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We analyze the quantum-mechanical behavior of a system described by a one-dimensional asymmetric
potential constituted by a step plus (i) a linear barrier or (ii) an exponential barrier. We solve the energy
eigenvalue equation by means of the integral representation method, classifying the independent solutions
as equivalence classes of homotopic paths in the complex plane. We discuss the structure of the bound
states as function of the height U 0 of the step and we study the propagation of a sharp-peaked wave packet
reflected by the barrier. For both the linear and the exponential barrier we provide an explicit formula
for the delay time τ(E) as a function of the peak energy E. We display the resonant behavior of τ(E) at
energies close to U 0. By analyzing the asymptotic behavior for large energies of the eigenfunctions of the
continuous spectrum we also show that, as expected, τ(E) approaches the classical value for E →∞, thus
diverging for the step-linear case and vanishing for the step-exponential one.
Keywords: integral transforms, special functions, solutions of wave equations: bound states, scattering
theory.

Analisamos o comportamento quântico de um sistema descrito por um potencial assimétrico unidi-
mensional constitúıdo por um degrau junto a (i) uma barreira linear ou (ii) uma barreira exponencial.
Resolvemos a equação dos valores próprios da energia por meio do método da representação integral,
classificando as soluções independentes como classes de equivalência de caminhos homotópicos no plano
complexo. Discutimos a estrutura dos estados ligados como função da altura U 0 do degrau e estudamos
a propagação de um pacote de onda pontiagudo refletido pela barreira. Para ambos os casos linear e
exponencial fornecemos uma fórmula expĺıcita para para o retardo τ(E) como função da energia de pico E.
Exibimos o comportamento ressonante de τ(E) para energias próximas de U 0. Ao analisar o comportamento
assintótico para grandes energias das funções próprias do espectro cont́ınuo, mostramos também que, como
esperado, τ(E) se aproxima do valor clássico para E →∞, divergindo assim para o caso linear e zerando
para o caso exponencial.
Palavras-chave: transformações integraais, funções especiais, solução das equeções de onda: estados
ligados, teoria do espalhamento.

1. Introdução

In Ref. [1], we have analyzed the quantum-
mechanical behavior of a system described by a one-
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dimensional asymmetric potential formed by a step
plus a harmonic barrier (the “step-harmonic” poten-
tial), by using the integral representation method [2].
We investigated the behavior of the discrete energy
levels (as a function of the height of the step) and
of the delay time τ of a wave packet coming from
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infinity and bouncing back on the harmonic barrier,
as a function of the packet’s peak energy and of the
height U 0 of the step.

Among the convex or concave locally bounded
symmetric and confining potentials the harmonic os-
cillator is a threshold, in that it gives rise to classical
isochronous oscillations and evenly spaced quantum
energy levels [3, 4].

In our quantum mechanical step variant of the
problem we recover both these features in the limit in
which U0 →∞, and the potential reduces to the half-
space harmonic oscillator. Then, it is conceivable
that the harmonic one is the only confining barrier
which displays a constant nonvanishing delay τ in
the limit of high energies. For steeper barriers we
expect τ to vanish at high energies, while for milder
ones we expect the delay to become infinite in this
limit, in accordance with the corresponding classical
situations. Similarly, we expect that, as U0 → ∞,
the spacing between two neighboring discrete levels
tends to infinity in the former case and to zero in
the latter.

Here we analyze the “step-linear” and the “step-
exponential” potentials. Both these problems can
be solved exactly using the integral representation
method, which is interesting per se, as it can be
applied to more general problems.

2. The step-linear potential

Let M, U 0 be positive parameters, and consider the
“step-linear” potential

U(x) =
{
−Mx x ≤ 0,
U0 x > 0,

(1)

If E denotes the energy of the particle and m its
mass, the time-independent Schrödinger equation is

− ~2

2m
d2u(x)
dx2 + U(x)u(x) = Eu(x). (2)

This, for x < 0, can be rewritten as

d2u(x)
dx2 +

(2mM
~2 x+ 2mE

~2

)
u(x) = 0. (3)

It is convenient to define

α :=
(2mM

~2

)1/3
, β := αE

M
, y := αx, (4)

which allows us to recast Eq. (3) as

d2u(y)
dy2 + (y + β)u(y) = 0, (5)

which is the Airy equation (see Refs. [5, 6]). The
general solution of Eq. (5) is

u(y) = CAi(−y − β) +DBi(−y − β), (6)

where C and D are arbitrary integration constants,
and the two linearly independent solutions Ai and Bi
are expressed in section 5.1 in terms of the integral
representation method.

