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Abstract
Background: Neuroimaging strategies are essential to locate, to elucidate the etiology, and 
to the follow up of brain disease patients. Magnetic resonance imaging (MRI) provides 
good cerebral soft-tissue contrast detection and diagnostic sensitivity. Inflammatory 
lesions and tumors are common brain diseases that may present a similar pattern of 
a cerebral ring enhancing lesion on MRI, and non-enhancing core (which may reflect 
cystic components or necrosis) leading to misdiagnosis. Texture analysis (TA) and 
machine learning approaches are computer-aided diagnostic tools that can be used to 
assist radiologists in such decisions.
Methods: In this study, we combined texture features with machine learning (ML) 
methods aiming to differentiate brain tumors from inflammatory lesions in magnetic 
resonance imaging. Retrospective examination of 67 patients, with a pattern of a 
cerebral ring enhancing lesion, 30 with inflammatory, and 37 with tumoral lesions were 
selected. Three different MRI sequences and textural features were extracted using gray 
level co-occurrence matrix and gray level run length. All diagnoses were confirmed by 
histopathology, laboratorial analysis or MRI. 
Results: The features extracted were processed for the application of ML methods that 
performed the classification. T1-weighted images proved to be the best sequence for 
classification, in which the differentiation between inflammatory and tumoral lesions 
presented high accuracy (0.827), area under ROC curve (0.906), precision (0.837), and 
recall (0.912). 
Conclusion: The algorithm obtained textures capable of differentiating brain tumors 
from inflammatory lesions, on T1-weghted images without contrast medium using the 
Random Forest machine learning classifier.
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Background
Inflammatory lesions and tumors are common brain diseases 
that present a similar pattern of a cerebral ring enhancing lesion 
on MRI, leading to misdiagnosis on neuroimaging [1]. They 
may produce severe complications, disability, and economic 
burden. Inflammatory lesions, particularly neuroinfections, 
affect millions of people worldwide, especially in low-income 
countries and can be caused by diverse etiological agents 
(bacteria, fungi, viruses, and parasites). In 2018, 296,851 new 
cases of brain cancer were diagnosed worldwide, which accounts 
for 1.6% of all cancer cases [2]. 

Depending on the type of disorder and location, inflammatory 
lesions and tumors present similar symptoms such as headache, 
dizziness, vertigo, change of humor, nausea, fainting, and coma 
[1]. Focal neurological signs are often found in patients with 
inflammatory and tumoral lesions [3]. The diagnosis of these 
neurological disorders considers patient history, symptoms, 
physical and neurological examinations. Blood analysis, 
cerebrospinal f luid (CSF), biopsy, and neuroimaging are 
fundamental. Neuroimaging modalities including magnetic 
resonance imaging (MRI), computed tomography (CT) and 
positron emission tomography (PET) provide localization, 
determination of etiology, and the follow up of these diseases 
[4, 5].

Among these, MRI presents the best soft tissue contrast 
detection and diagnostic sensitivity. The acquisition of MRI 
sequences allows the distinctive visualization of brain anatomy 
with different contrast of structures [6]. Perfusion sequences in 
MRI can be used in this differential diagnosis since they provide 
important physiologic and pathophysiologic parameters and 
can be assessed non-invasively. There are several techniques to 
obtain perfusion-related parameters using endogenous contrast 
methods or, more robustly and more widely used, exogenous 
gadolinium-based contrast agent dynamic methods [7]. 

Despite these qualities, MRI cannot always distinguish between 
tumors and inflammation due to similar imaging characteristics. 
In addition, many patients have contraindication to gadolinium, 
and inflammatory lesions, such as neurotuberculosis, may 
show high perfusion, leading to misdiagnosis [7]. Thus, the 
potential use of other tools must be investigated to differentiate 
inflammatory from tumoral lesions.

For this reason, a reliable diagnosis also depends on 
histopathological examination of biopsy samples obtained 
through invasive procedures, such as surgery [8–10]. Due to 
these limitations, and aiming at non-invasive diagnostic aid, 
texture analysis extracted from medical imaging [11] has been 
progressively used to assist radiologists in the diagnosis of 
tumors [12–16] and inflammatory lesions [17–19]. 

