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Fractional order calculus (FOC) deals with integrals and derivatives of arbitrary (i.e., non-integer) order, and
shares its origins with classical integral and differential calculus. However, until recently, it has been investigated
mainly from a mathematical point of view. Advances in the field of fractals have revealed its subtle relationships
with fractional calculus. Nonetheless, fractional calculus is generally excluded from standard courses in mathe-
matics, partly because many mathematicians are unfamiliar with its nature and its applications. This area has
emerged as a useful tool among researchers. One of the objectives of this paper is to discuss the usefulness of
fractional calculus in applied sciences and engineering. In view of the increasing interest in the development of
the new paradigm, another objective is to encourage the use of this mathematical idea in various scientific areas
by means of a historical apologia for the development of fractional calculus.
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O célculo de ordem fraciondria (COF) lida com derivadas e integrais de ordem arbitrdria (ou seja, nao-
inteiros) e tem as mesmas origens do cldssico cdlculo diferencial e integral. No entanto, até recentemente, tem
sido investigado principalmente do ponto de vista matemético. Progressos nas areas de fractais revelaram suas
sutis relagdoes com o célculo fracionédrio. No entanto, o cdlculo fraciondrio é geralmente excluido dos cursos tradi-
cionais de Matematica, em parte porque muitos mateméticos nao estao familiarizados com a sua natureza e suas
aplicacoes. O célculo fracionario tem se mostrado uma ferramenta 1til entre os pesquisadores. Um dos objetivos
deste trabalho é discutir a utilidade do célculo fraciondrio nas ciéncias aplicadas e na engenharia. Além disso,
outro propdsito é incentivar o uso dessa idéia matematica como ferramenta para pesquisadores das mais diversas

dreas por meio de uma apologia histérica envolvendo o desenvolvimento do cédlculo fracionario.
Palavras-chave: céalculo fracionario, sistemas de ordem nao-inteira, sistemas dinamicos.

1. Introduction

The theory of fractional calculus dates back to the
birth of the theory of differential calculus, but its in-
herent complexity delayed the application of its associ-
ated concepts. In fact, fractional calculus is a natural
extension of classical mathematics. Since the inception
of the theory of differential and integral calculus, math-
ematicians such as Euler and Liouville developed their
ideas about the calculation of non-integer order deriva-
tives and integrals. Perhaps the subject would be more
aptly called “integration and differentiation of arbitrary
order.”

Despite the work that has been done in this area,
the application of fractional derivatives and integrals
has been infrequent until recently. However, in recent
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years, advances in the theory of chaos and fractals re-
vealed relationships with fractional derivatives and in-
tegrals, leading to renewed interest in this field [1-3].

The basic aspects of the theory of fractional calculus
are outlined in [4]. Insofar as it concerns the application
of its concepts, we can cite research in different areas
such as viscoelastic damping [5], robotics and control
[6-8], signal processing [9], and electric circuits [10,11].

As for the adoption of this concept in other scientific
areas, several researchers have been inspired to examine
this new possibility.

Some work has been carried out in the field of dy-
namical systems theory, but the proposed models and
algorithms are still in the preliminary stage.

With these ideas in mind, this work introduces the
fundamentals of fractional order calculus (FOC) and its
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applications. This paper is organized as follows. Sec-
tion 2 outlines the origins of fractional calculus, provid-
ing the background for a historical apologia for its de-
velopment, and discussing several approaches to math-
ematical formulation. Section 3 offers examples of ap-
plications. Finally, section 4 presents a discussion, con-
clusions and outlook.

2. Historical apologia and different ap-
proaches

Historically, fractional order calculus (FOC) has been
unexplored or its applications delayed in engineering
because of its inherent complexity, the apparent self-
sufficiency of integer order calculus (IOC), and the fact
that it lacks a fully acceptable geometric or physical
interpretation. The intuitive idea of FOC is as old
as IOC, as indicated in a letter written by Leibniz to
L’Hopital in 1695. Leibniz, when asked about what if
n were 3 in Z:f{, said [12]: “Someday it would lead to
useful consequences”.

