study presents the second highest diversity of galling insects recorded in Amazonian forest. We also found that the average number of gall morphotypes per plant species was 3.5, which was high when compared to other locations in the Amazon—with average values of 1.2, 2.0, 1.7, 1.4 (Almada & Fernandes 2011ALMADA, E.D. & FERNANDES, G.W.A. 2011. Insetos indutores de galhas em florestas de terra firme e em reflorestamentos com espécies nativas na Amazônia Oriental, Pará, Brasil. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 6(2):163–196., Maia 2011MAIA, V.C. 2011. Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop. 11(4):37–53., Araújo et al. 2012ARAÚJO, W.S.D., PORFÍRIO-JÚNIOR, É.D., JORGE, V.A. & ESPÍRITO-SANTO FILHO, K.D. 2012. Plantas hospedeiras e galhas entomógenas em sub-bosques de florestas tropicais do Pará, Brasil. INSULA (41):59–72., Julião et al. 2017JULIÃO, G.R., ALMADA, E.D., COSTA, F.R.C., CARNEIRO, M.A.A. & FERNANDES, G.W. 2017. Understory host plant and insect gall diversity changes across topographic habitats differing in nutrient and water stress in the Brazilian Amazon rainforest. Acta Amaz. 47(3):237–246.). Variations in the insect gall richness and number of gall morphotypes per plant species can be explained by differences in sampling method, collecting effort and host plants sampled (Bergamini et al. 2017BERGAMINI, B.A.R., BERGAMINI, L.L., SANTOS, B.B.D. & ARAÚJO, W.S.D. 2017. Occurrence and characterization of insect galls in the Floresta Nacional de Silvânia, Brazil. Pap. Avulsos Zool. 57(32):413–431.).
Among the sampled vegetation types, the terra firme forest exhibited the greatest richness of gall morphotypes and host species. This can be attributed to the exceptionally diverse and heterogeneous flora found in this forest type, which characterized by nutrient-rich soils and a wide array of niches and ecological resources (Pitman et al. 2001PITMAN, N.C.A., TERBORGH, J.W., SILMAN, M.R., NUN, P., CER, C.E., PALACIOS, W.A. & AULESTIA’, M. 2001. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82(8):2101–2117.). This finding is consistent with results reported by Julião et al. (2014b)JULIÃO, G.R., ALMADA, E.D. & FERNANDES, G.W. 2014b. Galling insects in the Pantanal wetland and Amazonian rainforest. In Neotropical Insect Galls (G. W. Fernandes & J. C. Santos, eds) Springer Netherlands, Dordrecht, p.377–403., which demonstrated that terra firme forests have a greater number of galling insect morphospecies per sampled area than other vegetation types, such as várzea forest.
Many inventories of gall diversity in the Amazon forest indicate that Fabaceae is the most important host plant family (Almada & Fernandes 2011ALMADA, E.D. & FERNANDES, G.W.A. 2011. Insetos indutores de galhas em florestas de terra firme e em reflorestamentos com espécies nativas na Amazônia Oriental, Pará, Brasil. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 6(2):163–196., Maia 2011MAIA, V.C. 2011. Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop. 11(4):37–53., Araújo et al. 2012ARAÚJO, W.S.D., PORFÍRIO-JÚNIOR, É.D., JORGE, V.A. & ESPÍRITO-SANTO FILHO, K.D. 2012. Plantas hospedeiras e galhas entomógenas em sub-bosques de florestas tropicais do Pará, Brasil. INSULA (41):59–72., Julião et al. 2017JULIÃO, G.R., ALMADA, E.D., COSTA, F.R.C., CARNEIRO, M.A.A. & FERNANDES, G.W. 2017. Understory host plant and insect gall diversity changes across topographic habitats differing in nutrient and water stress in the Brazilian Amazon rainforest. Acta Amaz. 47(3):237–246., Carvalho & Mota 2018CARVALHO, A.N. & MOTA, J.S.D. 2018. Ocorrência e caracterização de galhas entomógenas em um fragmento florestal em estágio de sucessão ecológica na Amazônia. EntomoBrasilis 11(2):118–123.), a result also observed in the present study. Araújo et al. (2012)ARAÚJO, W.S.D., PORFÍRIO-JÚNIOR, É.D., JORGE, V.A. & ESPÍRITO-SANTO FILHO, K.D. 2012. Plantas hospedeiras e galhas entomógenas em sub-bosques de florestas tropicais do Pará, Brasil. INSULA (41):59–72. suggested that the main explanation for the high insect gall richness hosted by Fabaceae in the Amazon is the large number of species in that family. According to Julião et al. (2014b)JULIÃO, G.R., ALMADA, E.D. & FERNANDES, G.W. 2014b. Galling insects in the Pantanal wetland and Amazonian rainforest. In Neotropical Insect Galls (G. W. Fernandes & J. C. Santos, eds) Springer Netherlands, Dordrecht, p.377–403., Fabaceae stands out as the family with the greatest richness of Cecidomyiidae galls in the Amazon. It is expected that the number of taxa in a host plant family will be reflected in the number of galling associates, with more species-rich families hosting a richer fauna (Gonçalves-Alvim & Fernandes 2001GONÇALVES-ALVIM, S.J. & FERNANDES, G.W. 2001. Biodiversity of galling insects: historical, community and habitat effects in four Neotropical savannas. Biodiversity and Conservation 10:79–98.). Consistent with previous work, we showed that the host genus Eschweilera (Lecythidaceae) was one of the richest in insect gall morphotypes. Julião et al. (2014b)JULIÃO, G.R., ALMADA, E.D. & FERNANDES, G.W. 2014b. Galling insects in the Pantanal wetland and Amazonian rainforest. In Neotropical Insect Galls (G. W. Fernandes & J. C. Santos, eds) Springer Netherlands, Dordrecht, p.377–403. found that 77% of galling insect morphospecies sampled from Lecythidaceae are associated with this single genus. With respect to the high gall diversity on T. guianesis, C. utilis, M. elata, E. coriacea and S. parvifructa—the most important host species in the present study—there are no reports in the literature. Among all host plants, only C. utilis is endemic to the Amazonian region. This plant hosts 14 gall-inducing species. Since galls result from species-specific interactions, the plant endemism also applies to the inducers. So, these 14 cecidogenous species are endemic too.
Leaves were the most frequently galled plant organ in our study. This pattern was observed in previous studies, including inventories carried out in the Amazon forest (Mani 1964MANI, M.S. 1964. Ecology of Plant Galls. 1nd ed, Junk, Haia. 434p., Almada & Fernandes 2011ALMADA, E.D. & FERNANDES, G.W.A. 2011. Insetos indutores de galhas em florestas de terra firme e em reflorestamentos com espécies nativas na Amazônia Oriental, Pará, Brasil. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 6(2):163–196., Maia 2011MAIA, V.C. 2011. Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop. 11(4):37–53., Silva et al. 2011SILVA, P.S.D., ALMEIDA-SANTOS, B., TABARELLI, M. & ALMEIDA-CORTEZ, J.S. 2011. Occurrence of gall complexes along a topographic gradient in an undisturbed lowland forest of central Amazonia. Revista Brasileira de Biociências 9(2):133–138., Araújo et al. 2012ARAÚJO, W.S.D., PORFÍRIO-JÚNIOR, É.D., JORGE, V.A. & ESPÍRITO-SANTO FILHO, K.D. 2012. Plantas hospedeiras e galhas entomógenas em sub-bosques de florestas tropicais do Pará, Brasil. INSULA (41):59–72., Julião et al. 2017JULIÃO, G.R., ALMADA, E.D., COSTA, F.R.C., CARNEIRO, M.A.A. & FERNANDES, G.W. 2017. Understory host plant and insect gall diversity changes across topographic habitats differing in nutrient and water stress in the Brazilian Amazon rainforest. Acta Amaz. 47(3):237–246., Carvalho & Mota 2018CARVALHO, A.N. & MOTA, J.S.D. 2018. Ocorrência e caracterização de galhas entomógenas em um fragmento florestal em estágio de sucessão ecológica na Amazônia. EntomoBrasilis 11(2):118–123.), and in other biomes (Rodrigues et al. 2014RODRIGUES, A.R., MAIA, V.C. & COURI, M.S. 2014. Insect galls of restinga areas of Ilha da Marambaia, Rio de Janeiro, Brazil. Rev. Bras. entomol. 58(2):173–197., Bergamini et al. 2017BERGAMINI, B.A.R., BERGAMINI, L.L., SANTOS, B.B.D. & ARAÚJO, W.S.D. 2017. Occurrence and characterization of insect galls in the Floresta Nacional de Silvânia, Brazil. Pap. Avulsos Zool. 57(32):413–431., Marinho et al. 2023MARINHO, R.A., MAIA, V.C. & BARBOSA, M.R.D.V. 2023. Entomogenous galls and their associated fauna in deciduous dry forest and woodland vegetation remnants (Caatinga) in the Northern Depressão Sertaneja, Brazil. Biota Neotrop. 23(1):e20221428.). According to Proença & Maia (2023)PROENÇA, B. & MAIA, V.C. 2023. Insect galls from Amazon rainforest areas in Rondônia (Brazil). An. Acad. Bras. Cienc. 95(4):1–35., 81% of galls occurred on leaves in the Amazon forest. This is probably because leaves represent an abundant and renewable resource available to gall inducers (Maia 2011MAIA, V.C. 2011. Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop. 11(4):37–53.). The globoid shape also was the most common one, together with the green color, glabrous surface and one-chambered galls. These predominant characteristics are also consistent with previous studies in the Amazon (Almada & Fernandes 2011ALMADA, E.D. & FERNANDES, G.W.A. 2011. Insetos indutores de galhas em florestas de terra firme e em reflorestamentos com espécies nativas na Amazônia Oriental, Pará, Brasil. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 6(2):163–196., Maia 2011MAIA, V.C. 2011. Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop. 11(4):37–53., Silva et al. 2011SILVA, P.S.D., ALMEIDA-SANTOS, B., TABARELLI, M. & ALMEIDA-CORTEZ, J.S. 2011. Occurrence of gall complexes along a topographic gradient in an undisturbed lowland forest of central Amazonia. Revista Brasileira de Biociências 9(2):133–138., Araújo et al. 2012ARAÚJO, W.S.D., PORFÍRIO-JÚNIOR, É.D., JORGE, V.A. & ESPÍRITO-SANTO FILHO, K.D. 2012. Plantas hospedeiras e galhas entomógenas em sub-bosques de florestas tropicais do Pará, Brasil. INSULA (41):59–72., Julião et al. 2017JULIÃO, G.R., ALMADA, E.D., COSTA, F.R.C., CARNEIRO, M.A.A. & FERNANDES, G.W. 2017. Understory host plant and insect gall diversity changes across topographic habitats differing in nutrient and water stress in the Brazilian Amazon rainforest. Acta Amaz. 47(3):237–246., Carvalho & Mota 2018CARVALHO, A.N. & MOTA, J.S.D. 2018. Ocorrência e caracterização de galhas entomógenas em um fragmento florestal em estágio de sucessão ecológica na Amazônia. EntomoBrasilis 11(2):118–123.).
