
Carlos Alberto Bavastri et al 

22 / Vol. XXX, No. 1, January-March 2008 ABCM

 
 

Carlos Alberto Bavastri 
Member, ABCM 

bavastri@utfpr.edu.br 
Univ. Tecnológica Federal do Paraná - UTFPR 

80230-901 Curitiba, PR, Brazil 

Euda Mara da S. Ferreira 
eudaferreira@pop.com.br 

Universidade Federal do Paraná - UFPR 
81531-990 Curitiba, PR, Brazilç 

José João de Espíndola 
Life Member, ABCM  

espindol@mbox1.ufsc.br 
Universidade Federal de Santa Catarina – UFSC 

88040-900 Florianópolis, SC, Brazil 

Eduardo Márcio de O. Lopes 
Senior Member, ABCM  
eduardo_lopes@ufpr.br 

Universidade Federal do Paraná - UFPR 
81531-990 Curitiba, PR, Brazil 

 

Modeling of Dynamic Rotors with 
Flexible Bearings due to the use of 
Viscoelastic Materials 
Nowadays rotating machines produce or absorb large amounts of power in relatively 
small physical packages. The fact that those machines work with large density of energy 
and flows is associated to the high speeds of rotation of the axis, implying high inertia 
loads, shaft deformations, vibrations and dynamic instabilities. Viscoelastic materials are 
broadly employed in vibration and noise control of dynamic rotors to increase the area of 
stability, due to their high capacity of vibratory energy dissipation. A widespread model, 
used to describe the real dynamic behavior of this class of materials, is the fractional 
derivative model. Resorting to the finite element method it is possible to carry out the 
modeling of dynamic rotors with flexible bearings due to the use of viscoelastic materials. 
In general, the stiffness matrix is comprised of the stiffnesses of the shaft and bearings. As 
considered herein, this matrix is complex and frequency dependent because of the 
characteristics of the viscoelastic material contained in the bearings. Despite of that, a 
clear and simple numerical methodology is offered to calculate the modal parameters of a 
simple rotor mounted on viscoelastic bearings. A procedure for generating the Campbell 
diagram (natural frequency versus rotation frequency) is presented. It requires the 
embedded use of an auxiliary (internal) Campbell diagram (natural frequency versus 
variable frequency), in which the stiffness matrix as a frequency function is dealt with. A 
simplified version of that procedure, applicable to unbalance excitations, is also presented. 
A numerical example, for two different bearing models, is produced and discussed 
Keywords: dynamic rotor, viscoelastic material, Campbell diagram, critical rotations, 
unbalance response 

Introduction 
1Nowadays rotating machines produce or absorb larger and 

larger amounts of power in relatively small physical packages. The 
fact that those machines work with large density of flows of energy 
is associated to the high speeds of rotor rotation. It implies high 
inertia loads, shaft deformations, high levels of vibrations and 
dynamic instabilities.  

Rotating machines often have problems of instability when 
working at high rotations, which can result in sudden failures of the 
whole system or parts of it. This problem can be solved by including 
damping in the bearings. In general, with this type of control, not 
only can the vibration levels be reduced but also the area of stability 
can be enlarged.  

Viscoelastic materials are widely employed in vibration and 
noise control devices due to their high capacity of vibratory energy 
dissipation (see Espíndola et al., 2005). In order to do so, accurate 
knowledge of their dynamic properties is essential.  

Several works can be found in the literature, with the purpose of 
modeling simple rotors mounted either on viscoelastic materials or 
on bearings made of this type of material. Generally, those works 
use the Kelvin-Voigt model, as proposed by Shabaneh and Jean 
(1999), where the viscoelastic material is put under the bearings. 
This model can not accurately represent the dynamic characteristics 
of most viscoelastic materials used in practice, particularly when a 
wide frequency band is considered (Pritz, 1996; Bagley and Torvik, 
1983). It is stressed that this model is described by a differential 
equation of integer order. 

In the work accomplished by Marynowski and Kapitaniak 
(2002), the models of Kelvin-Voigt and Bürgers are compared in 
their ability of describing the behavior of a viscoelastic material. 
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The former is a model with two parameters (spring and viscous 
shock absorber in parallel) while the latter is described by four 
parameters. Similar results were obtained for small values of 
internal shock absorption, but for materials with larger coefficients 
of absorption the model of Bürgers proved itself more appropriate. 