Since Bi(x) → +∞ for x → +∞, in order for
Eq. (6) to be an eigenfunction, we must set D = 0.
Hence, we obtain

u(x) = CAi(−αx− β). (7)

For x > 0, the solution of Eq. (2) has the following
from

u(x) =
{
Aeikx +Be−ikx E > U0,

F e−kx E < U0,
(8)

where A, B and F are arbitrary integration constants
and

~k :=
√

2m|E − U0|. (9)

2.1. The case E < U0: Bound states and level
spacing

If E < U0 we obtain

u(x) =
{
CAi(−αx− β) x ≤ 0,
F e−kx x > 0.

(10)

The requirement of continuity of u(x) and of its first
derivative in x = 0 is expressed by{

CAi(−β)− F = 0,
CαAi′(−β)− Fk = 0.

(11)

System (11) has a non trivial solution iff
Ai′(−β)
Ai(−β) =

√
β0 − β, (12)

where β0 := αU0/M . The energy levels are deter-
mined graphically by the intersections of the curves
at the two sides of Eq. (12). An example is depicted
in Fig. 1 for β0 = 6.

In the limit U0 →∞ the step of Eq. (1) becomes
an infinite barrier. In this case, the energy levels
correspond to the zeros βn of Ai(−β), the denomi-
nator of Eq. (12). As expected, these energy levels
are the ones of the symmetric confining potential
U(x) = M |x| corresponding to the odd eigenfunc-
tions of the latter (Appendix A).

To study the level separation for large energies,
consider the asymptotics of Ai(−β) for large values
of β (see Ref. [7])
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Ai(−β) = 1√
πβ1/4

[
sin
(
ζ + π

4

) ∞∑
k=0

(−)kc2kζ
−2k − cos

(
ζ + π

4

) ∞∑
k=0

(−)kc2k+1ζ
−2k−1

]
, (13)

Figure 1: Graphical solutions of Eq. (12) for the energy
levels. The red solid line represents the graph of the function
Ai′(−β)/Ai(−β) while the blue dash-dotted line represents
the graph of

√
β0 − β. In this plot, we have chosen β0 = 6.

where ζ := 2β3/2/3 and the coefficients of the
series expansions are given by

ck =
Γ
(
3k + 1

2

)
54kk!Γ

(
k + 1

2

) . (14)

The inversion of the asymptotic expansion (13)
allows us to find, for large values of β, the following
approximate solution of the equation Ai(−β) = 0
(see Ref. [7])

βn ∼ t2/3n

(
1 + 5

48
1
t2n
− 5

36
1
t4n

+ . . .

)
,

tn = 3
8π (4n− 1) , n→∞. (15)

Thus, at the leading order of Eq. (15) the approx-
imate zeros have the form

βn '
[3

8π (4n− 1)
]2/3

. (16)

This is an excellent approximation to the zeros of
Ai(−x) (see Table 1).

For n→∞ we get,

βn+1 − βn ∼
( 8

3n

)1/3
π2/3, n→∞. (17)

The spacing behavior n-1/3 is the threshold be-
tween concave and convex potentials.

Table 1: The first three zeros of the Airy function compared
with the corresponding approximate zeros from Eq. (16).

n βn (exact) βn (approximate) Relative Error
1 2.33811 2.32025 0.76 × 10−2

2 4.08794 4.08181 0.15 × 10−2

3 5.52055 5.51716 0.62 × 10−3

2.2. The case E > U0: Scattering and delay

In this case, the (improper) eigenfunctions have the
form

u(x) =
{
CAi(−αx− β) x ≤ 0,
Aeikx +Be−ikx x > 0.

(18)

The junction conditions in x = 0 are{
CAi(−β) = A+B,

−CαAi′(−β) = ik (A−B) .
(19)

Solving for the constants, the normalized (with
respect to k) improper eigenfunctions are given by

uk(x) =

1√
2π

{
Π[β(k)]Ai[−αx− β(k)] x ≤ 0,
e−ikx + eikx+iδ(k) x > 0,

(20)

where

Π(β) = 2
[
Ai(−β) + α

ik
Ai′(−β)

]−1
,

eiδ(k) = ikAi(−β)− αAi′(−β)
ikAi(−β) + αAi′(−β) . (21)

As expected, the continuous part of the spectrum
(E > U0) is simple. Note that

δ(k) = 2 arctan
[
α

k

Ai′[−β(k)]
Ai[−β(k)]

]
. (22)

From Eq. (20) a generic wave packet

ψ(x, t) =
∫ ∞

0
dkc(k)uk(x)e−

i
~E(k)t. (23)

has the form
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ψ(x, t) = 1√
2π


∫∞

0 dkc(k)Π[β(k)]Ai[−αx− β(k)]e−
i
~E(k)t x < 0,∫∞

0 dkc(k)
[
eikx+iδ(k) + e−ikx

]
e−

i
~E(k)t = ψrefl + ψin x > 0.