In 1730 Euler mentioned interpolating between in-
tegral orders of a derivative. In 1812 Laplace defined
a fractional derivative by means of an integral, and the
first discussion of a derivative of fractional order ap-
peared in a calculus written by Lacroix in 1819.

2.1. Lacroix

Lacroix expressed the nth derivative (for n < m) in
terms of Legrende’s symbol I' for the generalized facto-
rial. Recalling that

['(a) = /000 t2 tetdt (1)

and starting, for instance, with the function y = z™,
Lacroix expressed it as follows

m—n __ F(m + 1) Zmn
* CT(m—n+1) - @

ay_m
dz™  (m —n)!

Thus, replacing n with % and letting m = 1, one obtains
the derivative or order % of the function x

dl/Qy_ I'(2) 12 _ 2
dz' /2~ T(3/2) © = Nk (3)

2.2. Liouville

It was Liouville who engaged in the first major study
of fractional calculus. Liouville’s first definition of a
derivative of arbitrary order v involved an infinite se-
ries. Here, the series must be convergent for some v.
Liouville’s second definition succeeded in giving a frac-
tional derivative of =% whenever both x and are pos-
itive. Based on the definite integral related to Euler’s
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gamma integral, the integral formula can be calculated
for 7. Note that in the integral

o0
/ u e du, (4)
0

if we change the variables ¢t = xu, then

Thus,
* a—1 _—zu 1 >~ a—1 _—t
u' e du=— et dt. (6)
0 % Jo

However, in accordance with Eq. (1), this yields the
integral formula

_ 1 /OO 1
x4 = u " e du. (7)
I'(a) Jo
Consequently, by assuming that (%,(eax) = a¥ e for
any v > 0, then
d’z™®  T(a+v) oy _
dev T(a) N
v F(a + V) —a—v
(1) A (8)

The (—1)” term in the latter equation suggests the
need to expand the theory to include complex numbers.

Indeed, in terms of contemporary definitions, the
modern theory of fractional calculus is intimately con-
nected with the theory of operators. In classical calcu-
lus, the symbol D7} is often used for the nth derivative
operator (for n > 0) while, less commonly, D, ! is used
for the anti-derivative (or integral) operator.

A convenient notation described by Davis [12] was
the following: if v is a positive real number, DY f(x)
denotes differentiation of order v of the function f along
the z-axis. Similarly, the operator D" f(z) will de-
note integration of order v of the function f along the
z-axis.

Fractional calculus still lacks a geometric interpreta-
tion of integration or differentiation of arbitrary order.
Hence, the subscripts ¢ and x are called here termi-
nals of integration instead of limits of integration. This
avoids unnecessary confusion.
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2.3. Laurent

In 1884 Laurent published what is now recognized as
the definitive paper on the fundaments of fractional
calculus. Using Cauchy’s integral formula for complex
valued analytical functions and a simple change of no-
tation to employ a positive v rather than a negative
v will now yield Laurent’s definition of integration of
arbitrary order v > 0

1

D) = T3

x

~ [(@-t s o

c

The appropriate definition of differentiation of arbi-
trary order is to integrate it up to a point from which
the desired result can be obtained by conventional dif-
ferentiation.

Let nu = m — rho where, for convenience, m is con-
sidered the smallest integer larger than v and 0 < p < 1.

Observe that

Dif(x) = D77 f(z). (10)
Thus
D f@) = LD @), ()
and consequently
am am z
e [cD;? f(z)] = o {T(P)/c (x— )" f(t) dt]|.
(12)
2.4. Cauchy

Cauchy’s definition, which is recognized as one that pre-
serves some important frequency properties [13], is ex-
pressed as follows
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where the function I'(«) is the generalization of facto-
rial function and is defined in Eq. (1).

Indeed, since the birth of differential and integral
calculus, the generalization of the derivative and inte-
gral concept to a non-integer order has been the subject
of several approaches. For this reason, there are vari-
ous definitions that are provenly equivalent, and their
use can (and should) be encouraged by researchers in
different scientific areas.