In Panda and Dutt (1999), polymeric materials are placed inside 
the bearings. Using nonlinear optimization techniques, it was 
possible to find the optimal dimensions to reduce the vibratory 
response of the system to unbalance excitations.  

In Dutt and Toi (2002), models with three and four spring-shock 
absorber elements and integer order derivatives are used to predict 
the behavior of a viscoelastic material that is part of a dynamic 
rotor. In that paper the aim was to study the reduction of vibration 
and the changes in rotor dynamic behavior caused by the 
viscoelastic material. 

In most of the papers mentioned above, the models used for 
describing viscoelastic materials could not reproduce their dynamic 
characteristics faithfully over a wide frequency band.  

It will be presented herein a numerical methodology for 
predicting the dynamic response of a simple rotor system in steady 
state, with bearings containing layers of viscoelastic material. The 
model used for the viscoelastic material is the four parameter 
fractional derivative model, due to its ability of representing the real 
dynamic behavior of the material (Pritz, 1996). For this purpose, the 
characteristics of the viscoelastic material were determined by the 
methodology proposed in Espíndola et al. (2005) and Lopes et al. 
(2004).  

To describe the dynamic behavior of the rotor system by 
Lagrange’s equations, it is used the finite element method. By this 
way, the inertia matrix (symmetrical and with constant coefficients), 
the gyroscopic matrix (skew-symmetrical and a function of the 
rotating speed) and the complex stiffness matrix (comprised of the 
stiffness of the shaft and the stiffnesses of the bearings, which are 
frequency and temperature dependent due to the viscoelastic layers) 
are obtained.  
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A simple strategy is offered to calculate the modal parameters of 
the rotor system. In this strategy, a Campbell diagram is generated, 
through which it is possible to determine the corresponding critical 
rotations of the rotor system. Due to the characteristics of the system 
- the stiffness matrix is complex and a function of the frequency - 
the final Campbell diagram should be obtained through the 
embedded use of an auxiliary (internal) Campbell diagram.  

That is, once the rotation of the shaft is established, the inertia 
and the gyroscopic matrices are constant, but the stiffness matrix is 
a function of the frequency, for a given temperature. Therefore, for 
each rotation, the natural frequencies of the system are frequency 
functions and should be found through another Campbell diagram 
(natural frequency versus variable frequency). These steps follow 
the sequence presented in Espíndola and Floody (1999), where the 
dynamic behavior of a sandwich beam (steel – viscoelastic material 
– steel) was studied.  

To validate the above procedure, a numerical example on a 
simple rotor system will be produced and discussed at the end. 

In order to make this text clearer, the classical derivations of the 
rotor system matrices are reviewed underneath, following very 
closely Lalanne’s steps (see Lalanne and Ferraris, 1990). The 
differences related to the use of viscoelastic materials, described by 
the four parameter fractional derivative model, are pointed out as 
they appear. 

Elements of the Rotor System 

The rotor system being modeled is basically comprised of a 
shaft, one or more disks and several flexible bearings, containing 
layers of viscoelastic material. The force upon the rotor system can 
be caused by unbalanced masses (synchronous excitation, 

rpmΩ = Ω ), instabilities of hydrodynamic bearings (asynchronous 

excitation, 0,5 rpmΩ ≅ Ω ) or base excitation ( rpmΩ≠Ω ). This paper 

will address unbalance loads only. 
The general equations of the rotor system can be derived 

through Lagrange’s equations, seen in Eq.(1). So it is necessary to 
define the kinetic energy T, the potential energy U and Rayleigh’s 
dissipation function ℘ of each element of the rotor system, besides 
the virtual work done by external forces acting upon the bearings. 

iq
i i i i

d T T U
F

dt q q q q

 ∂ ∂ ∂ ∂℘− + + = ∂ ∂ ∂ ∂ & &
 (1) 

In Eq.(1), iq  is the ith generalized coordinate, iq&  is the ith

generalized velocity and 
iqF  is the ith generalized force. Then, 

using the finite element method, it is possible to describe the rotor 
system dynamics.  