(24)

Then, writing c(k) = |c(k)|eiγ(k), ψin and ψrefl take the following form

ψin(x, t) = 1√
2π
∫+∞

0 dk|c(k)|e−i[kx+Ω(k)t−γ(k)], (25)

ψrefl(x, t) = 1√
2π
∫+∞

0 dk|c(k)|ei[kx−Ω(k)t+δ(k)+γ(k)], (26)

where
Ω(k) := E(k)

~
= U0

~
+ ~k2

2m . (27)

If c(k) is sufficiently regular and non-vanishing only in a small neighborhood of some k̃, then ψin and ψrefl
represent wave packets which move according to the following equations of motion [8, 9]

xin = − dΩ
dk

∣∣∣∣
k=k̃

t+ dγ

dk

∣∣∣∣
k=k̃

= −~k̃
m

(t− t0) = − p̃

m
(t− t0), (28)

for the “incoming” wave packet, and

xrefl = dΩ
dk

∣∣∣∣
k=k̃

t− dγ

dk

∣∣∣∣
k=k̃
− dδ

dk

∣∣∣∣
k=k̃

= p̃

m

[
(t− t0)− m

p̃

dδ

dk

∣∣∣∣
k=k̃

]
, (29)

for the reflected “outgoing” one.
The solution thus built represents a particle of well defined momentum p̃ = ~k̃ which approaches the

origin from the right, interacts with the linear potential (at t = t0), and is totally reflected. Note that the
argument of the complex valued function c(k) determines t0. The phase shift results in a delay τ in the
rebound, caused by the interaction with the confining linear barrier. The delay is calculated with respect
to the case of instantaneous reflection, which takes place in presence of an infinite barrier and for which
δ(k) = π. From Eqs. (4) and (9) it follows that

τ(β̃) = α~
M

dδ

dβ

∣∣∣∣
β=β̃

, (30)

where β̃ := β(k̃). We compute τ from Eq. (22). Using the Airy equation Ai′′(−β) = −βAi(−β), we obtain

τ(β) = α~
M

2
√
β − β0

Ai(−β)
Ai′(−β) + 1√

β−β0

Ai′(−β)
Ai(−β)

[
− 1

2(β − β0) + β
Ai(−β)
Ai′(−β) + Ai′(−β)

Ai(−β)

]
, (31)

where we have suppressed the tilde on the packet peak energy β̃.
We are interested in the behavior of the interaction time for large values of β, i.e. for incoming packets

with high energy. To this end, we need the asymptotic expansion of Ai′(−β) for β → +∞ (see Refs. [5, 7])

Ai′(−β) = −β
1/4
√
π

[
cos

(
ζ + π

4

) ∞∑
k=0

(−)k d2k
ζ2k + sin

(
ζ + π

4

) ∞∑
k=0

(−)k d2k+1
ζ2k+1

]
, (32)

where ζ := 2β3/2/3 and the coefficients dk are

dk = −6k + 1
6k − 1ck, (33)

with ck given in Eq. (14). Dividing the two asymptotic expansions of Ai′(−β) and Ai(−β) we obtain to
leading order in β

1√
β − β0

Ai′(−β)
Ai(−β) ∼ tan

(2
3β

3/2 − π

4

)
, β →∞. (34)
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Thus, Eq. (31) becomes

τ(β) ∼ 2α~
M

√
β, β →∞. (35)

Hence, reintroducing the physical variables, the high-
energy behavior of the interaction time is

τ(E) ∼ 2
√

2mE
M

, (36)

which is exactly the time a classical particle arriving
from infinity with energy E would spend in the
x < 0 region.