In this study, our aim was to combine different texture analysis 
with machine learning to classify MRI brain lesions in two 
categories: inflammatory and tumoral lesions. The texture 
features we utilized were gray-level co-occurrence matrix 
(GLCM) and gray-level run length (GLRL). Some features were 
extracted after a pre-processing with a Wavelet’s transform. The 

supervised classification was achieved with machine learning 
(ML) approaches: support vector machine (SVM), k-nearest 
neighbors (kNN), and Random Forest. 

Methods

Image bank
The local institutional ethics committee approved this study 
according to our country regulations. Retrospective examinations 
were collected from a single 1.5 Tesla MRI scanner in a Medical 
School Hospital. Patients were selected according to the following 
criteria. 

Inclusion criteria:
	• patients who underwent MRI exams between 2010 and 

2020; 
	• patients with the diagnosis of inflammatory or tumoral 

lesions with a pattern of a cerebral ring enhancing 
lesion and non-enhancing core (which may reflect cystic 
component or necrosis) on MRI;

	• patients with diagnosis confirmed by histopathological 
or CSF analysis examinations and follow-up exams. 

Exclusion criteria: 
	• patients who had brain biopsy or surgery before the 

MRI acquisition; 
	• lesions smaller than 10 mm, MRI detecting scolex in 

cases of neurocysticercosis;
	• patients with intracranial malformations. 

The selection resulted in a database with 67 patients, being 
30 cases of inflammatory and 37 tumoral lesions. Five different 
MRI sequences were used for feature extraction, T1- and T2-
weighted spin-echo sequences, T1 with contrast medium, 
diffusion-weighted image sequence, and f luid attenuated 
inversion recovery (FLAIR). For simplicity, we will refer to the 
five MRI sequences with their abbreviations such as T1, T1C+, 
T2, DWI, and FLAIR. The complete list with all pathologies that 
were selected for this study, with the number of patients, and 
their mean lesion size is shown in Table 1. More information on 
patient’s ages, gender and diagnostic evaluations are presented 
in the Additional files 1 and 2.

MRIs were performed using a 1.5 T Phillips Scanner with 
T1 and T2 acquisitions in three orthogonal planes, including 
T1-weighted SE gadolinium-enhanced images. MRI acquisition 
parameters were described as follows. Sagittal T1 spin echo, 6 mm 
thick, 180° flip angle; repetition time (TR) = 430 milliseconds, 
echo time (TE) = 12 milliseconds, matrix 200 × 350, field of view 
(FOV) = 25 × 25 cm. T2-weighted and proton density “fast spin 
echo” (FSE), 3 mm thick, 160° flip angle; TR = 4.800 milliseconds, 
TE = 108/18 milliseconds, matrix 256 × 256, FOV = 22 × 22 cm. 
Axial T1-weighted spin echo (SE): TR = 540 milliseconds, TE = 
28 milliseconds. Axial T2-weighted fluid-attenuated inversion 
recovery (FLAIR) images TR = 8.500 milliseconds and 2.000 
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Table 1. Complete list of all pathologies that were selected for the present study, with the number of patients (n), their mean lesion size and standard deviation 
(SD) in millimeters.

Brain 
pathology Subtypes Number of patients 

(n = 67)
Mean lesion 

size ± SD (mm)

Inflammatory lesions

Aspergillosis 2 31.86 ± 19.86

Cryptococcosis 2 15.01 ± 3.81

Neurocysticercosis 3 18.85 ± 8.70

Neuromyelitis 1 2.90

Pyogenic brain abscess 3 22.61 ± 9.70

Septic-embolic brain abscess 2 14.03 ± 5.33

Toxoplasmosis 8 24.20 ± 13.02

Multiple sclerosis 3 12.10 ± 5.15

Progressive multifocal 
leukoencephalopathy 1 7.14

Vasculitis 1 6.87

Tuberculous brain abscess 4 4.94 ± 2.86

Total inflammatory lesions 30

Brain tumors

Anaplastic astrocytoma (grade III) 11 40.95 ± 12.77

Anaplastic ependymoma 1 12.30

Glioblastoma (grade IV) 15 50.74 ± 11.19

Gliosarcoma 2 25.60 ± 3.65

Low-grade astrocytoma (grade II) 8 36.60 ±15.81

Total brain tumors 37

or 100 milliseconds, and 2.200 milliseconds, TE = 72 or 90 
milliseconds, matrix of 256 × 296 and FOV of 22 × 22 cm. T1-
weighted SE gadolinium-enhanced images were obtained in three 
orthogonal planes and T1 sagittal volumetric isotropic images. 
Diffusion weighted images (TR = 22ms, TE = 9ms, FOV = 230 
× 250 mm), all acquired using a standard 8-channel head coil 
and with b value = 1000.