The Disk  

The disk is assumed to be rigid and characterized by its kinetic 
energy only. Its motion is given in terms of an inertial coordinate 
system R0 (X, Y, Z) and a coordinate system R (x, y, z), fixed in the 
center of the disk and initially coincident with R0, as seen in Fig. 1 
(Lalanne and Ferraris, 1990). The coordinates XYZ and xyz are 
related, in order, by three angles: ψ (rotation around the Z axis), θ
(rotation around the X axis) and φ (rotation around the Y axis). 
Those angles, called the Euler angles, describe how the disk rotates 
as a rigid body concerning the axis X, Y or Z. 

The instantaneous angular speed vector of the disk can then be 
written in reference system R as:  
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Figure 1. Coordinate systems for a disk rotating around a flexible shaft. 

Assuming linearity, the angles θ (rotation around axis X) and ψ
(rotation around axis Z) are regarded as small, so that cos 1θ ≅  and 
sinθ θ≅ , the kinetic energy of the disk is then given by the 
equation: 

( ) ( )2 2 2 2 21 1

2 2D D Dx x Dy y Dz zT M u w I I Iω ω ω= + + + +& &  (3) 

where MD is the mass of the disk and u and w are, respectively, the 
displacements in the X and Z-direction (see Fig. 1). Still, in this 
particular case, as the disk is symmetrical, Dx DzI I= , where DxI  and 

DzI  are the transverse inertia in the X and Z directions. 

Additionally, it is assumed that the angular speed remains 

constant, so φ =Ω =& constant. Therefore, the expression of the 

kinetic energy of the disk, neglecting the terms of second-order, is:   

( ) ( ) ( )2 2 2 2 21 1 1
2

2 2 2D D Dx DyT M u w I Iθ ψ ψθ≅ + + + + Ω + Ω& & && &  (4) 

In the Eq.(4), it is observed that the term ( ) 21 / 2 D yI Ω is 

constant, not having any influence in Lagrange’s equations. The last 
term, DyI ψθΩ & , represents the gyroscopic effect.  

The Shaft 

The shat is characterized by the potential and kinetic energies. 
The expression for the kinetic energy of the shat is the result of an 
extension of the kinetic energy of the disk (see Eq.(4)). If the 
element has length L, its kinetic energy can be expressed by the 
following equation:   

( ) ( )2 2 2 2 2

0 0 0

2
2 2

L L L

E
S I

T u w dy dy IL I dy
ρ ρ ψ θ ρ ρ ψ θ= + + + + Ω + Ω∫ ∫ ∫&& && &  (5) 

where I is the transverse inertia, ρ is the density and S is the 
transverse area.  

Considering the symmetry of the axis (Ix = Iz = I) and neglecting 
the effects of axial forces, the expression for potential energy is 
defined by:   
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The Bearings 

The bearings are comprised of two parts: the bearing itself and 
the viscoelastic layers. The viscoelastic layers can be added between 
the external layer of the roller bearing and the bearing housing or 
underneath the bearing housing, as shown in Fig. 2a and Fig. 2c. In 
the former case, the inertia of the bearing can be neglected while, in 
the latter, it must be considered. Figures 2b and 2d show simplified 
representations for both the situations mentioned above. In the 
current work, it was used the second alternative (Fig. 2c) only, with 
and without layers of viscoelastic material.  

Due to the great difference in damping between the viscoelastic 
layers and the roller bearings, when the viscoelastic material was 
introduced, the damping of the roller bearing was neglected. 
However, when the viscoelastic material is not in place, it was 
considered a small amount of viscous damping, just for the response 
not to approach infinite at resonance.   

The viscoelastic layers and the bearings are placed in series. 
Because of that and considering that the stiffness of the roller 
bearings is much higher than the stiffness of the viscoelastic layers, 
the resulting equivalent stiffness will be that of the viscoelastic 
layers. 

The model used to describe the real dynamic behavior of the 
viscoelastic material employed in the layers is the four parameter 
fractional derivative model. As stated before, the use of this model 
in describing the dynamic behavior of rotor systems with 
viscoelastic bearings is a novelty. 

Figure 2. Models of bearings with viscoelastic material. 