2.5. Caputo

In order to present Caputo’s fractional derivative, let
m be the smallest integer that exceeds a, thus enabling
Caputo’s fractional derivative of order a > 0 to be de-
fined as follows

1
I'(m—«

DZf(t)

m—1<a<m.

dr,

)
- jJy
(14)

Clearly, numerous mathematicians have contributed to
the history of fractional calculus by attempting to solve
a fundamental problem to the best of their understand-
ing.

Each researcher sought a definition and therefore
different approaches, which has led to various defini-
tions of differentiation and antidifferentiation of non-
integer orders that are provenly equivalent. Some of the
aforementioned definitions of non-integer order deriva-
tives are summarized and listed in Table 1. A table
can also be written for the definition of different and
equivalent integrals.

Although all these definitions may be equivalent,

(@) _ (t—7)o71t from one specific standpoint, i.e., for a specific applica-
L= /f(T) I'(—a) dr, (13) tion, some definitions seem more attractive.
J
Table 1 - Definition of derivatives of arbitrary order.
. d™y I'(m+1)
L 2 m—n
acroix T 7F(m ——
d’x™® r
Liouville dzl’ =(-1)" (1:1(—5)”) a—v
v m— am 1 x -1
Laurent  .DYf(x) = D™ f(z) = o |T() [ (@ =)=t f(t) dt
o t—r) ot
Cauchy 7o = [ p= . (_)a) dr
Caputo DOf(t) = — e S
P I = P —a) o = yertm T
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3. Applications in applied sciences and
engineering

Fractional order calculus can represent systems with
high-order dynamics and complex nonlinear phenom-
ena using few coeflicients, since the arbitrary order of
the derivatives provides an additional degree of freedom
to fit a specific behavior. Another important charac-
teristic is that fractional order derivatives depend not
only on local conditions of the evaluated time but also
on the entire history of the function. This fact is often
useful when the system has a long-term “memory” and
any evaluation point depends on the past values of the
function.

At this point we therefore consider it relevant to
present some applications involving the implementa-
tion of FOC-based models in different physical sys-
tems, namely: the diffusion equation, food engineering,
robotics and control theory, and econophysics.

3.1. Applications in the diffusion equation

It is well known that, in the classical case, the diffusion
equation is given by
2
gu _ bQQ. (15)
ot Ox?

A general solution is given for a fractional diffu-
sion equation defined in a bounded space domain. The
fractional time derivative is described in the Caputo
sense (Table 1). The Caputo fractional derivative is
considered here because it allows for the standard in-
clusion of traditional initial and boundary conditions in
the formulation, whereas models based on other frac-
tional derivatives may require the values of the frac-
tional derivative terms at the initial time. Keeping this
definition in mind, the fractional diffusion equation [14]
of interest can be written as

IeY 2

Ou_ p0u (16)

ote Ox?
where « is a parameter describing the order of the frac-
tional derivative, b denotes a constant coefficient with
dimension ( Time)(Length)~®/?, & and t are the space
and time variables, and v = u(z,t) is the field defined
in the space domain [0,L], considering the following
boundary conditions

u(0,t) = u(L,t) =0, t>0,

u(z,0) = f(z), 0<z<L,

ut(x,0) =0, 0<z<L,

forl <a<2. (17)

The last boundary condition is assumed to ensure
the continuous dependence of the solution on the pa-
rameter « in the transition from a =1 toa =17 [2].
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Taking the finite sine transform of Eq. (16), in-
tegrating the second term of the resulting equation by
parts, and applying the boundary conditions, we obtain

d*u
s + (ban)*u = 0, (18)

and
L
u=u(n,t) = /0 u(z,t) sin(anx)dr, (19)

is the finite sine transform of u(x,t), where a = 7/L,
and n is a wave number, Eq. (18) may be called a
diffusion-wave equation in a wave number domain. Tak-
ing the finite sine transform of Eq. (17), we obtain

L
ﬂ(n,O):/O f(z) sin(anz)dzx, (20)

and ¢ (n,0) =0 for 1 < a < 2.