Algorithm for feature extraction

Texture analysis (TA) is described as techniques that enable 
to quantify the variations in pixel intensity including some 
imperceptible to the human visual system. TA includes the 
quantification of the gray-level patterns, pixel interrelationships, 
and the spectral properties of an image. All texture analysis were 
processed in Matlab software. The first features extracted were 
the GLCM which considers the relationship between pixel pairs 
and registers the frequency of various gray-level combinations 
within a region of interest [11]. 

After we extracted the GLRL features that also evaluates 
the intensity relation of neighbor pixels. GLRL computes the 
coarseness of texture in a predetermined direction. Each set 
of consecutive collinear pixels in a given direction composes 
a gray-level run. Runs are computed in different directions in 
the image and relates to the number of gray-level runs for each 
given gray level. For both GLCM and GLRL the maximum 

number of gray levels considered were scaled down from 16 
bits to 8 bits [11]. 

In the first step of this approach, we developed a computational 
algorithm that allows the user to open DICOM images, select 
slices, position ROI’s and extract features. All algorithm steps 
were performed using Matlab software R2017a. Two radiologists 
with more than 15 years of experience were used as operators. 
They analyzed all MRI sequences, in axial orientation: T1, 
T1C+, T2, fluid attenuated inversion recovery (FLAIR) and 
DWI. Images had different sizes and were all resized to 240 x 
240 pixels. The radiologists selected the slice in which the lesion 
appeared with its largest diameter. Regions of interest (ROI) 
were positioned within each lesion, including the solid and 
necrotic portion of the lesion and excluding the edema region, 
when existed. Each ROI had 10 x 10 pixels. An example of ROI 
positioning is presented in Figure 1. 

Statistical texture features such as mean, standard deviation, 
entropy, kurtosis, skewness, and correlation were extracted from 
those ROIs. There were 63 features including GLCM, GLRL, 
and Wavelet’s Transform methods. The extraction methods 
used are based on the relationship between pixels and gray-
level frequencies within the ROI, and analyses pixels pairs, 
consecutive collinear pixels, and spatial frequencies at multiple 
scales in four different directions (0, 45, 90, and 135 degrees). 
For the lesions that permitted the inclusion of multiple ROI, we 
used the mean value of each feature. 
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Figure 1. Single slice of a FLAIR weighted image of brain tumor showing the positioning of ROIs within lesions.

The features extracted were processed in the software Orange 
Canvas® for the application of ML classifiers. In order to 
determine the best approach we compared five types of image: 
T1, T1 with intravenous contrast (T1 C+), T2, FLAIR, and DWI. 
To each image, we input the data in two ways: all extracted 
features as raw data and only the five best-ranked features. To 
rank the features, we used information gain ratio and Gini Index 
scoring methods [20]. These feature selection methods measure 
the relationship between the feature and the output outcome 
creating a score to differentiate both groups.

We used three different methods of ML: support vector 
machine (SVM), k-nearest neighbors (kNN), and Random 
Forest. Those three methods belong to a supervised class of 
machine learning. In our approach, all supervised learning 
methods utilized texture features extracted from regions of 
interest to characterize the difference between inflammatory and 
tumoral lesions. All three methods used the textural features to 
train and then test data in a 10-fold cross-validation procedure. 
The training set was composed of 75% of all the input data and 
the test with 25% of input data [21]. The parameter used for 
each ML method was: for kNN, we selected 5 neighbors, with 
metric Euclidean and weight uniform; for SVM we selected the 

Kernel RBF with cost 1 and regression loss epsilon 0.10, and for 
Random Forest we selected 10 trees and did not split subsets 
smaller than 5.

We used statistical quantities to determine how efficiently 
the model classified our groups. Those quantities describe the 
diagnostic performance of the classification. Each classification 
follows a binary rule that allows four possible outcomes: true 
positive, true negative, false positive and false negative. From 
those quantities, we determined the following parameters: 
area under the receiver operating characteristic (ROC), curves 
(AUC), accuracy (CA), F-score (F1), precision and recall [22]. 