According to Bagley and Torvik (1983), the unidimensional 
constitutive equation in terms of fractional derivatives is: 

( ) ( ) ( ) ( )0

1 1

m n

M N

m n

m n

t b D t E t E D tβ ασ σ ε ε
= =

+ = +∑ ∑  (7) 

where ( )tσ  is the stress at time t, ( )tε  is the corresponding strain, 

bm, mβ , nα , E0 and En, are the parameters for a given material. The 

operators mDβ and nDα represent fractional derivatives.  
When M=N=1 and α β= , the above equation contains four 

parameters only, such that:   

( ) ( ) ( ) ( )1 0 1t b D t E t E D tα ασ σ ε ε   + = +    . (8) 

Applying the Fourier transform to both sides of Eq.(8) gives:  

( ) ( ) ( ) ( ) ( ) ( )1 0 1b i E E i
α ασ σ ε εΩ + Ω Ω = Ω + Ω Ω .  (9) 

The relation ( ) / ( )σ εΩ Ω  is termed the elasticity modulus of the 
material, as seen in Eq.(9). 

0 1 1
( )

( ) ( ) / 1 ( )
( )cE E E i b iα ασ

ε
Ω    Ω = = + Ω + Ω   Ω

 (10) 

Alternatively,    

( ) ( )
( )

0

1
c

E E i b
E

i b

α

α
∞+ Ω

Ω =
+ Ω

 (11) 

where 1 1E E b∞= , 1b bα= and ( )cE Ω  is the complex modulus of 

the material. In general, this modulus is a function of frequency and 
temperature. In this work, the temperature will be regarded as 
constant, so it will not be included as an independent variable. The 
elasticity modulus ( )cE Ω  can be written in a general way by: 

( ) ( ) ( )( )1cE E iηΩ = Ω + Ω  (12) 

where ( )E Ω  is the real part of ( )cE Ω , also called the dynamic 

modulus of elasticity, and ( ) Im( ( )) / Re( ( ))c cE Eη Ω = Ω Ω  is the loss 

factor.  
In Eq.(12), 0E  and E∞  represent the lower and upper 

asymptotes of the dynamic modulus of elasticity. The exponent 
α represents the slope of a straight line, tangent to the point of 

inflection of the curve of ( )E Ω . This point corresponds to the point 

of maximum loss factor. The parameter b, in the same Eq.(12), is 
the relaxation time.  

In analogy with Eq.(10), a model for the shear modulus is: 

0 1 1( ) ( ) / 1 ( )cG G G i b iα α   Ω = + Ω + Ω   
 (13) 

or, in a general way, by 

( ) ( ) ( )( )1cG G iηΩ = Ω + Ω  (14) 

where ( ) ( )( )cG Re GΩ = Ω is related to the storage of vibratory and 

( ) Im( ( )) / Re( ( ))c cG Gη Ω = Ω Ω  is related to the dissipation of vibratory 

energy. For elastomers (Snowdon, 1968), it is known that 

( ) ( ) ( )E Gη η ηΩ = Ω = Ω . (15) 

In the model developed herein, where the viscoelastic material is 
added under the bearings (see Fig. 2c), only the xx and zz
components of stiffness and damping will be considered. In X
direction, the stiffness will be represented by the shear modulus and 
in Z by the elasticity modulus. 

Disregarding the stiffnesses associated to the rotations ψ and θ
of the rolling bearings (in Z and X directions, respectively), the 
stiffness matrix of the viscoelastic layers will be given by: 
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0

0

xxu

zzw

F k u

F wk

    
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     
 (16) 

where 

( )xx ck LG= Ω (17) 

and   

( ) ( )k LE LEzz a a= Ω = Ω . (18) 

In the Eq.(18), A is the loaded area, h is the viscoelastic layer 
thickness, /L A h=  and aE  is the apparent modulus of elasticity, 

given by (Nashif et al, 1985) 

ET cE ka = (19) 

which means that the apparent modulus of elasticity is obtained by 
the shape factor kT times the complex modulus of elasticity. In this 
paper, the layer of viscoelastic material is conceived in a such way  
(see Fig. 3) that lateral expansion is allowed, so that kT tends to 1 
and aE  tends to cE . 

In the transition frequency of elastomers, it can be regarded that 
Poisson’s coefficient is approximately equal to 0,5 (Snowdon, 1968 
and Nashif et al, 1985), so that 3a cE G= . Then, Eq.(18) takes the 

following form: 

3 ( )zz ck LG= Ω . (20) 

Figure 3. Shape of the layer of viscoelastic material. 