Taking the Laplace transform of Eq. (16) and using
the initial conditions and the properties of the Caputo
derivative, we obtain

521 u(n,0)

Uln.s) = 5% + (ban)?

(21)
where s is the Laplace transform parameter, and
U(n,s) is the Laplace transform of @(n,t).

Taking first the inverse Laplace transform of
Eq. (21) and then the inverse finite sine transform of
the resulting equation, we obtain

t*) sin(anz) x

%i —b*a*n?
/ f(r)sin(anr)dr (22)

where E,, is the Mittag-Leffler function.

The Mittag-Leffler function has several interesting
properties.

In particular, we have Ej(—z) = e and
E3(—2%) = cos(z). Using these identities, the solutions
of Eq. (16) for & = 1 and 2 are given as

—z

u(z,t) ii = (ban)® !sin(anz) x
L
/ f(r) sin(anr)dr, (23)
0
and
u(z, t) % i s(ban t) sin(anx) x

L
/0 f(r) sin(anr)dr. (24)
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Equations (23) and (24) represent the diffusion and
the wave solutions. These are special cases of the so-
lution (Eq. (22)) of the fractional diffusion-wave equa-
tion.

3.2. Applications in food engineering

Food gums are complex carbohydrates and can serve
a wide variety of functions, ranging from stabilizers to
fat replacers. In many foods, these ingredients are also
useful for building and/or modifying the product’s tex-
ture.

In the special case where the material and thickness
are uniform throughout, there will be bending stresses
that can be obtained from the normal relationship

d?~
T(t) = kﬁ' (25)

For a material that is neither a Hookean solid nor
a Newtonian fluid, Ma and Barbosa-Cénovas [15] an-
alyzed experimental results from elastoviscous bodies
obtained by Bosworth [16] and proposed the following
relationship

d*y
() = ko (26)
with k& = constant, 0 < « < 1, 7 represents shear stress
and + is the shear strain.

Applying the Boltzmann superposition principle in
combination with the fractional derivative concept, Eq.
(26) has can be written as follows

N

den
r(t) = Y Kamod. 27)

n=1
Equation (27) rewritten in terms of a fractional op-
erator (Laurent sense, Table 1) is

N
T(t) =Y KDL (28)

n=1
Equation (28) is an expression for the linear vis-
coelasticity of materials in terms of a fractional deriva-
tive. From a practical point of view, the material func-
tions, such as dynamic viscosity (1) and complex vis-
cosity ("), need to be derived implicitly from stress-
strain relations. Therefore, the theory of fractional
derivatives, when employed to manipulate these ma-
terial functions based on stress-strain relations, results

in

g = kw1 sin(gal) t kpw2 1 sin(gag), (29)

= kwv ! cos(goq) + kpwo2 ! cos(gag). (30)

Equations (29) and (30) can then be used to sim-
ulate the linear viscoelasticity of food gums, once the
constants in the equations have been determined from
the experimental data.
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3.3. Applications in robotics and control the-
ory

In industrial environments, robots have to execute
their tasks quickly and precisely, minimizing produc-
tion time. This requires flexible robots working in large
workspaces, which means that they are influenced by
nonlinear and fractional order dynamic effects.

Ferreira et al.[17]analyzed the effect of a hybrid force
and position fractional controller applied to two robotic
arms holding the same object, as illustrated in Fig. 1.

Load

Robot 1 Robot 2

Figure 1 - A cooperative cell of robots performing a given task.

The load of the object varied and some disturbances
were applied as references of force and position. In-
stead of using the classic PID (Proportional-Integral-
Derivative) controller, they used a PI*D* controller
which was calibrated by trial and error. The result-
ing controller proved to be robust in handling variable
loads and small disturbances at the reference.

Another interesting problem in robotics which can
be treated with FOC is the control of flexible robots, as
this kind of light robot uses low-power actuators, with
no self-destruction effects in response to high impacts.
Nevertheless, significant vibrations over flexible links
make a position control difficult to design, because it
reveals a complex behavior that is difficult to approx-
imate by linear differential equations [18]. However,
Monje et al. [19] propose a PD® for a flexible robot
with one degree of freedom for variable loads, resulting
in a system with static phase and constant overshoot,
independent of the applied load.

