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A model for the normal stress distribution of the Great Pyramid is presented. The model is sufficiently
simple as to be discussed at a basic university physics level
Keywords: statics; mechanical equilibrium.

Um modelo para a distribuição das tensões normais da Grande Pirâmide de Gizé é apresentado. O
modelo é simples e pode ser discutido no ensino de f́ısica geral nos cursos básicos universtários.
Palavras-chave: estática; equiĺıbrio mecânico.

The Great Pyramid of Gizeh, also known as Khufu’s
Pyramid or Cheops’ Pyramid was built between 2560
b.C.E. and 2040 b.C.E. as a tomb for pharaoh Khufu
of the IV dinasty. The original dimensions were a
height of 146.7 meters and a square base whose side
was 230.4 meters [1,2]. The two mortuary rooms, the
gallery, and the ascending and descending passages
correspond to small fraction of the total volume and
this allow us to consider the Great Pyramid as an
enormous block of solid rock with a mean density
approximately equal to 2 500 kg/m3. Several details
concerning its construction can be found in [3] and
references therein. The Great Pyramid give us the
chance of introducing a simple quantitative model
for the behavior of its normal stresses that we can
discuss with our students at a moderate level of
difficulty as we shall see in what comes next.

For simplicity let us suppose that this normal
stress field that we shall denote by σ(x, y, z) and
measure it in N/m2, is a function of z only, that is
σ(x, y, z)→ σ(z). At the base, the force associated
with this stress field must balance the total weight
of the pyramid and at the vertex it must be null.
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Suppose that the pyramid is divided into infinitesi-
mal truncated pyramids. Consider an element whose
mass is dm = ρA(z)dz, where ρ is the mean density
and A(z) is the the area of the cross section at z.
In equilibrium, see Figure 1

−σ(z+dz)A(z+dz)+σ(z)A(z)−ρ g A(z) dz = 0.
(1)

Writing σ(z + dz) ≈ σ(z) + (dσ/dz) dz, and A(z +
dz) ≈ A(z)+(dA/dz) dz, and substituting into equa-
tion (1) we obtain up to first order

d [σ(z)A(z)]
dz

= −ρ gA(z), (2)

Figure 1: Infinitesimal truncated pyramid in mechanical
equilibrium.
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The formal solution of this differential equation for
uniform ρ and g is

σ(z)A(z) = −ρ g
∫
A(z) dz + C, (3)

where C is an integration constant. Making use of
a theorem from the measure theory of volumes of
cones and pyramids [4] we write

A(z)
A0

=
(
H − z
H

)2
. (4)

Taking equation (4) into equation (3) we have

σ(z)
(

1− z

H

)2
= −ρ g

∫ (
1− z

H

)2
dz+C. (5)

Defining

ω(z) = 1− z

H
, → dz = −Hdω, (6)

and integrating we obtain

σ(z)ω2(z) = ρ gH
ω3(z)

3 + C. (7)

The upwards force that the ground exerts on the
pyramid must balance the weight of the latter, this
means that for z = 0 we must have

σ(0) = Mg

A0
= 1

3 ρ gH. (8)

Since for z = 0, ω(0) = 1, from equation (7) it
follows that C = 0, and the normal stress as a
function of z reads

σ(z) = 1
3 ρ gH

(
1− z

H

)
, 0 ≤ z ≤ H. (9)

Notice that for z = H, σ(H) is null as it should.
The strength of the vertical force at the base level
σ(0) × A0 is equal to 6.4 × 1010 N, that is, ap-
proximately 6 400 000 tonnes! This force balances
the total weight of the Great Pyramid. In Figure
2, we show the graphs of the rescaled normal stress
and of the rescaled cross section as functions of z.
Notice that σ(z) is proportional to (1− z/H), and
A(z), is proportional to (1 − z/H)2, but the the
upwards force F (z) = σ(z)A(z) is proportional to
(1− z/H)3.

With the equations that we have at our disposal
we can easily verify that a good portion of the total

Figure 2: Plots of σ(z)/σ(0) = (1− z/H), solid curve,
and A(z)/A0 = (1− z/H)2, dashed curve.

weight of a pyramid is kept in mechanical equilib-
rium by the truncated pyramid whose base is A0 and
whose height can be much less than its maximum
height H.

The weight of the pyramid as a function of its
height is given by

P (z) =
∫
dmg = ρg

∫
A(z) dz

= ρgA0

∫ z

0

(
1− z ′

H

)2
dz ′, (10)

Setting ω = 1− z′/H as before we have

P (z) = ρgHA0

∫ 1

1− z
H

ω2 dω, (11)

Evaluating the integral we obtain

P (z) = 1
3 ρgHA0

[
1−

(
1− z

H

)3
]

= Mg

[
1−

(
1− z

H

)3
]
,

0 ≤ z ≤ H. (12)

For a given z, the weight of the portion of the
pyramid above z is

P ∗(z) = Mg − P (z) = Mg

(
1− z

H

)3
,

0 ≤ z ≤ H. (13)
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The weight of the portion of the pyramid above
z must be balanced by the vertical upward force
F (z) associated with the normal stress at z, F (z) =
σ(z)A(z). Making use of equation (9) we can easily
verify that F (z) = P ∗(z).

Suppose that z = (1/4)H, that is, equal to height
of the c. of m. of the pyramid. In this case, from
equation (9) we see that the normal stress is

σ(H/4) = 1
4 ρgH. (14)

The cross section at z = H/4 is equal to (9/16)A0,
hence the strength of the balancing force acting on
the upper part of the pyramid (H/4 < z ≤ H) is

F (H/4) = 27
64 Mg ≈ 0.42Mg, (15)

that is, equal to almost half of the total weight of
the Great Pyramid. This force can be considered as
applied to the center of mass of upper part which lies
at the height (1/4)× (3/4)H + (1/4)H = (7/16)H
from the bottom, see Figure 3. Also, at z = H/4, the
mass of the upper part is equal to (27/64) of the total
mass of the pyramid, M , and that of the lower part
equal to (37/64)M , as can be easily verified with
the help of the equations for P ∗(z) and P (z). The
choice of the pyramidal shape, (or conical) means
that most of the weight will be counterbalanced by
the inferior layers of the structure, see the graph
shown in Figure 4.

The approach employed here can be easily ex-
tended to other pyramidal or conical shapes or even
truncated pyramids as those that can be found in
Central America.

Figure 3: The vertical upward force F (z) associated to the
tensile stress field σ(z) and the weight of the upper part
of the pyramid, that is, P ∗(z) = Mg − P (z) are shown
here for z = H/4. The point C is the center of mass of the
upper portion of the pyramid.

Figure 4: Force F (z/H) = Mg (1− z/H)3, exerted by
the inferior portion of the pyramid on the superior one.
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