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1 Introduction

Inverse problems belong the class ofill -posed problems. In these type of prob-

lems existence, uniqueness and stability of their solutions cannot be ensured.

The regularization theory appeared in the 60’s as a general method for solv-

ing inverse problems [1]. In this approach, the non-linear least square prob-

lem is associated with a regularization term (a priori or additional informa-

tion), in order to obtain a well-posed problem. A well-known regularization

technique was proposed by Tikhonov [1], where smoothness of the unknown

function is searched. Similarly to Tikhonov’s regularization, the maximum en-

tropy formalism searchs forglobal regularity and yields the smoothest recon-

structions which are consistent with the available data. The maximum entropy

principle was first proposed as a general inference procedure by Jaynes [2] on

the basis of Shannon’s axiomatic characterization of the amount of informa-

tion [3]. This principle has successfully been applied to a variety of fields. In the

middles of 90’s, higher order procedures for entropic regularization have been

introduced [5, 6] (see also [7] and references inside).

In the macrocospic thermodynamics, the entropy is applied to quantify the

irreversibility in systems, and the entropy has a fundamental role in the statistical

physics. The Shannon’s entropy is a measurement of the missing information.

In the inverse problem context, it is ashape entropy.

A non-extensive formulation for the entropy has been proposed by Tsallis [8, 9].

Recently, the non-extensive entropic form (Sq) was used as a new regularization

operator [10], using onlyq = 0.5. Theq parameter plays a central role in

the Tsallis’ thermostatistics, in whichq = 1 the Boltzmann-Gibbs-Shannon’s

entropy is recovered. As mentioned, the non-extensive entropy includes as a

particular case the extensive entropy (q = 1): in which the maximum entropy

principle can be used as a regularization method. However, another important

particular case of the non-extensive entropy occurs whenq = 2. In such case,

the maximumnon-extensiveentropy principle to theS2 regularization operator

is equivalent to the standard Tikhonov regularization (or zeroth-order Tikhonov

regularization) [1, 11].

This new regularization operator was tested for estimating initial condition

in heat conduction problem [11, 12]. In the present study several values for
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q were used for thenon-extensiveentropic regularization term. Synthetic data

with Gaussian white noise corruption were used to simulate experimental data.

Two methods were investigated for determining the regularization parameter:

the Morozov’s discrepancy principle [13], and the maximum curvature scheme

of the curve relating smoothness versus fidelity, inspired in Hansen’s geometrical

criterion [14].

Initial conditions for numerical weather prediction are obtained from the Earth

observation system. Radiances measured by meteorological satellites is a com-

ponent of this observation system. From these radiances, atmospheric tem-

perature and humididy profiles can be determined. Several methodologies and

models have been developed to compute this estimation. A method using the

second order entropy approach [7] was proposed as a solution for this inverse

problem. Here, the higher order non-extensive entropy will be used to improve

the previous inverse solution.

Non-extensive entropy as a new regularization operator

A non-extensive form of entropy has been proposed by Tsallis [8] by the expres-

sion

Sq(p) =
k

q − 1



1 −
Np∑

i =1

pq
i



 (1)

where pi is a probability, andq is a free parameter. In thermodynamics the

parameterk is known as the Boltzmann’s constant. Similarly as in the mathe-

matical theory of information,k = 1 is considered in the regularization theory.

Tsallis’ entropy reduces to the the usual Boltzmann-Gibbs-Shanon formula

Sq(p) = −k

Np∑

i =1

pi ln pi (2)

in the limit q → 1.

As for extensive form of entropy, the equiprobability condition produces the

maximum for the non-extensive entropy function, and this condition is ex-

pressed as
(
Sq

)
max =

1

1 − q

(
N1−q

p − 1
)

(Np ≥ 1) (3)
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where, in the limitNp → ∞, Sq diverges ifq ≤ 1, and saturates at 1/(q − 1) if

q > 1 [9].

The equiprobability condition leads the regularization function defined by the

operatorSq(p), given by Eq. (1), to search the smoothest solution for the of the

unknown vectorp.

The parameterq has a central role in Tsallis’ thermostatiscs, and it is called

thenon-extensivity parameter– see Eqs. (A.5) and (A.6) in the Appendix. Fig-

ure 1 shows the functional form for the Tsallis’ entropy for several values ofq.