An application in a robot with legs was presented
by Silva and Machado [20], who wrote a set of PD®
algorithms to control position and force, which they
applied to a hexapod robot with 12 degrees of freedom.
The authors defined two performance metrics, one for
quantity of energy and the other for position error. The
controllers with o = 0.5 showed the best performance
in this robot.
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3.4. Applications in econophysics

Econophysics is a new interdisciplinary area in which
concepts and analysis techniques commonly used for
describing physical systems are applied to investigate
financial and economic problems.

The dynamics of global markets require full time
complete and highly accurate modeling.

Although numerous studies about financial markets
have been published [21-27], only a few of them use
fractional calculus as a tool. Nevertheless, some inves-
tigations in finance using fractional calculus equations
were made by Scalas et al. [28].

David [29] proposed a very simple model based on
the following discussion: It is well- known that a sig-
nificant change in capital flow commonly occurs when
investors, at any moment, perceive a minor change in
risk.

It seems to me reasonable to imagine that the square

. . 2
of the capital flow invested, denoted as (%) , can be
proportional to the dimensionless perception of this risk
variation, denoted as (y — yo).

Mathematically,

()~ w-w, (31)

can be written as

(‘2)2 = —C(y - w)- (32)

An increase in risk perception stimulates a reduc-
tion in capital injection. That is the meaning of the
minus signal above. Thus

dX

=)', (33)
and
A g (34)
(yo — y)'”

Now, integrating both sides,

T Yo
\@/dt = /(yo — )2 ax, (35)

or

Yo
K = / (o — )~ 2 dx, (36)
0

where K = C'/2T.
Here, A = F (y), where X is the amount of return
on capital and y represents the risk perception.
Bearing in mind this fact, we can note that d\ =

F'(y)dy.

David et al.

If we change variables yg and y to = and ¢, and re-
place F’ with f, the integral equation becomes

x

K - /(m— 0=V F (1) dt. (37)
0
From this point on the problem is to determine the
function f. This can be done by multiplying the last
equation by 1/T'(1/2) in order to obtain

K o ]. T — 1/2 _
rwm“uum!( A d
oD, 2 f (x). (38)

Consequently,
oDYPK = V7 f(x). (39)

Based on Laurent’s general definition (Table 1) of
derivatives, let us now consider the derivative of order
1/2 of the constant K. Using D¥ = D™~ ? we find
that

OD;chszm ﬁ/(m—t)p_ll(dt -
0
dm[pr] _ _Kpta?™™
de™ [T (p) p|  (p—m)pl(p)
K —v
mz . (40)

In particular, when v = 1/2; we have

T

K —1/2 _ £x‘1/2
F1/2) = W

oDV K =

Therefore, from Egs. (39) and (41) it can be con-
cluded that

K = 77 f(). (42)

This model involving risk and capital return based
on the non-integer order calculus concepts is simple to
implement and offers an interesting alternative way for
investigation and possibly for predictions in financial
markets.

4. Discussion and conclusions

Fractional Order Calculus (FOC) dates back to the
birth of the theory of differential calculus or Integer
Order Calculus (I0C). However, FOC only began to be
applied in the last two decades as a result of advances
in the area of chaos, which revealed subtle relationships
with the FOC concepts.
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Recent progress in the area of fractional derivatives
and integrals implies a promising potential for future
developments and application of the theory in various
scientific areas. Some basic concepts of FOC and sev-
eral applications in applied sciences and engineering
have been presented.

The treatment of fractional order calculus in this
paper is suggestive rather than rigorous in order to cap-
ture the reader’s interest while simultaneously offering
a hint of its potential as a research tool. A few appli-
cations have begun to appear, but they are still in the
incipient stage of development.

This article presented several case studies involving
the implementation of FOC-based models, whose re-
sults demonstrate the importance of Fractional Order
Calculus. We strongly hope they will serve as motiva-
tion for the development of new applications.
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