In Fig. 2 we plot τ(β) for a choice of different
values of β0. Note the resonances located at the
points β ' ηn (n = 1, 2, . . . ), zeros of Ai′(−β), cor-
responding to the formation of metastable states at
the respective energies En ' Mηn/α. The values
Mηn/α are the energies of the excited states of the
confining potential M |x| (see Appendix A), corre-
sponding to even eigenfunctions. The resonances
have lifetimes which decrease as the corresponding
energies increase and move farther away from the
threshold energy U 0. Conversely, as U 0 increases,
the lifetime of the resonance closest to the height of
the step becomes progressively longer and then infi-
nite when the resonance turns into the next bound
state. This behavior is evident in Fig. 2, in which the
first three plots correspond to values of β0 for which
there is only one bound state. In the successive
three plots the resonance at β ' η1 has disappeared,
having turned into the second bound state.

Comparing Fig. 2 with Fig. 6 of Ref. [1] we note
that, whereas in the step-harmonic case the graph
of τ(β) oscillates with decreasing amplitude about
the straight line τ = π/ω (the half period of the
oscillator), in the step-linear case the corresponding
graph similarly oscillates about the parabolic line
τ(E) = 2

√
2mE/M , corresponding to the delay of

the classical particle. Furthermore, whereas in the
step-harmonic case the resonances are evenly spaced,
in the step-linear case their spacing decreases with
the energy, corresponding to the behavior as a func-
tion of the energy of the eigenvalues of the corre-
sponding (symmetric) potentials U(x) = mω2x2/2
and U(x) = M |x|.

3. The step-exponential potential

Let κ, σ and U 0 be positive parameters, and consider
the “step-exponential” potential

U(x) =

κ
(
e−x/σ − 1

)
x ≤ 0,

U0 x > 0,
(37)

For x < 0, introduce the following dimensionless
quantities

α2 := 8mκσ2

~2 ,

β := 8m(E + κ)σ2

~2 , z := αe−x/2σ, (38)

in terms of which the time-independent Schrödinger
equation writes as

z2d
2u(z)
dz2 + z

du(z)
dz

+
(
β − z2

)
u(z) = 0. (39)

Setting ν2 := −β, Eq. (39) can be cast in the form
of a modified Bessel equation (see Ref. [5, 10])

z2d
2u(z)
dz2 + z

du(z)
dz

−
(
ν2 + z2

)
u(z) = 0, (40)

whose general solution is

u(z) = CKν(z) +DIν(z), (41)

where C and D are arbitrary integration constants
and Kν and Iν are the modified Bessel functions of
order ν = i

√
β.

The function Iν(z) diverges exponentially for
z → +∞ [5]. For this reason, in order for u(x)
to be a proper (or improper) eigenfunction, we must
set D = 0. Therefore Eq. (41) reduces to

u(x) = CK
i
√
β

(
αe−x/2σ

)
. (42)

Also the solutions of Eq. (40) can be studied with
the integral representation method (see section 5.2).

3.1. The case E < U0: Bound states

If E < U0 we obtain

u(x) =

CKi
√
β

(
αe−x/2σ

)
x ≤ 0,

F e−kx x > 0.
(43)

The junction conditions in x = 0 give

αK ′
i
√
β
(α) = 2σkK

i
√
β
(α), (44)
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Figure 2: Plots of the delay τ (in units of ~α/M) versus the energy β of the incoming wave packet (red solid lines) for
β0 = 1.5, 2.1, 2.7, 3.5, 4.0, 4.5. The parabolic blue dotted lines represent the classical delay, given in Eq. (36).

which, setting β0 := 8m(U0 + κ)σ2/~2 can be recast
in the form

K ′
i
√
β
(α)

K
i
√
β
(α) =

√
β0 − β
α

. (45)

Graphical solutions of Eq. (45) are shown in
Fig. 3.

Analogously to what happens in the step-linear
case (12), in the limit of an infinite barrier (U0 →

Figure 3: Graphical solutions of (45). The red solid line is
the graph of K ′

i
√
β
(α)/K

i
√
β
(α), whereas the blue dash-

dotted line represents
√
β0 − β/α for the choice β0 = 24

and α = 1.