Matrix Representation of the Rotor   

In line with the classical developments (Lalanne and Ferraris, 
1990), it is considered that each element node of the shaft has four 
degrees of freedom: two displacements u and w (in X and Z
directions, respectively) and two rotations θ and ψ (around the axes 
X and Z, respectively). Therefore, for node i, the generalized 
coordinate qi is represented by:   

T
i i i i iq u ,w , ,θ ψ=    . (21) 

By now applying Lagrange’s equations to the kinetic and 
potential energies of the elements of a simple rotor system and 
assembling each elementary matrix conveniently, including stiffness 
matrix of viscoelastic material (Eq.(19)), the following algebraic 
equations in the frequency domain result (Espíndola and Bavastri, 
1997):   

( ) ( )2 ( ) ( )rpmM i G K Q FΩ Ω −Ω + Ω Ω + Ω =   (22) 

where 
M is the inertia matrix (constant and symmetrical);   
G is the gyroscopic matrix of the shaft and disk (function of 

rotation and skew-symmetric);   

K( )Ω  is the stiffness matrix for the dynamic rotor system with 
viscoelastic bearings (symmetric, complex and frequency-
temperature dependent). Note that the overall viscous damping 
matrix is zero here and the temperature is regarded as constant, as 
explained previously;  

( )F Ω  is the Fourier transform of  the time domain excitation; 

( )X Ω  is the Fourier transform of  the time domain response. 

Given the approach adopted herein, the complex stiffness of 
each viscoelastic layer is defined by: 

( )

( )[1 ( )] 0 0 0

0 3 ( )[1 ( )] 0 0

0 0 0 0

0 0 0 0

m

LG i

LG i
K

η
η

Ω + Ω 
 Ω + Ω Ω =
 
 
 

 . (23) 

Matrices as expressed by Eq.(23) will be inserted into the global 

stiffness matrix ( )K Ω  at the places corresponding to the positions 

of the bearings in the rotor system. 

Solution of the System of Dynamic Equations 

The system of equations that represents the motion of a dynamic 
rotor system in the frequency domain is given by Eq.(22). This set 
of equations is dependent on the excitation frequency, Ω , when the 
rotation of the shaft, rpmΩ , is fixed.  

The Complex Eigenvalue Problem  

To solve the resulting complex eigenvalue problem, a 
transformation of the generalized coordinates to the state space 
(Ewins, 1984; Espíndola and Bavastri, 1997) is carried out. Then, a 
new 2n x 1 vector of coordinates ( )Y Ω  is defined as 

( )
( )

( )

Q

Y

i Q

 Ω
 Ω = 
 Ω Ω 

L . (24) 

To represent the system of equations in the state space, it is also 
considered the following equality:   

( ) ( ) 0i M Q i M QΩ Ω − Ω Ω =  (25) 

which results in  

( ) ( ) ( ) ( ){ }rpm yi A B Y F Ω Ω + Ω Ω = Ω    (26) 

where  

( ) ( )
( ) ( ) 0

,

0 0
2 22 2

rpm

G M Krpm

A B

M M
nx nnx n

Ω Ω

Ω Ω
= =

−

   
   
   

     

M M

L M L L M L

M M
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and ( ){ }
( )

0 2 1

y

F

nx

F
Ω

=
  Ω  
  

L . 

If rpmΩ  is fixed, it is possible to assemble the following 

eigenvalue problem: 

( ) ( ) ( ) ( )j j jA Bλ θ θΩ Ω Ω Ω=  (27) 

where λj is the jth eigenvalue and θj is the jth right eigenvector, with 
j =1 to 2n. 

Considering that A and/or B are not symmetrical matrices, the 
adjoint problem of eigenvalues must also be solved, which is: 

( ) ( ) ( ) ( )T T
j j jB Aϕ λ ϕΩ Ω = Ω Ω  (28) 

where ϕj is the jth left eigenvector, with j = 1 to 2n. 