For q < 5/3, the standard central limit theorem applies, implying that ifpi is

written as a sum ofM random independent variables, in the limit caseM → ∞,

the probability density function forpi in the distribution space is thenormal

(Gaussian) distribution [9]. However, for 5/3 < q < 3 the Levy-Gnedenko’s

central limit theorem applies, resulting forM → ∞ the Levy distribution as the

probability density function for the random variablepi . The index in such Levy

distribution isγ = (3 − q)/(q − 1) [9].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p

S
q/
k

q=-1.0 

q=-0.5 

q=0.0 

q=0.5 

q=1.0 

q=2.0 

q=Infinity 

Figure 1 – The behaviour of the non-extensive entropy function for several values ofq.
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The non-extensive approach has been used in many different applications, such

as in a certain type of anomalous diffusion process [9], as well as the statistical

model for data from turbulent flow [15] and from financial market [16]. Accord-

ing to Plastino and Plastino [17], the first experimental confirmation of Tsallis’

non-extensive formalism is the Boghosian’s approach of the two dimensional

pure electron plasma [18]. Some properties of the thermostatistics formalism

are described in the Appendix.

Regularization unified

Some comments have been addressed for indicating the physical properties of

theSq operator. The goal of this Section is to describe formally the properties for

this operator looking at regularization purposes. Regularization properties for

entropy operator emerges from the Jaynes’ inference criterium: the maximum

entropy principle, where all events have the same propability to occur. Implying

that all parameters assume the same value:pi = 1/Np. The following Lemma

extends this result for non-extensive entropy.

Lemma. The non-extensive functionSq is maximum aspi = 1/Np for all i .

Proof. The problem is to find the maximum of the function (1), with the fol-

lowing constrain
Np∑

i =1

pi = 1 (4)

sincepi represents a probability. Therefore, it is possible to define an objective

function where the constrain can be added to the non-extensive function:

J(p) = Sq(p) + λ




Np∑

i =1

pi − 1



 (5)

whereλ is the Langrange multiplier. The Lagrange multiplier, in this case, can

be determined when a minimum for the objective functionJ(p) is found, as

following

∂ J

∂pi
= −qpq−1

i + λ(q − 1) = 0 ⇒ pi =
[
λ(q − 1)

q

] 1
q−1

(6)
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This result can be used to obtain the value of thepi ’s that maximizes the function

J(p):

Np∑

i =1

pi =
Np∑

i =1

[
λ(q − 1)

q

] 1
q−1

=
[
λ(q − 1)

q

] 1
q−1

Np = 1 ⇒ pi =
1

Np
(7)

that means ifpi = 1/Np for all i = 1, ..., Np the non-extensive entropy function

is maximum.

The next theorem shows that the extensive entropy and Thikhonov’s regular-

izations are particular cases of the non-extensive entropy.

Theorem. For particular values for non-extensive entropyq = 1 andq = 2

are equivalents to the extensive entropy and Tikhonov regularizations, respec-

tively.

Proof. (i) q = 1: Taking the limit,

lim
q→1

Sq(p) = lim
q→1

1 −
∑Np

i =1 pq
i

q − 1
= lim

q→1

1 −
∑Np

i =1 eq log pi

q − 1

= lim
q→1

−
∑Np

i =1 log pi eq log pi

1
= −

Np∑

i =1

pi log pi

(8)

(ii) q = 2: Remembering that maxS2 is equivalent to min(−S2), yields

maxS2(p) = max



1 −
Np∑

i =1

p2
i



 ⇔ min [−S2(p)]

= min




Np∑

i =1

p2
i − 1





(9)

now, for the maximum (minimum) value holds∇pS2 = 0, therefore

∇pS2(p) = ∇p




Np∑

i =1

p2
i − 1



 = ∇p




Np∑

i =1

p2
i



 = ∇p ‖p‖2
2 (10)

In conclusion: maxS2(p) = min‖p‖2
2 (the zeroth-order Tikhonov regulari-

zation).
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Inverse analysis

Typically, inverse problems are ill-posed – existence, uniqueness and stability

of their solutions cannot be ensured. An inverse solution can be formulated to

obtain existence and uniqueness, but this solution can still be unstable under

the presence of noise in the experimental data. Hence, it requires some regu-

larization technique, i.e., the incorporation in the inversion procedure of some

available information about the true solution. Following the Tikhonov’s ap-

proach [1], a regularized solution is obtained by choosing the functionp∗ that

minimizes the following functional

Jα[8̃, p] =
∥
∥
∥8̃ − 8(p)

∥
∥
∥

2

2
+ α �[p] (11)

where8̃ is the experimental data,8(p) is the answer computed from the for-

ward model,�[p] denotes the regularization operator,α is the regularization

parameter, and‖∙‖2 is theL2 norm.