Results
The mean age and standard deviation of our patients were 39 
±14 years in the inflammatory group and 47 ± 17 years in the 
tumoral group. The 63 features extracted from each patient were 
divided in four different categories and presented in Table 2. 
To increase classification scores, all 63 extracted features were 
analyzed with the statistical methods information gain ratio 
and Gini Index to select the five best-ranked features. Those two 
index selected which features distinguish with higher precision, 
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recall and AUC the data between our two patient groups. Those 
five best-ranked were different in each MRI sequence, however 
wavelet entropy (EntropyWv) and the mean intensity of pixels 
remained constant in all five groups. All five-best ranked features 
are present in Table 3.

After the classification, we determined some quantities that 
described how well the machine learning methods performed. 
Those quantities were presented in Table 4: AUC, CA, F1, precision, 
and recall. To each of the three ML methods, we obtained 
a receiver operating characteristic (ROC) curves. Figure 2 
displays the ROC curves of the 5 best-ranked features within 
each MRI image. Random Forest had the best performance 
among the three classifiers. 

Discussion
In the view of fast innovation and development of diagnostic 
equipment, the volume and complexity of diagnostic images 
increase every day. Thus, researchers worldwide frequently 
are searching for algorithms to facilitate the diagnosis and to 
minimize the costs for the institution [23–27]. In this context, 
our tool aims to assist the radiologists, bringing greater safety 
to the diagnosis, agility, and reducing costs.

The difficulty to differentiate between inflammatory and 
tumoral lesions was demonstrated by many papers [28–31]. 
Figure 3 illustrates two patients, one diagnosed with pyogenic 
abscess (upper images A – D) and the other with a primary 
brain tumor (bottom images E – H). The pyogenic abscess 
appears as a large cortico-subcortical parietal rounded lesion, 
and the brain tumor as an occipital cortico-subcortical lesion. 
Both lesions present similar signal intensities: hyperintense core 
with hypointense halo on T2 weighted-images, hypointense 
on T1 weighted-images with peripheral enhancement. Both 
are surrounded by extensive edema and mass effect. Usually, 
inflammatory and tumoral lesions are hyperintense on T2 and 
hypointense on T1 (as the most part of brain lesions) and may 
demonstrate peripheral ring enhancement. In this case, restricted 
diffusion in the core of the lesion yielded the correct diagnosis 
of pyogenic abscess. However, the absence of restricted diffusion 
in the core may occur in tumors or inflammatory lesions.

Perfusion sequences in MRI can be used in this differential 
diagnosis since they provide important physiologic and 
pathophysiologic parameters and can be assessed non-
invasively. There are several techniques to obtain perfusion-
related parameters using endogenous contrast methods or, more 
robustly and more widely used, exogenous gadolinium-based 
contrast agent dynamic methods [7]. However, many patients 
have a contraindication to gadolinium, and inflammatory lesions, 
such as neurotuberculosis, may show high perfusion, leading 
to misdiagnosis. Thus, the potential use of other tools must 
be investigated to differentiate neuroinfections from tumoral 
lesions. 

In this context, our approach combined statistical textural 
features with methods of ML and was able to differentiate 

neuroinfections from brain tumors in MRI sequences. We 
compared the classification between five MRI sequences: T1-
weighted images, T1-weighted with contrast medium, T2-
weighted images, DWI, and FLAIR. We also compared the 
results changing the input data (all features and five best-ranked) 
to achieve the best classification.

Our results showed differences in the classification efficiency 
between T1, T2, DWI, and FLAIR in MRI images. These 
differences are most likely due to differences in the parameters 
used in the acquisition and processing steps. Studies show that 
parameters used for imaging acquisition, including repetition 
time, echo-time [32], and spatial resolution [33], can influence 
the extraction and the quality of textures.

The ROC curve for the SVM presented a random guessing 
line behavior, which means that the classification was not that 
efficient. We also observed that SVM had high recall values 
(0.987 for T1 and 0.914 for T1C+). These results reflect a high rate 
of true positives. However, the majority of F1-score indicated 
low specificity, which show a high rate of false positives. In our 
classification system, high true positives and false positives mean 
that SVM classified a high number of patients with brain tumors 
correctly, but also misclassified a large number of patients with 
inflammatory lesions as brain tumors. T1-weighted images 
proved to be the best sequence for classification. The Random 
Forest classifier presented a reliable behavior with those T1 
images. That reflected on high accuracy (0.827), Area under 
ROC curve (0.906), precision (0.837) and recall (0.912).