Galling insects of the family Cecidomyiidae were the most important in the fauna studied. This result corroborates previous studies that pointed to the dominance of Cecidomyiidae in the Amazon forest (Proença & Maia, 2023PROENÇA, B. & MAIA, V.C. 2023. Insect galls from Amazon rainforest areas in Rondônia (Brazil). An. Acad. Bras. Cienc. 95(4):1–35.). For example, Julião et al. (2014b)JULIÃO, G.R., ALMADA, E.D. & FERNANDES, G.W. 2014b. Galling insects in the Pantanal wetland and Amazonian rainforest. In Neotropical Insect Galls (G. W. Fernandes & J. C. Santos, eds) Springer Netherlands, Dordrecht, p.377–403., showed that Cecidomyiidae was responsible for 72% of gall morphospecies in the Amazon forest. This points to Cecidomyiidae as the family with the greatest diversity of galling insects in the Neotropical region (Gagné 1994GAGNÉ, R.J. 1994. The gall midges of the Neotropical Region, 1st ed., Cornell Univ Press: Ithaca, New York. 325p.).
Regarding the associated fauna, Thysanoptera, Hymenoptera, Acari, and Collembola were found as successors. Additionally, Curculionidae (Coleoptera) and Sciaridae (Diptera) were identified as cecidophages, which is the first documented record of this in Amazonian forest. Hymenoptera was the only insect order represented as a parasitoid. Among the Hymenoptera families, Eulophidae was the most frequent in our study. This pattern aligns with previous findings in the Brazilian Amazon, where Eulophidae has been reported as the predominant parasitoid group (Carvalho & Mota 2018CARVALHO, A.N. & MOTA, J.S.D. 2018. Ocorrência e caracterização de galhas entomógenas em um fragmento florestal em estágio de sucessão ecológica na Amazônia. EntomoBrasilis 11(2):118–123.). In restinga areas of the state of Rio de Janeiro (Atlantic forest), Eulophidae were also the most frequent and best represented parasitoids (Maia & Azevedo 2009MAIA, V.C. & AZEVEDO, M.A.P. 2009. Micro-himenópteros associados com galhas de Cecidomyiidae (Diptera) em Restingas do Estado do Rio de Janeiro (Brasil). Biota Neotrop. 9(2):151–164.), as well as in Cerrado (Maia & Silva 2021MAIA, V.C. & SILVA, B.G. 2021. Insect galls of the Brazilian Cerrado: associated fauna. Biota Neotrop. 21(3):e20211202.), showing that this pattern can be widespread in South America.
The taxonomic resolution of gall-inducing insects in our study was low, which was also observed in previous studies in the Amazon. Julião et al. (2014b)JULIÃO, G.R., ALMADA, E.D. & FERNANDES, G.W. 2014b. Galling insects in the Pantanal wetland and Amazonian rainforest. In Neotropical Insect Galls (G. W. Fernandes & J. C. Santos, eds) Springer Netherlands, Dordrecht, p.377–403. recorded 1,549 gall morphotypes in the Brazilian Amazon, and inducers of only 386 morphotypes were identified to order or family level. In that study, gall-inducing insects were found to belong to the orders Diptera (Cecidomyiidae), Hemiptera, Coleoptera, Lepidoptera, and Hymenoptera, while 24% of the inducers could not be identified to any possible level.
Conclusions
This is the first systematic survey of insect galls undertaken in the Peruvian Amazon. With this study, 262 gall morphotypes and 75 host plant species have been recorded. Fabaceae was the family with the highest number of galled species. T. guianesis, C. utilis, M. elata, E. coriacea and S. parvifructa were identified as the host plant species with the highest richness of gall-inducing insects. The leaf was the most galled plant organ, and globoid shape was the most common morphology. Among the galler orders, Diptera was the most representative, with Cecidomyiidae being the standout family in terms of species richness. Hymenoptera was identified as the only order of parasitoids, while successors were represented by four orders. Cecidophages were represented by both Coleoptera and Diptera orders. Finally, terra firme forest presented the largest richness of gall morphotypes and host plant species.