Orthogonality 

It is known (Espíndola and Bavastri, 1997) that the following 
relations, for a given pair Ω  and rpmΩ , are satisfied:   

T
j k j jkA aϕ θ δ=  (29) 

T
j k j jkB bϕ θ δ=  (30) 

where ikδ  is the Kroneker delta. From Eq.(29) and Eq.(30), the 

following orthogonality properties in the state space are obtained 

T T
j k j K j K j jkM K bλ λ ϕ θ ϕ θ δ− + =  (31) 

( )( ) T T
j k j K j rpm K j jkM G aλ λ ϕ θ ϕ θ δ− + + Ω = . (32) 

Equations (31) and (32) represent the orthogonality conditions 
as functions of matrices M, G and K. As the values of λ are 
complex, they can be represented by their real parts, jδ , and their 

imaginary parts, jυ , as 

j j jiλ δ υ= + . (33) 

Although the eigenvalues are complex and different, they are 
related, once they are obtained in the state space. In fact, it is 
verified that the eigenvalues are formed by pairs λj and -λj. 

Therefore, taking values of j ≠ k, but with j kλ λ= − , and applying 

these values in the orthogonality relationships above, the result is: 

2 j
j

j

k

m
λ = − . (34) 

By definition, 

( )2 2 1j j jiλ η− = Ω +  (35) 

so that  

( )2 21 j
j j j

j

k
i

m
η λ

 
Ω + = − = − −  

 
 (36) 

where ( )2 2Rej jλΩ = −  and the loss factor is ( ) ( )22Im / Rej j jη λ λ= − − . 

Note that the natural frequency jΩ , for  j=1 to n, is not necessarily 

equal to the undamped natural frequency (Ewins, 1984). 

Final and Auxiliary Campbell Diagrams

For the current case, where the rotor system is mounted on 
bearings with viscoelastic material, matrix A, which contains the 
gyroscopic matrix, is a function of the rotation of the shaft, Ωrpm, 
and matrix B is complex and a function of the frequency Ω. So, the 
eigenvalue problem is a function of the rotation and the frequency. 
That is, for a given rotation of the rotor (Ωrpm = cte), the eigenvalue 
problem is a function of the frequency and will be solved by the 
embedded use of an auxiliary (internal) Campbell diagram, traced 

for Ωj x Ω, because ( )( )1K( ) K( ) iηΩ = Ω + Ω . 

Starting from this auxiliary Campbell diagram, considering 

jΩ =Ω  and using a straight line that crosses the curves of the 

natural frequencies, the natural frequencies of the system are 
extracted in an equivalent way to Espíndola and Floody (1999). This 
process should be repeated for all the rotor rotations, resulting then 
in the final (external) Campbell diagram, traced now for Ωj x Ωrpm, 
which contains the critical rotations of the viscoelastic dynamic 
rotor system. From this final Campbell diagram, it is possible to 
determine the dynamic characteristics of the viscoelastic rotor 
system. 

Figure 4 shows an outline of how the Campbell diagrams are 
built. Figure 4b represents the auxiliary (internal) Campbell diagram 
and Fig. 4a the final (external) Campbell diagram. As can be 
observed, to calculate the natural frequencies of the system for a 
constant rotation, it is necessary to solve a frequency dependent 
eigenvalue problem, given the characteristics of the stiffness matrix.  

Figure 4. a) Final Campbell diagram. b) Auxiliary Campbell diagram. 

For the adjoint eigenvalue problem, it is necessary to consider 
that A and/or B are non-symmetrical. A schematic diagram that 
shows how both the eigenvalue and the adjoint eigenvalue problems 
should be solved for a rotating system with viscoelastic bearings is 
given by 

( )

( )

.

rpm

T T

Rotation loop

Frequency loop

B A

B A

Auxiliary Campbell diagram

Final Campbell diagram

θ λ θ
ψ λ ψ

Ω
 Ω
 =
 =


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Simplified Campbell Diagram  

If unbalance excitation is considered, the above procedure can 
be simplified (see Espíndola and Bavastri, 1997). In this case, 
frequency and rotation are the same ( rpmΩ =Ω ) and the gyroscopic 

matrix is such that 1rpmG( ) G( ) GΩ = Ω =Ω . Then, from Eq.(22), it 

is possible to obtain:  

( ) ( ) ( ) ( )2
1M i G K Q F −Ω + Ω Ω + Ω Ω = Ω   (37) 

or 

( ) ( ) ( )2 M̂ K Q F −Ω + Ω Ω = Ω   (38) 

where   
1M̂ M iG= − . 