According to Carter et al, 2016, the ROC curve AUC is a 
function of sensitivity and specificity of the prediction model 
that can rank the test as excellent (AUC higher than 0,9), 
strong (AUC higher than 0.8), reasonable (AUC higher than 
0.7) or non-useful (AUC below 0.7 [22]. Based on this, we can 
classify the approach with all the features in Random Forest 
as strong (T1) and reasonable (T1 with contrast medium, T2, 
DWI, and FLAIR). The approach with only the five best-ranked 
features was classified as excellent (T1), and reasonable (T1 with 
contrast medium, T2, DWI, and FLAIR) in Random Forest 
classification. Thus, our classification model using the best-
ranked features extracted from T1-weighted MRI images showed 
great classification potential. Sequences T2-weighted, FLAIR, 
DWI, and T1 with contrast medium did not achieve the same 
classification performance.

In all MRI sequences, the best-ranked features show at least 
reasonable AUC, CA, F1, precision, and recall in all three methods 
(SVM, kNN, and Random Forest). The five best-ranked features 
were different in each MRI image. For T1-weighted images, the 
five best were EntropyWv, Mean, Ed_haar_2, Ev_haar_2 and 
Ev_sym4_2. The five best-ranked features are considered best 
for the classification model in opposite to using them all.

Since our goal was to find the best set of training data to 
improve classification, the information in excess can cause 
noise. This noise leads the model to learn random patterns 
that do not improve its ability to sort images correctly. This 
excess of information is called overfitting and is a well know 
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Table 2. Gray level co-occurrence matrix (GLCM), gray level run-length (GLRL) and Wavelet’s transform features.

Method Texture feature parameters

Features Mean, standard deviation, entropy, kurtosis, skewness and correlation

GLCM

Gray co-matrix, mean, standard deviation, entropy, kurtosis, skewness, correlation, contrast, variance, sum 
average, sum variance, sum entropy, difference variance, difference entropy, information measures of correlation, 
autocorrelation, dissimilarity, homogeneity, cluster prominence, cluster shade, maximum probability, inverse 
difference, inverse difference normalized, and inverse difference moment normalized.

GLRL Short run emphasis (SRE), long runs emphasis (LRE), gray level non-uniformity (GLN), run percentage (RP), run 
length non-uniformity (RLN), low gray level run emphasis (LGRE) and high gray level run emphasis (HGRE)

Wavelet’s transform wEntropy, energy ‘sym4’ (Ea, Eh, Ev, Ed, E_soma), energy ‘haar’ (Ea, Eh, Ev, Ed, E_soma), energy ‘bior’ (Ea, Eh, Ev, 
Ed, E_soma)

Table 3. The five best-ranked features in each MRI sequence, being T1-weighted sequence (T1), T1-weighted sequence with contrast medium (T1C+), T2-
weighted sequence, diffusion-weighted image sequence (DWI), and FLAIR.

Five-best ranked features

Images Features

T1 EntropyWv Mean Ed_haar_2 Ev_haar_2 Ev_sym4_2

T1C+ Mean EntropyWv Ed_sum4_2 Ed_haar_1 Ea_bior3.3

T2 Mean EntropyWv Ed_bior3.3_1 Ev_bior3.3_1 E_soma_haar_2

DWI Ed_haar_1 Mean Ed_bior3.3_2 EntropyWv E_soma_bior3.3_1

FLAIR Mean EntropyWv Ed_bior3.3_1 Ea_haar Ea_sym4

Figure 2. ROC curves of kNN, SVM, and Random Forest analysis. The classifiers on image (A) are applied to all images. (A) ROC curve from a T1-weighted 
image with the five best-ranked features. (B) ROC curve from T1 C+ image with the five best-ranked features. (C) ROC curve from T2-weighted image with the 
five best-ranked features. (D) ROC curve from DWI with the five best-ranked features. (E) ROC curve from FLAIR image with the five best-ranked features.
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problem in ML [34]. Therefore, the best-ranked features can 
be used as a strategy to avoid overfitting and improve and 
optimize the model.

Image processing and texture analysis have been 
progressively used to differentiate subtypes of tumors [12, 14, 
16, 35] and infections [14–19], this shows us that the subtypes 
are heterogeneous. Our research presented a model for the 
differentiation of two different generic classes of pathologies, 
which represented several subtypes of diseases (as showed 
in Table 1). The fact that we were able to correctly separate 
classes “inflammatory lesions” and “brain tumors” points to the 
possibility that, although heterogeneous in the subtypes, these 
pathologies have characteristics similar enough to be correctly 
grouped based only on features extracted from the images.