Acknowledgments
The first author wishes to thank the Programa Nacional de Becas y Crédito Educativo (PRONABEC) for a scholarship for post-graduate studies in Brazil, and Dr. Gabriel Vargas Arana for the availability of Laboratorio de química de productos naturales del Instituto de Investigaciones de la Amazonía Peruana (IIAP). We thank Julio Irarica Pacaya, Aarón Panduro Bardales and Cecila Bardales Sandoval for their invaluable assistance during fieldwork. Dr. Adriano Cavalleri (UFRS) by the Thysanoptera order identification, and Seth Kauppinen made comments on English usage. We also thank the Quistococha Tourist Complex, and the Peruvian Protected Areas Authority (SERNANP) for providing research permits (RNAM N°11-2021-SERNANP-JEF) for access to the forests the Allpahuayo-Mishana National Reserve. E.N.H.C. also acknowledges support from a NERC Knowledge Exchange Fellowship (NE/V018760/1).
Data Availability
The datasets generated during and/or analyzed during the current study are available at: https://doi.org/10.48331/scielodata.025WUA.
References
- ALMADA, E.D. & FERNANDES, G.W.A. 2011. Insetos indutores de galhas em florestas de terra firme e em reflorestamentos com espécies nativas na Amazônia Oriental, Pará, Brasil. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 6(2):163–196.
- ARAÚJO, W.S.D. 2018. 30 years of research on insect galls in Brazil: a scientometric review. Pap. Avulsos Zool. 58:1–11.
- ARAÚJO, W.S.D., FERNANDES, G.W. & SANTOS, J.C. 2019. An overview of inventories of gall-inducing insects in Brazil: looking for patterns and identifying knowledge gaps. An. Acad. Bras. Ciênc. 91(1):e20180162.
- ARAÚJO, W.S.D., PORFÍRIO-JÚNIOR, É.D., JORGE, V.A. & ESPÍRITO-SANTO FILHO, K.D. 2012. Plantas hospedeiras e galhas entomógenas em sub-bosques de florestas tropicais do Pará, Brasil. INSULA (41):59–72.
- BERGAMINI, B.A.R., BERGAMINI, L.L., SANTOS, B.B.D. & ARAÚJO, W.S.D. 2017. Occurrence and characterization of insect galls in the Floresta Nacional de Silvânia, Brazil. Pap. Avulsos Zool. 57(32):413–431.
- CARDOSO, D., SÄRKINEN, T., ALEXANDER, S., AMORIM, A.M., BITTRICH, V., CELIS, M., DALY, D.C., FIASCHI, P., VIANA, P.L., STEHMANN, … STEVENS, W.D. 2017. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl. Acad. Sci. 114(40):10695–10700.
- CARNEIRO, M.A.A., BRANCO, C.S.A., BRAGA, C.E.D., ALMADA, E.D., COSTA, M.B.M., MAIA, V.C. & FERNANDES, G.W. 2009. Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev. Bras. Entomol. 53(3):365–378.
- CARVALHO, A.N. & MOTA, J.S.D. 2018. Ocorrência e caracterização de galhas entomógenas em um fragmento florestal em estágio de sucessão ecológica na Amazônia. EntomoBrasilis 11(2):118–123.
- DRAPER, F.C., HONORIO CORONADO, E.N., ROUCOUX, K.H., LAWSON, I.T., NIGEL, N.C., PAUL, P.V., PHILLIPS, O.L., TORRES MONTENEGRO, L.A., VALDERRAMA SANDOVAL, E., MESONES, I., GARCÍA-VILLACORTA, R., ARÉVALO, F.R.R. & BAKER, T.R. 2018. Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional beta-diversity. Ecography 41(8):1256–1269.
- ENCARNACIÓN, F. 1985. Introductión a la flora y vegetatión de la Amazonia peruana : estado actual de los estudios, medio natural y ensayo de una clave de determinación de las formaciones vegetales en la llanura amazónica. Candollea 40(1):237–252.
- ESPIRITO-SANTO, M.M. & FERNANDES, G.W. 2007. How many species of gall-inducing insects ere there on earth, and where are they? Annals of the Entomological Society of America 100(2):95–99.