The regularization parameterα is chosen by two methods: numerically, as-

suming that a boundδ (or the ‘statistics’) of the measurement error is known,

i.e.,
∥
∥
∥8computed− 8̃

∥
∥
∥ ≤ δ — this numerical procedure is based on Morozov’s

discrepancy principle [13]; graphically, finding out the point of maximum cur-

vature in the curve�[pα] ×
∥
∥
∥8̃ − 8(pα)

∥
∥
∥

2

2
, a type of L-curve [14, 19].

Optimization algorithm

The optimization problem is iteratively solved by the quasi-newtonian optimizer

routine from the NAG Fortran Library [20]. This algorithm is designed to min-

imize an arbitrary smooth function subject to constraints (simple bound, linear

or non-linear constraints), using a sequential programming method.

This routine has been successfully used in several previous works: in geo-

physics, hydrologic optics, and meteorology.

Backward heat conduction

An example of the use for this new generalized regularization is the identifi-

cation of the intial condition in heat conduction transfer. The direct (forward)

problem consists of a transient heat conduction problem in a slab with adia-

batic boundary condition and initially at a temperature denoted byf (x). The

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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mathematical formulation of this problem is given by the following heat equation

∂2T(x, t)

∂x2
=

∂T(x, t)

∂t
, x ∈ (0, 1), t > 0, (12)

∂T(x, t)

∂x
= 0, x = 0; x = 1, t > 0, (13)

T(x, t) = f (x), x ∈ [0, 1], t = 0, (14)

whereT(x, t) (temperature),f (x) (initial condition), x (spatial variable) and

t (time variable) are dimensionless quantities. The set of partial differential equa-

tions is solved by using a central finite difference approximation for space vari-

ableO(1x2), and explit Euler method for numerical time integrationO(1t) [21].

This problem has been used for testing different methodologies in inverse

problems [12, 11, 22, 23, 24], and it is badly conditioned problem [12].

The numerical experiment with the non-extensive entropy is based on two test

functions, the triangular function

f (x) =

{
2x, 0 ≤ x < 0.5,

2(1 − x), 0.5 ≤ x ≤ 1;
(15)

and semi-triangular function

f (x) =






0.55, 0 ≤ x < 0.2,

8

3
x +

7

15
, 0.2 ≤ x < 0.5,

−
28

5
x +

23

5
, 0.5 ≤ x < 0.75,

2

9
, 0.75 ≤ x ≤ 1.

(16)

The experimental data (measured temperatures at a timet > 0), which intrinsi-

cally contains errors, is obtained by adding a random perturbation to the exact

solution of the direct problem, such that

T̃ = Texact+ σ μ (17)

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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whereσ is the standard deviation of the errors, andμ is a random variable taken

from a Gaussian distribution, with zero mean and unitary variance. All tests

were carried out using 5% of noise (σ = 0.05).

It is important to observe that the spatial grid consists of 101 points (Nx = 101),

and the time-integration is performed up tot = 0.01. The residueR( fα) and the

error E( fα) are defined by

R( fα) ≡

∥
∥
∥
∥T̃ − T( fα)

∥
∥
∥
∥

2

2

; (18)

E( fα) ≡

∥
∥
∥
∥ fα − fexact

∥
∥
∥
∥

2

2

. (19)

If we effectively want to apply some kind of regularization, which meansα > 0

in Eq. (5), then the discrepancy principle – ana-posterioriparameter choice rule

– implies that a suitable regularized solution can be obtained. Since the spatial

resolution isNx = 101, the optimumα is reached forR( f∗) ' Nx σ 2 = 0.2525.

Table 1 shows the square diference termR( f∗) obtained for different values of

α, and theoptimumvalue is pointed out for each case in bold font.

Triangularfunction Semi-triangularfunction

α R( fα) E( fα) α R( fα) E( fα)

0.0001 0.1853 2.7298 0.0001 0.1851 4.9359

0.0003 0.1856 0.5388 0.0003 0.1854 0.6740

0.0010 0.1861 0.3443 0.0010 0.1856 0.3443

0.0285 0.2525 0.3994 0.0346 0.2525 0.2400
0.0999 0.7728 0.8684 0.0999 0.6687 0.7207

Table 1 – Determining regularization parameter by Morozov’s criterion:q = 0.5.