Since M̂  is not a symmetric matrix, the right and left eigenvalue 
problems must be calculated, as shown in Eqs.(42) and (43): 

( ) ( ) ( ) ( )j j j
ˆK Mφ λ φΩ Ω = Ω Ω  (39) 

and 

( ) ( ) ( ) ( )T T
j j j

ˆK Mψ λ ψΩ Ω = Ω Ω . (40) 

As can be seen in Eq.(38), there is only one variable, rpmΩ =Ω . 

As the stiffness matrix is frequency dependent, both the eigenvalue 
problems must be solved for each frequency, Ω . 

The resulting simplified Campbell diagram, traced for j xΩ Ω , 

is used to represent the shaft-rotor system characteristics when only 
unbalance excitation is considered. A 45 degree straight line in that 
simplified diagram, which is, in fact, the final diagram, makes it 
possible to obtain the critical rotations for this kind of problem. That 
is similar to the single step of Fig. 4b.  

Unbalance Excitation and Frequency Response 

Considering Eq.(38), the response of the rotor system in the 
frequency domain is obtained by the following transformation: 

( ) ( ) ( )Q  PΩ = Φ Ω Ω  (41) 

where ( )Φ Ω  is the right eigenvectors matrix. 

Taking Eq.(41) into Eq.(38) and pre-multiplying by ( )TΨ Ω , 

where ( )Ψ Ω  is the left eigenvector matrix and both ( )Ψ Ω  and 

( )Φ Ω  are orthonormalized by the mass matrix M̂ , it results that: 

( ) ( ) ( ) ( ) ( ) ( )2T TM̂ K P F Ψ Ω − Ω + Ω Φ Ω Ω = Ψ Ω Ω   (42) 

or 

( ) ( ) ( ) ( )2 TI P F −Ω + Λ Ω Ω = Ψ Ω Ω   (43) 

where I is the identity matrix, ( ) ( ) ( ) ( )T KΛ Ω = Ψ Ω Ω Φ Ω  and 

( )P Ω  is the modal space response, also called principal generalized 

coordinates. These coordinates can thus be defined by:  

( ) ( ) ( ) ( )12 TP I F
−

 Ω = −Ω + Λ Ω Ψ Ω Ω   . (44) 

By replacing Eq.(44) into Eq.(41), the response of the system, in 
the frequency domain, is: 

( ) ( ) ( ) ( ) ( )12 TQ I F
−

 Ω =Φ Ω −Ω + Λ Ω Ψ Ω Ω  . (45) 

Numerical Example  

The preceding developments were applied to run a numerical 
example of a simple dynamic rotor system with two disks (one 
larger than the other), mounted on roller bearings and viscoelastic 
layers, as showed in Fig. 5a. A detail of the viscoelastic layers under 
a roller bearing is showed in Fig. 5b. The physical characteristics of 
the rotor system are presented in Table 1. 

a) b) 

Figure 5. a) Schema of the rotor system; b) Detail of a roller bearing with viscoelastic layers. 
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Table 1. Rotor system data. 

Shaft data:   
Total length, L = 1.05 m;    
Diameter, d = 0.025 m; 
Elasticity modulus, E=210x109 MPa;    
Poisson coefficient, ν = 0.3;   
Density, ρ= 7800 Kg/m3. 

Bearing data: 
Stiffness, Eq. (17); 
Number of bearings, NB = 2; 
Position, pb = [0.1835, 0.6435] m; 
Mass, Mb = [0.770, 0.770] kg; 
Moment of Inertia, Ibxx = [0.00159018, 
                                            0.00159018]  
Moment of Inertia, Ibzz = [0.00690495, 
                                            0.00690495]  

Disk data:   
     Number of disks, ND = 2; 

External radius, Rext = [0.140, 0.0222] m; 
Internal radius, Rint = [d/2, d/2] m;  
Thickness; h = [0.01, 0.035] m;   
Position, pd = [0.0, 0.0275] m;  
Density, ρ = [7800, 7800] Kg/m3. 

Viscoelastic material data:   
Shear modulus and loss factor, Eqs.(15) 
and (16), respectively, and “Fig. 6”. 