∞) the energy levels are specified by the zeros of
K
i
√
β
(α), the denominator of Eq. (44), as a function

of β and they are the ones of the symmetric confining
potential U(x) = κ

(
e|x|/σ − 1

)
, corresponding to

the odd eigenfunctions of the latter (Appendix B).
To study how the energy levels behave for large

energies, we employ the following formula for the
asymptotic behavior of the function K

i
√
β
(α) for

large β (see Ref. [5])

K
i
√
β
(α) ∼

√
2π√
β
e−π
√
β/2 sin

[
α2

4
√
β
−

√
β +

√
β log

(
2
√
β

α

)
+ π

4

] [
1 +O

( 1√
β

)]
,

(46)

for β → ∞ . Note that expansion (46) can be
proved starting from Eq. (76). Therefore, the zeros
of K

i
√
β
(α), as a function of β, are asymptotically

the solutions of the following equation

−
√
βn +

√
βn log

(
2
√
βn
α

)
= nπ. (47)

Solving for βn we obtain

βn ∼
α2e2

4 exp
[
2W

(2nπ
αe

)]
, (48)

Revista Brasileira de Ensino de F́ısica, vol. 38, nº 2, e2302, 2016 DOI: http://dx.doi.org/10.1590/S1806-11173812135



Rizzi e cols. e2302-7

where W (x) is the Lambert function [5]. Since
W (x) ∼ log x − log log x for x → ∞ we have for
large n that

βn ∼
n2π2(

log 2nπ
αe

)2 . (49)

We see from Eq. (49) that the potential U(x) =
κ
(
e|x|/σ − 1

)
behaves for large x as an infinite

square well whose width, up to inessential factors,
grows as logn, an intuitive fact. Moreover,

βn+1 − βn ∼
2nπ2(

log 2nπ
αe

)2 , (50)

for n → ∞, proving thus that the level spacing
diverges.

3.2. The case E > U0: Scattering and delay

The unbound eigenstates have the form

u(x) =

CKi
√
β
(αe−x/2σ) x ≤ 0,

Aeikx +Be−ikx x > 0.
(51)

and the junction conditions areCKi
√
β
(α) = A+B,

CαK ′
i
√
β
(α) = i2σk (B −A) .

(52)

Therefore, the normalized (with respect to k) im-
proper eigenfunctions are given by

uk(x) = 1√
2π

Π[β(k)]K
i
√
β(k)

(
αe−x/2σ

)
x ≤ 0,

eikx+iδ(k) + e−ikx x > 0,
(53)

where ~k =
√

2m(E − U0) and

Π(β) = 2
[
K
i
√
β
(α) + α

2ikσK
′
i
√
β
(α)
]−1

, (54)

eiδ(k) =
2ikσK

i
√
β
(α)− αK ′

i
√
β
(α)

2ikσK
i
√
β
(α) + αK ′

i
√
β
(α) .

Hence,

δ(k) = 2 arctan

 α

2σk

K ′
i
√
β(k)

(α)

K
i
√
β(k)(α)

 . (55)

Then, following the same argument adopted for the step-linear case, we obtain the following formula
for the delay τ of the rebound of an incoming wavepacket with peak energy β

τ(β) = 8mσ2

~
dδ

dβ
= 8mσ2

~
2

√
β−β0
α

K
i
√
β

(α)
K′
i
√
β

(α) + α√
β−β0

K′
i
√
β

(α)

K
i
√
β

(α)

− 1
2 (β − β0) + d

dβ
log

K ′
i
√
β
(α)

K
i
√
β
(α)

 . (56)

Using Eq. (46), we obtain for large values of β

K ′
i
√
β
(α)

K
i
√
β
(α) ∼ −

√
β

α
cot

(
−
√
β +

√
β log 2

√
β

α
+ π

4

)
, (57)

from which
d

dβ
log

K ′
i
√
β
(α)

K
i
√
β
(α) ∼

1
2β −

1

sin
[
2
(
−
√
β +
√
β log 2

√
β

α + π
4

)] 1√
β

log 2
√
β

α
. (58)

A comment is here in order. In general, taking
the derivative of an asymptotic expansion with re-
spect to the variable or a parameter may lead to
wrong results. However, in our case this procedure
can be justified using the integral representation

of Eq. (77) (we leave this as an exercise for the
interested reader).

Thus, plugging Eq. (58) into Eq. (56) we obtain
the asymptotic behavior of the delay time for large
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β’s, namely

τ(β) ∼ 8mσ2

}
1√
β

log
(

2
√
β

α

)
, (59)

or, in terms of the energy of the particle

τ(E) ∼ 2σ log(2E/κ)√
2E/m

. (60)

As expected, Eq. (60) coincides with the large en-
ergy value of the half period of the classical par-
ticle subjected to the confining potential U(x) =
κ
(
e|x|/σ − 1

)
.