The correct diagnosis between tumors and inflammatory 
lesions, especially in the CNS, can influence in the surgery, 
course of treatment, and prognosis of the patient. The biopsy 
is a very important diagnostic tool. However, a biopsy can lead 
to the spread of the infection in the parenchymal tissue. Some 
tumors present high seeding risk and the biopsy can increase the 
metastasis risk [36]. The correct differentiation using noninvasive 
methods can lower the risk of complications, the spread of 
the disease, and morbidity. This work may represent another 
important tool (such as spectroscopy or perfusion) to be used in 
the radiological practice, as it showed the potential to distinguish 
among these groups. Still, due to the relatively small number 
of cases, this work initiates the discussion about the use of this 
method and potential further research with broader samples.

Table 4. Area under the ROC curve (AUC), CA, F1, precision and recall from all three ML methods (kNN, Random Forest and SVM) performed in the two 
forms of data analysis (five rank and all features) on T1-weighted, T1-weighted with contrast, T2-weighted, DWI and FLAIR images.

Sequence Feature Method AUC CA F1 Precision Recall

T1

Five rank

kNN 0.838 0.806 0.857 0.814 0.906

Random Forest 0.906 0.827 0.875 0.837 0.912

SVM 0.850 0.750 0.835 0.724 0.987

All features

kNN 0.815 0.802 0.797 0.799 0.802

Random Forest 0.835 0.790 0.784 0.786 0.790

SVM 0.732 0.737 0.693 0.781 0.737

T1 C+

Five rank

kNN 0.722 0.745 0.816 0.742 0.891

Random Forest 0.761 0.779 0.857 0.806 0.914

SVM 0.691 0.766 0.85 0.794 0.914

All features

kNN 0.682 0.735 0.8105 0.738 0.883

Random Forest 0.708 0.745 0.835 0.784 0.892

SVM 0.667 0.757 0.793 0.792 0.801

T2

Five rank

kNN 0.636 0.716 0.618 0.697 0.716

Random Forest 0.794 0.783 0.776 0.775 0.783

SVM 0.553 0.615 0.618 0.621 0.615

All features

kNN 0.621 0.963 0.680 0.674 0.693

Random Forest 0.774 0.757 0.748 0.746 0.757

SVM 0.530 0.674 0.586 0.572 0.674

DWI

Five rank

kNN 0.705 0.679 0.676 0.677 0.679

Random Forest 0.752 0.683 0.681 0.681 0.683

SVM 0.717 0.718 0.704 0.738 0.718

All features

kNN 0.705 0.679 0.676 0.677 0.679

Random Forest 0.706 0.675 0.670 0.674 0.675

SVM 0.689 0.698 0.688 0.705 0.698

FLAIR

Five rank

kNN 0.763 0.744 0.735 0.735 0.744

Random Forest 0.757 0.719 0.713 0.710 0.719

SVM 0.640 0.610 0.618 0.656 0.606

All features

kNN 0.693 0.670 0.660 0.658 0.670

Random Forest 0.753 0.714 0.699 0.704 0.714

SVM 0.625 0.606 0.614 0.650 0.606
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Figure 3. In upper images, a patient with pyogenic abscess, displayed with different MRI sequences. (A) T2-weighted images. (B) T1-weighted images without 
contrast. (C) T1-weighted images with gadolinium contrast medium. (D) DWI diffusion weighted images. In bottom images, a patient with a primary brain 
tumor, with the same MRI sequences. (E) T2-weighted images. (F) T1-weighted image with contrast. (G) T1-weighted image with gadolinium contrast medium.  
(H) DWI diffusion weighted image. Both have a pattern of a cerebral ring enhancing lesion. In abscess there is restricted diffusion in the core (D) a feature not 
demonstrated in the tumoral lesion. 

Conclusion
In the present study, we developed an approach based on the 
association of texture analysis and machine learning classifiers 
that differentiated inflammatory lesions from tumors. It is 
believed that the five best-ranked features were more efficient 
than all the features combined for classification. In our model, 
we achieved the best results with the Random Forest classifier 
on T1-weighted images. The classification combined with the 
radiologist experience and other patient data (family history, 
symptoms, lifestyle, and others) may aid and improve the 
diagnosis of lesions with a similar pattern of a cerebral ring 
enhancing on MRI.
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