Unbalance excitation: 
Unbalanced mass, m = 0.005 kg; 
Eccentricity, e = 5.0x10-5 m; 

The dynamic characteristics of the viscoelastic material, pure 
butyl rubber, were previously determined in the Laboratory of 
Vibrations and Acoustics of the Federal University of Santa 
Catarina (PISA/LVA/UFSC). A four parameter fractional derivative 
model was used to dynamically characterize the behavior of that 
viscoelastic material. The corresponding parameters, for reference 
temperature T0=273.0 K and environmental temperature T=293.0 K, 
were: G0 = 1.53 x 106 Pa, G1 = 1.49 x 106 Pa, α = 0.396 and b1 = 
1.34 x 10-2.  Figure 6 shows the dynamic shear modulus and the 
associated loss factor as functions of both frequency and 
temperature.   

Figure 7 shows the finite element model used in the current 
numerical example. The shaft was modelled by Timoshenko beam 
elements with a C1 class interpolation function. There were fifteen 
elements with four degrees of freedom in each node. The two roller 
bearings, which could or not have viscoelastic layers underneath, 
were located at the fourth and tenth nodes. The two disks were 
placed at the first node, as showed in Fig. 7, since they were 
comprised, in fact, of a larger disk and short sleeve, used for 
attaching the former tightly to the shaft. 
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Figure 6. Dynamic properties – Pure butyl rubber. 

The results will be initially presented for the case in which the 
viscoelastic layers were under the bearings. Thus, Fig. 8 shows the 
simplified Campbell diagram and the straight line Ω1 which 

determines, amongst all the natural frequencies of the system, those 
taking part in the response to the unbalance excitation. These 
frequencies are known as the critical rotations of the rotor system. 

Figure 7. Finite element model. 

It is highlighted that the proposed methodology allows the 
determination of the dynamic characteristics of the rotor system 
when its stiffness matrix varies with frequency. This dependence on 
frequency is due to the presence of the viscoelastic layers under the 
bearings 
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Figure 8. Simplified (final) Campbell diagram. 
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Figure 9 depicts the frequency domain response due to the 
unbalance excitation specified in Table 1. This response (which is 
not a frequency response function, but a response in the frequency 
domain) is about x-axes, at node 1 of the finite element model. The 
rotor system is considered as still attached to the ground through 
viscoelastic layers (as seen in Fig. 5b). Due to the characteristics of 
these layers, the rotor system is not symmetric. Therefore, an 
unbalance excitation can cause both the forward and backward 
whirls, which can be inferred from the same Fig. 9 by the amount of 
observed resonance peaks.     

In Fig. 10, it is shown the response of a rotor system with 
similar characteristics of that of Table 1, except for the fact that, 
now, the bearings are simply ball-bearings, without viscoelastic 
layers underneath. The stiffness values are 1.0 x 109 N/m, in both 
directions, and there is also an equivalent viscous damping equal to 
100 Ns/m. In this case, the dynamic rotor system is symmetric and 
the response presents the forward whirl only. 

Comparing Fig. 9, for the case in which viscoelastic layers were 
under the roller bearings, and Fig. 10, for the case in which they 
were not, it is observed that the X-direction amplitude is much 
higher in Fig. 10 than in Fig. 9. 
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Figure 9. Response of the rotor system with viscoelastic bearings. 
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Figure 10. Response of the rotor system with ball bearings. 

Conclusions  

It was presented a simple, novel and accurate methodology to 
determine the final Campbell diagram of a dynamic rotor system 
with bearings containing viscoelastic layers. Unlike previous works, 
the viscoelastic material employed in the bearings was represented 
with the aid of the four parameter fractional derivative model, which 
is proved to faithfully describe the dynamic characteristics of this 
class of materials. 

Due to the characteristics of the stiffness matrix of this system, 
which is frequency dependent, it was required, in fact, to assemble 
two Campbell diagrams, one inside the other, in order to raise the 
overall dynamic behavior of the rotor system. A simplified 
procedure could be established for the case of unbalance excitation.  

A numerical example was run in order to apply and validate the 
simplified procedure. Apart from achieving that aim, it was also 
shown that the use of viscoelastic materials in the bearings can be 
very efficacious in vibration and noise control. 

It is therefore believed that the methodology introduced by this 
work is of foremost importance in guiding vibration and noise 
control actions on rotor systems by the use of viscoelastic materials.  
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