4. Conclusions

Regarding the structure of the discrete energy spec-
trum as a function of the height U 0 of the barrier,
in the two potentials treated in this paper, the same
considerations apply as those of the concluding sec-
tion of Ref. [1]. The only difference is that the energy
levels }ω(n+1/2), n ∈ N, of the harmonic oscillator
have to be replaced here by the corresponding levels
En of the confining linear and exponential poten-
tials, respectively (see Appendices A and B). In the
case of the step-linear potential, the level spacing Eq.
(17) goes to zero as the energy increases, while in the
case of the step-exponential one (50) it approaches
infinity. As regards the continuous spectrum, we
provide in both cases exact expressions for the delay
of a wavepacket reflected from the barrier, as a func-
tion of the peak packet energy (see Eqs. (31) and
(56)). As expected, in both cases these delays exhibit
a series of resonances for energies not much larger
than U 0, while for large energies, they approach the
classical values. The step-harmonic potential is a
threshold separating the potential barriers for which
the delay time goes to infinity at large energies from
those for which it vanishes.

An entirely similar discussion can be applied to
the step variant

U(x) =
{
V (x) x ≤ 0,
U0 x > 0,

(61)

of any symmetric potential V (x) (V (x) = V (-x))
such that limx→±∞ V (x) = +∞. Indeed the energy
eigenvalue equation for V (x) has two linearly in-
dependent solutions uL(x) and vL(x) the first of
which approaches zero very rapidly as x → −∞

whereas the second one diverges steadily with-
out oscillating, and two linearly independent so-
lutions uR(x) and vR(x) having a corresponding
behavior for x → +∞ (see Refs. [8, 11]). Since
uL(x) = a(E)uR(x) + b(E)vR(x), the energy eigen-
values are the roots En of the equation b(E) = 0.
Since the potential is symmetric, these roots cor-
respond to even and odd eigenfunctions alterna-
tively, the ground state being even. However, in
the general case the eigenvectors cannot be found
explicitly. Therefore, for example, no explicit for-
mula is available in general for the delay time of the
reflected packet in the corresponding step variant
potential (61).

5. Airy and modified Bessel functions
through the integral representations

In this section we solve the energy eigenvalue
equations by means of the integral representation
method, classifying the independent solutions as
equivalence classes of homotopic paths in the com-
plex plane. For the step-linear case we obtain Airy
function, while for the step-exponential case we get
modified Bessel functions. This technique is interest-
ing per se, as it can be applied to more general cases,
provided one is able to guess the correct integral
kernel. The Airy case is somehow classical, while
the Bessel case is more interesting. We present them
both for completeness.

5.1. The step-linear case: Airy functions

We look for a solution of Eq. (5) of the form

E(y) =
∫
γ
dtf(t)ety, (62)

where γ is a path in the complex plane and f is an
holomorphic function. Plugging Eq. (62) into Eq.
(5) we find∫

γ
dt

[
(t2 + β)f(t)ety + dety

dy
f(t)

]
= 0. (63)

Integrating by parts, we obtain:[
etyf(t)

]
∂γ

+
∫
γ
dt
[
(t2 + β)f(t)− f(t)′

]
ety = 0.

(64)
Therefore, E(y) is a solution of Eq. (5) if[
etyf(t)

]
∂γ

= 0 and f(t) = exp
(
t3

3 + βt

)
.

(65)
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Figure 4: Plots of the delay τ (in units of 8mσ2/}) versus the energy β of the incoming wave packet (solid red lines) for
six values of the step height: β0 = 10, 11, 12 (upper panels) β0 = 22, 24, 25 (lower panels). The blue dotted lines represent
the classical delay.

Hence, a class of solutions of the Airy equation is
of the form

Eβ(y) =
∫
γ
dt exp

[
t3

3 + (β + y)t
]
, (66)

where γ is a suitable path for which the contour
term vanishes.

The integrand of Eq. (66) entire. Thus, by Cauchy
theorem, every closed path represents the trivial
solution E(y) = 0.

Consider an unbounded path. In order for[
etyf(t)

]
∂γ to vanish, we require the leading term in

the exponent of f (t) (i.e. t3) to have a negative real
part. Therefore, the acceptable unbounded paths
are those whose phase φ is confined to the regions
π
6 < φ + 2

3nπ < π
2 (n = 0, 1, 2). These possible

paths are showed in Fig. 5, where the allowed sec-
tors π

6 < φ+ 2
3nπ <

π
2 (n = 0, 1, 2) are shaded.