A set of tables (Tables 1 and 2) presents the least squares (or residual) term

R( fα) and the errorE( fα) between the approximated (or calculated) solution

fα and the exact solutionfexactobtained for two values ofq = 0.5 andq = 2.0,

from a family of regularization non-extensive entropy functionsSq, for different

values ofα. The value ofα satisfying the discrepancy principle is pointed out

for each test functions by bold font. Regularized solutions are presented in

Figures 2 and 3.
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Triangularfunction Semi-triangularfunction

α R( fα) E( fα) α R( fα) E( fα)

0.0001 0.1852 2.3979 0.0001 0.1851 4.0920

0.0003 0.1854 0.3578 0.0003 0.1854 0.4455

0.0010 0.1856 0.1383 0.0010 0.1856 0.1807

0.0414 0.2525 0.2370 0.0419 0.2525 0.4379
0.0999 0.5174 0.5977 0.0999 0.5131 0.8651

Table 2 – Determining regularization parameter by Morozov’s criterion:q = 2.0.
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Figure 2 – Reconstructions with 5% of noise, with a determined by Morozov’s principle:

(a)q = 0.5; (b)q = 1.5; (c)q = 2.0; (d)q = 2.5.
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Figure 3 – Reconstructions with 5% of noise, with a determined by Morozov’s principle:

(a)q = 0.5; (b)q = 1.5; (c)q = 2.0; (d)q = 2.5.

The parameter vector was always subjected to the following simple bounds:

1.2 ≥ fk ≥ −0.2 for the triangular test function, and 1.2 ≥ fk ≥ 0 for the

semi-triangular test function, withk = 1, 2, . . . , Nx.

Figures 3a–3d show the estimation of fourq-values for triangular initial con-

dition, where the regularization parameter was computed by Morozov’s princi-

ple. The best reconstruction was found byq = 2.5, but good reconstructions

were obtained for other values ofq too. Figures 2a–2d depict the reconstruc-

tions for the semi-triangular test function, showing good reconstructions for all

values of q.

Another criterion for finding the regularization parameter was also investi-
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gated, and it is based on the maximum curvature in the L-curve [14]. Figures

4a–4b show the L-curve for triangular test function usingq = 0.5 and 2.0,

respectively. The L-curve for semi-triangular test function is displayed in Fig-

ures 5a–5b. The regularization parameterα is chosen at the corner of the L-curve.
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Figure 4 – L-curve for triangular test function: (a)q = 1.5; (b)q = 2.5.

The numerical values for the regularization parameters estimated by Morozov’s

and Hansen’s criteria are shown in Table 3.

Reconstructions usingα as computed by Hansen’s criterion [14] are shown in

Figures 6a–6d for the triangular test function, and Figures 7a–7d for the semi-
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Figure 5 – L-curve for semi-triangular test function: (a)q = 1.5; (b)q = 2.5.

triangular test function. The best reconstruction was obtained usingq = 2.5,

and the worst forq = 0.5.

Retrieval of atmospheric temperature profile

The vertical structure of temperature and water vapor plays an important role in

the meteorological process of the atmosphere. However due a several conditions,

there is a lack of observation in several regions of the Earth. In this sense, the
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Triangularfunction Semi-triangularfunction

αMorozov αHansen αMorozov αHansen

q = 0.5 0.0285 0.0011 0.0346 0.0040

q = 1.5 0.0231 0.0008 0.0231 0.0010

q = 2.0 0.0414 0.0040 0.0419 0.0040

q = 2.5 0.0579 0.0040 0.0583 0.0050

Table 3 – Regularization parameter computed by test functions using Morozov’s dis-

crepancy principle and Hansen’s criterion.
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Figure 6 – Reconstructions for triangular test function, withα determined by Hansen’s

criterion: (a)q = 0.5; (b)q = 1.5; (c) q=2.0; (d) q=2.5.
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Figure 7 – Reconstructions for semi-triangular test function, withα determined by

Hansen’s criterion: (a)q = 0.5; (b)q = 1.5; (c) q=2.0; (d) q=2.5.

retrieval of temperature and humidity profiles from satellite radiance data became

important for applications such as weather analyses and data assimilation in

numerical weather predictions models.