- FORESTPLOTS.NET, BLUNDO, C., CARILLA, J., GRAU, R., MALIZIA, A., MALIZIA, L., OSINAGA-ACOSTA, O., BIRD, M., BRADFORD, M., CATCHPOLE, … TRAN, H.D. 2021. Taking the pulse of Earth’s tropical forests using networks of highly distributed plots. Biological Conservation 260:108849.
- GAGLIARDI-URRUTIA, G., GARCÍA DÁVILA, C., JARAMILLO-MARTINEZ, A., ROJAS-PADILLA, O., RÍOS-ALVA, E., AGUILAR-MANIHUARI, R., PÉREZ-PEÑA, P.E., TUPINAMBÁ, P., CASTROVIEJO-FISHER, S., SIMÕES, P.I. & ESTIVALS, G. 2022. Anfibios de Loreto. 1 ed. Instituto de Investigación de la Amazonía Peruana, Peru.
- GAGNÉ, R.J. 1994. The gall midges of the Neotropical Region, 1st ed., Cornell Univ Press: Ithaca, New York. 325p.
- GAGNÉ, R.J. & JASCHHOF, M. 2021. A Catalog of the Cecidomyiidae (Diptera) of the World. 5th ed. Digital. 813 pp.
- GIBSON, G. A. P., HUBER, J. T. & WOOLLEY, J. B. 1997. Annotated keys to the genera o Nearctic Chalcidoidea (Hymenoptera). NRC Research Press, Ottawa.
- GONÇALVES-ALVIM, S.J. & FERNANDES, G.W. 2001. Biodiversity of galling insects: historical, community and habitat effects in four Neotropical savannas. Biodiversity and Conservation 10:79–98.
- GRANDEZ-RIOS, J.M., GARCÍA-VILLACORTA, R., CUEVAS-REYES, P. & ARAÚJO, W.S. 2015. Insectos inductores de Agallas en América Latina: Ecología, Importancia y Nuevas Perspectivas. Rev. Biol. Neotrop. 12(2):92–103.
- ISAIAS, R.M.S., CARNEIRO, R.G.S., OLIVEIRA, D.C. & SANTOS, J.C. 2013. Illustrated and annotated checklist of Brazilian gall morphotypes. Neotrop. Entomol. 42:230–239.
- IUCN (INTERNATIONAL UNION FOR CONSERVATION OF NATURE). 2023. The IUCN Red List of threatened species. Version 2023–1. http://www. iucnredlist.org/ (last access on 14/12/2023).
» http://www. iucnredlist.org/ - JULIÃO, G.R., VENTICINQUE, E.M., FERNANDES, G.W. & PRICE, P.W. 2014a. Unexpected high Diversity of Galling insects in the Amazonian upper canopy: the savanna out there. PLoS ONE 9(12):e114986.
- JULIÃO, G.R., ALMADA, E.D. & FERNANDES, G.W. 2014b. Galling insects in the Pantanal wetland and Amazonian rainforest. In Neotropical Insect Galls (G. W. Fernandes & J. C. Santos, eds) Springer Netherlands, Dordrecht, p.377–403.
- JULIÃO, G.R., ALMADA, E.D., COSTA, F.R.C., CARNEIRO, M.A.A. & FERNANDES, G.W. 2017. Understory host plant and insect gall diversity changes across topographic habitats differing in nutrient and water stress in the Brazilian Amazon rainforest. Acta Amaz. 47(3):237–246.
- LEÓN, B., PITMAN, N. & ROQUE, J. 2006. Introducción a las plantas endémicas del Perú. Rev. Peru. Biol. 13(2):9s–22s.
- LOPEZ-GONZALEZ, G., LEWIS, S.L., BURKITT, M. & PHILLIPS, O.L. 2011. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science 22(4):610–613.
- LUZ, F.A. & MENDONÇA JÚNIOR, M.S. 2019. Guilds in Insect Galls: Who is Who. Florida Entomol. 102(1):207.