Paths with both endpoints in the same sector
(e.g. Γ4 in Fig. 5) can be closed at infinity using
Jordan’s Lemma; therefore, they correspond to the
trivial solution. The only non-trivial paths are those
which link different sectors. There are only 3 non-
equivalent classes of such paths which we dub Γ1,
Γ2 and Γ3 respectively (see Fig. 5).

Taking into account Cauchy theorem, these paths
satisfy the relation Γ1+Γ2 = Γ3 in the sense that the
corresponding solutions are not independent. The

Figure 5: Possible paths of integration, each one corre-
sponding to a solution of (5).

conventional Airy functions Ai(z) and Bi(z) are the
independent solutions of w′′(z) − zw(z) = 0 such
that (see Ref. [5])

Ai(0) = 3−2/3

Γ(2/3) , Ai′(0) = − 3−1/3

Γ(1/3) , (67)
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and

Bi(0) =
√

3 3−2/3

Γ(2/3) , Bi′(0) =
√

3 3−1/3

Γ(1/3) .

Denoting by E(i)
β (y) the solutions in Eq. (66) corre-

sponding to the paths Γi (i = 1, 2), it is not difficult
to show that

Ai(−y − β) = 1
2πi

[
E

(1)
β (y) + E

(2)
β (y)

]
,

Bi(−y − β) = 1
2π
[
E

(1)
β (y)− E(2)

β (y)
]
. (68)

We leave the details to the interested reader (hint:
Check the above expressions and their first deriva-
tives in Eq. (66) for y = β = 0. In this case the
integrals E(j)

0 (0) correspond to Euler Gamma func-
tions).

5.2. The step-exponential case: Modified
Bessel functions

Consider the modified Bessel equation

z2u′′(z) + zu′(z)− (ν2 + z2)u(z) = 0, (69)

with z > 0. A convenient kernel for the integral
representation is the following:

K(z, t) = zνe−z cosh t. (70)

We look for solutions of the form

u(z) =
∫
γ
dtf(t)K(z, t). (71)

Plugging Eq. (71) into Eq. (69), we get

zν+1
∫
γ
dt

[
f(t) d

dt

(
sinh(t)e−z cosh t

)
+

2νf(t) cosh(t)e−z cosh t
]

= 0. (72)

Integrating by parts, Eq. (72) gives[
zν+1e−z cosh tf(t) sinh(t)

]
∂γ
−

zν+1
∫
γ
dt
[
f ′(t) sinh(t)− 2νf(t) cosh(t)

]
e−z cosh t

= 0. (73)

Then, the integral on the right hand side of Eq. (71)
is a solution of Eq. (69) if

f ′(t) sinh(t)− 2νf(t) cosh(t) = 0, and

zν+1
[
e−z cosh tf(t) sinh(t)

]
∂γ

= 0. (74)

Up to a normalization, the solution is f(t) =
sinh(t)2ν . If ν is integer then f (t) is either en-
tire (ν ≥ 0) or meromorphic (ν < 0), otherwise
it has infinite branch points located at tn = inπ
(n = 0,±1, . . . ), see Fig. 6. In the latter instance,
the usual procedure is to define a domain in which
the function is holomorphic by cutting the t-plane
and thus forbidding loops around the branch points.
In Fig. 6 a convenient choice for the cuts is also
shown.

Recalling that Re(z) > 0, the contour condition
zν+1

[
e−z cosh(t)f(t) sinh(t)

]
∂γ

= 0 is

e−z cosh t sinh(t)2ν+1|∂γ = 0. (75)

There are 4 different classes of paths for which
Eq. (75) is satisfied and

u(z) =
∫
γ

sinh(t)2νe−z cosh tzνdt, (76)

is well defined. The “paths zoology” is more compli-
cated and rich than in the linear and in the harmonic
case [1].

1. Closed paths. For any closed path, the con-
tour condition is trivially satisfied and any inte-
gral along a path enclosing a region where the
integrand function is holomorphic (i.e. the path
does not cross the cuts) vanishes. An example
is shown by the thin dashed black line in Fig. 6.