Interpretation of satellite radiances in terms of meteorological fields requires

the inversion of the Radiative Transfer Equation (RTE) where measurements

of radiation performed in different frequencies are related to the energy from

different atmospheric regions. The degree of indetermination is associated with

the spectral resolution and the number of spectral channels. Moreover, usually

this solution is very unstable regarding the noises in the measuring process. Also,

several methodologies and models have been developed to improve the satellite
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data processing. Due to the difficulty of obtaining correct RTE solutions, several

approaches and methods were developed to extract information from satellite

data [25, 26, 27, 28]. The direct problem may be expressed by [29]

Iλ(0) = Bλ(Ts)=λ(ps) +
∫ 0

ps

Bλ[T(p)]
∂=λ(p)

∂p
dp, (20)

where Iλ is the spectral radiance,λ is the channel frequency;= is the layer to

space atmospheric transmittance function, the subscripts denotes surface [12];

andB is the Planck function which is a function of the temperatureT (or pres-

surep):

Bλ(T) =
2hc2/λ5

[ehc/kBλT − 1]
(21)

beingh the Planck constant,c the light speed, andkB the Boltzmann constant. For

practical purposes, equation (21) is discretized using central finite differences:

Ii = Bi,s(Ts)=i,s +
Np∑

j =1

(
Bi, j + Bi, j −1

2

)
[=i, j − =i, j −1] (22)

with Ii ≡ Iλi (0), Nλ is the number of channels in the satellite, andNp is the

number of the atmospheric layers considered.

Some previous results have employed a generalization of the standard maxi-

mum entropy principle (MaxEnt-0) for solving this inverse problem [7, 30]: the

higher order entropy approach. The same strategy can be applied here. There-

fore, the non-extensive entropy of order-γ is defined as

Sγ
q ≡

k

q − 1



1 −
Np∑

i =1

r q
i



 ; ri =
Ti

∑Np

i =1 Ti

(23)

and

r = 1γ p (24)

whereγ = 0, 1, 2, . . . , and1 is a discrete difference operator. The stan-

dard MaxEnt-0 can be derived from (23) and (24) imposingγ = 0 andq = 1.

A small value should be added to the difference operator (sayς = 10−15) to

assure a definite quantity for all values ofq.

Comp. Appl. Math., Vol. 25, N. 2-3, 2006



“main” — 2007/2/23 — 11:58 — page 323 — #17

H.F. DE CAMPOS VELHO, E.H. SHIGUEMORI, F.M. RAMOS and J.C. CARVALHO 323

Figures 8–10 present the atmospheric temperature retrieval achieved using ra-

diance data from the High Resolution Radiation Sounder (HIRS-2) of NOAA-14

satellite. HIRS-2 is one of the three sounding instruments of the TIROS Oper-

ational Vertical Sounder (TOVS). The results for the non-extensive MaxEnt-0

(for short: NE-MaxEnt-0) did not produce good results – Figure 8. However,

results with NE-MaxEnt-1 and NE-MaxEnt-2 are compared to those obtained

with MaxEnt-2 (such results have already been analysed against the profile com-

puted by ITPP-5, a TOVS processing package [7] employed by weather service

research centers throughout the world), and toin situ radiosonde measurements.
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Figure 8 – Reconstructions for temperature profile:q = 0.0.

From figures 9 and 10 is hard to identify the better performance among the

retrievals. Table 5 compares the RMS of NE-MaxEnt-2 and NE-MaxEnt-1 re-

lated to the MaxEnt-2. The layer defined by 500–250 hPa there is no signifi-

cant diffences among the different regularization operators. But, for the layer
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250–50 hPa, the best performance was obtained by the NE-MaxEnt-1, for the

700-500 hPa better result for the MaxEnt-0, and for the region 1000–750 hPa

the NE-MaxEnt-2 (q = 0.5) has presented the better inversion.
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Figure 9 – Reconstructions for temperature profile:q = 1.0.

Conclusion

The implict strategy and the regularization techniques adopted in this work yield

good results in reconstructing the initial condition of the heat equation and the

atmospheric temperature profile.