- MAIA, V.C. 2011. Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop. 11(4):37–53.
- MAIA, V.C. 2022. Review of the inquilinous fauna associated with insect galls in Brazilian restingas. Brazilian J. Biol. 821–15.
- MAIA, V.C. & AZEVEDO, M.A.P. 2009. Micro-himenópteros associados com galhas de Cecidomyiidae (Diptera) em Restingas do Estado do Rio de Janeiro (Brasil). Biota Neotrop. 9(2):151–164.
- MAIA, V.C. & SILVA, B.G. 2021. Insect galls of the Brazilian Cerrado: associated fauna. Biota Neotrop. 21(3):e20211202.
- MANI, M.S. 1964. Ecology of Plant Galls. 1nd ed, Junk, Haia. 434p.
- MARENGO, J.A. 1998. Climatologia de la zona de Iquitos, Peru. In Geoecologia y desarrollo amazónico: estudio integrado en la zona de Iquitos, Peru (R. Kalliola & S. Flores Paitan, eds) Annales Universitatis Turkuensis Ser A, 114. University of Turku, Finland, p.35–57.
- MARINHO, R.A., MAIA, V.C. & BARBOSA, M.R.D.V. 2023. Entomogenous galls and their associated fauna in deciduous dry forest and woodland vegetation remnants (Caatinga) in the Northern Depressão Sertaneja, Brazil. Biota Neotrop. 23(1):e20221428.
- MENDONÇA, M.D.S. 2007. Plant diversity and galling arthropod diversity searching for taxonomic patterns in an animal-plant interaction in the Neotropics. Bol. Soc. Argent. Bot. 42(3–4):347–357.
- PHILLIPS, O., BAKER, T., FELDPAUSCH, T. & BRIENEN, R. 2009. RAINFOR: field manual for plot establishment and remeasurement. The Royal Society, Leeds, UK.
- PITMAN, N.C.A., TERBORGH, J.W., SILMAN, M.R., NUN, P., CER, C.E., PALACIOS, W.A. & AULESTIA’, M. 2001. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82(8):2101–2117.
- PROENÇA, B. & MAIA, V.C. 2023. Insect galls from Amazon rainforest areas in Rondônia (Brazil). An. Acad. Bras. Cienc. 95(4):1–35.
- RODRIGUES, A.R., MAIA, V.C. & COURI, M.S. 2014. Insect galls of restinga areas of Ilha da Marambaia, Rio de Janeiro, Brazil. Rev. Bras. entomol. 58(2):173–197.
- ROUCOUX, K.H., LAWSON, I.T., JONES, T.D., BAKER, T.R., CORONADO, E.N.H., GOSLING, W.D. & LÄHTEENOJA, O. 2013. Vegetation development in an Amazonian peatland. Palaeogeography, Palaeoclimatology, Palaeoecology 374:242–255.
- SALO, M. & PYHÄLÄ, A. 2007. Exploring the gap between conservation science and protected area establishment in the Allpahuayo-Mishana National Reserve (Peruvian Amazonia). Envir. Conserv. 34(1):23–32.
- SILVA, P.S.D., ALMEIDA-SANTOS, B., TABARELLI, M. & ALMEIDA-CORTEZ, J.S. 2011. Occurrence of gall complexes along a topographic gradient in an undisturbed lowland forest of central Amazonia. Revista Brasileira de Biociências 9(2):133–138.
- STONE, G.N. & SCHÖNROGGE, K. 2003. The adaptive significance of insect gall morphology. Trends in Ecology & Evolution 18(10):512–522.
- YUKAWA, J., TOKUDA, M., UECHI, N. & SATO, S. 2001. Species richness of galling arthropods in Manaus, Amazon and the surroundings of the Iguassu Falls. Esakia 41:11–15.
Edited by
Publication Dates
-
Publication in this collection
26 Jan 2024 -
Date of issue
2023
History
-
Received
22 Sept 2023 -
Accepted
28 Dec 2023