2. Infinite paths. For paths whose endpoints
are both at infinity, the function sinh(t)2ν+1

Figure 6: Cut of the complex t-plane. The dashed red and
the solid blue thick paths represent the only classes of paths
which provide independent solutions to the modified Bessel
equation.
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diverges or oscillates. On the other hand, the
exponential e−z cosh t vanishes for Re(cosh t)→
+∞ (recall that z > 0). Since Re[cosh(x+iy)] =
cos(y) cosh(x) then γ must stretch at infinity
in one of the sectors defined by −π/2 + 2nπ <
Im(t) < π/2 + 2nπ (n = 0,±1, ...), which are
represented by the shaded regions in Fig. 6.
Incidentally, in these bands, when there are no
cuts, one can “close” the paths at infinity, by
virtue of Jordan’s Lemma. Examples of this
class of paths are the black solid thin lines of
Fig. 6.

3. Semi-infinite paths. By “semi-infinite” paths
we mean paths starting from a point, say t0,
and ending at infinity. These paths must go
to infinity in the shaded bands −π/2 + 2nπ <
Im(t) < π/2+2nπ. For the starting point t0, the
contour condition demands that sinh(t0)2ν+1 =
0. This means that these paths must start from
one of the points tn = inπ, which are the zeroes
of the hyperbolic sine function. It is easy to
prove that the integral of Eq. (76) performed
along any two such paths lying in the same
band gives the same result (indeed, recall that
sinh t is periodic). Two examples of this class
of paths are the blue solid thick lines in Fig. 6.

4. Finite paths. These are the paths starting
and ending in two points say t i and tf, with
|ti|, |tf | < ∞. The contour condition can be
satisfied in two different ways: either the values
of the contour part are equal at the endpoints,
or the contour part vanishes at the endpoints.
The former case accounts for paths which do
not cross any cut and start from any point
t i, ending at tf = ti + 2niπ (n = 0,±1, . . . ).
Examples of this class of paths are represented
by the red dash-dotted thick line in Fig. 6. The
latter case is realized by paths connecting the
branch points and is represented by the red
dashed thick line in Fig. 6.

Taking into account the periodicity of the integrand
function (the period is 2πi in the domain where it
is holomorphic), and the Cauchy theorem, it is easy
to show that the integrals along the two kinds of
finite paths are proportional to the integral along
the “fundamental” path [0, iπ]. Moreover, the inte-
grals along any one of the infinite paths are linear
combinations of the ones performed along the finite
and semi-infinite paths.

In conclusion, two linear independent solutions of
Eq. (69) are

Kν(z) = π1/2(z/2)ν

Γ(ν + 1/2)

∫ ∞
0

dxe−z coshx sinh(x)2ν ,

(77)
and

Iν(z) = (z/2)ν

π1/2Γ(ν + 1/2)

∫ π

0
dxe−z cosx sin(x)2ν ,

(78)
where Kν and Iν correspond, respectively, to the
integrals performed along the solid blue and the
dashed red thick lines in Fig. 6 (a semi-infinite path
and a finite one). It can be shown that both solu-
tions (derived here for z > 0) can be analytically
continued throughout the whole z-plane cut along
the negative real axis (see Ref. [2]).

6. Appendix

A. The confining symmetric linear poten-
tial

Consider the confining symmetric potential U(x) =
M |x|. The eigenfunctions can be written as{

u(x) = C1Ai(−αx− β) x < 0,
u(x) = C2Ai(αx− β) x > 0,

(79)

where C 1 and C 2 are constants fixed by the junction
conditions in x = 0. If Ai(−β) 6= 0, then the conti-
nuity of u(x) in x = 0 implies C 1 = C 2. Moreover,
the continuity of the derivative implies Ai′(−β) = 0.
This condition determines the even eigenfunctions
and their eigenvalues. If Ai(−β) = 0, then the con-
tinuity of the derivative implies C 1 = - C 2. This
condition determines the odd eigenfunctions and
their eigenvalues.

B. The confining symmetric exponential
potential

Consider the confining symmetric potential U(x) =
κ
(
e|x|/σ − 1

)
. The eigenfunctions can be written asu(x) = C1Ki

√
β
(αe−x/2σ) x < 0,

u(x) = C2Ki
√
β
(αex/2σ) x > 0,

(80)

where C 1 and C 2 are constants fixed by the junction
conditions in x = 0. If K

i
√
β
(α) 6= 0, then the conti-

nuity of u(x) in x = 0 implies C 1 = C 2. Moreover,
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the continuity of the derivative implies K ′
i
√
β
(α) = 0.

This condition determines the even eigenfunctions
and their eigenvalues. If K

i
√
β
(α) = 0, then the

continuity of the derivative implies C 1 = - C 2. This
condition determines the odd eigenfunctions and
their eigenvalues.
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