For the initial condition estimation in the heat transfer process, the Morozov’s

discrepancy principle was efficient to estimate the regularization parameter in

the analyzed cases. The Hansen’s criterion also produced good estimates for the

regularization parameterα. According to the Tables 1 and 2, the value of regular-
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Figure 10 – Reconstructions for temperature profile:q = 2.0.

ization parameter calculated by the Morozov’s principle tends to over-estimate

the value ofα. However, looking at Table 4, it is possible to realize that the

parameterα computed by the Hansen’s criterion is closer to the optimum. Nev-

ertheless, sometimes is hard to obtain the L-curve. One case specially difficult

was found toq = 2.5, for some values ofα was not possible to obtain a solution

(no convergence). A possible solution to convergence would be to change the

deterministic optimizer by a stochastic one. Table 4 shows that an appropriated

choice of the non-extentive parameterq can improve the reconstruction. Of

course, other schemes for determining the regularization parameter can be used

(see [31]).

The new regularization technique used in this work, namely the maximum

non-extensive entropy, worked very well for the backwards heat equation for all

parameterq tested (zeroth-order). The choiceq = 0.5 made by Rebollo-Neira

Comp. Appl. Math., Vol. 25, N. 2-3, 2006



“main” — 2007/2/23 — 11:58 — page 326 — #20

326 A UNIFIED REGULARIZATION THEORY

Triangularfunction Semi-triangularfunction

E( fα−Morozov) E( fα−Hansen) E( fα−Morozov) E( fα−Hansen)

q = 0.5 0.3994 0.3490 0.2400 0.1676

q = 1.0 0.3151 0.1959 0.4056 0.1958

q = 1.5 0.2599 0.1697 0.3205 0.1745

q = 2.0 0.2370 0.1530 0.4379 0.1800

q = 2.5 0.2561 0.1302 0.5959 0.2041

Table 4 – Estimation error computed with regularization parameter found by Morozov’s

discrepancy principle and Hansen’s criterion.

Pressure RMS NE- NE- NE- NE-

(hPa) Max-Ent-2 MaxEnt-2 MaxEnt-2 MaxEnt-1 MaxEnt-0

q = 1.5 q = 0.5 q = 0.5 q = 0.5

50-0.1 13.248 13.553 13.646 9.598 10.483

250-50 7.442 8.395 8.723 5.818 11.038

500-250 5.216 5.405 5.508 5.532 10.730

700-500 1.283 1.623 1.817 1.478 2.481

1000-700 4.428 3.704 3.475 5.334 17.518

Table 5 – Root-mean-square for MaxEnt-2 and Non-extensive MaxEnt of first and second

orders (NE-MaxEnt-1 and NE-MaxEnt-2).

et al. [10] was linked to a previous result of physical relevance related to the

relaxation of two-dimensional turbulence [18]. There is no reason to restrict the

regularization operatorSq at q = 0.5. Actually, the worse reconstructions for

the triangular test function were obtained usingS0.5!

Concerning to the atmospheric temperature retrieval, some improvement was

obtained using the higher order of the non-extensive entropic approach. We

note that the most important layer for numerical weather prediction lies into

the levels 1000-700 hPa. The results suggest that we need to combine different

techniques, considering different atmospheric layers, in order to have a better

inverse solution.
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A Some properties for the non-extensive thermostatiscs

A1: Non-extensive entropy:

Sq(p) =
k

q − 1



1 −
Np∑

i =1

pq
i



 . (25)

A2: q-expectation of an observable:

Oq ≡ 〈O〉q =
Np∑

i =1

pq
i oi . (26)

Properties

1. If q → 1:

S1 = k

Np∑

i =1

pi ln pi , (27)

O1 =
Np∑

i =1

pi Oi . (28)

2. Non-extensive entropy is positive:Sq ≥ 0.

3. Non-extensivity

Sq(A + B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) (29)

Oq(A + B) = Oq(A) + Oq(B) + (1 − q)
⌊

Oq(A)Sq(B) + OqSq(A)
⌋

. (30)

4. Max Sq under constrainOq =
∑

i pq
i εi (canonical ensemble):

pi =
1

Zq
[1 − β(1 − q)εi ]

1/(1−q) (31)

where theεi is the energy of statei , Oq = Uq is the non-extensive form to

the internal energy, and the normalization factorZq (partition function), for

1 < q < 3, is given by

Zq =
[

π

β(1 − q)

]1/2
0[(3 − q)/2(q − 1)]

0[1/(q − 1)]
. (32)

Forq = 1 yields

pi = eβεi /Z1 . (33)
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