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ABSTRACT. Systematic, physically based acquisition of information regarding soils is required to meet 
increasing demand in agricultural and environmental systems. The objective of this work is to evaluate the use of 
multiple endmember spectral mixture analysis (MESMA) for mapping soil attributes within ASTER imagery. A 
total of 184 georeferenced soil samples were collected from Rafard, São Paulo State, Brazil. These points were 
overlain on the satellite image to collect spectral data. The laboratory and image information were then arranged 
and prepared by clustering samples into classes based on the following soil attributes: texture, organic matter, base 
saturation (V%), CEC and total iron. Following this classification, mean spectral curves were generated for each 
attribute class. Spectral curves were used as endmembers for the generation of maps using MESMA. Maps of the 
same attributes were also generated using geostatistical analyses. Based on the two generated maps, a cross-
tabulation was used to evaluate the accuracy of MESMA for mapping soil attributes. Agreement was high for 
maps of the texture, organic matter, CEC and total iron. We conclude that the methodology used in this work 
was efficient for mapping soil attributes. 
Keywords: remote sensing, spatial distribution, geostatistics. 

Uso do modelo de análise de mistura espectral com múltiplos membros finais (MESMA) no 
mapeamento de atributos do solo por imagem Aster 

RESUMO. A obtenção de informações sobre solo de modo sistematizado é necessária com a crescente 
demanda no sistema agrícola e ambiental. Este trabalho objetiva testar a técnica do modelo de análise de 
mistura espectral com múltiplos membros finais (MESMA) para mapear atributos do solo com base em 
uma imagem ASTER. Para tanto, foram utilizadas 184 amostras georeferenciadas de solo da região de 
Rafard. Estes pontos foram sobrepostos a imagem de satélite para a coleta dos dados espectrais. Na 
sequência, as informações de laboratório e da imagem foram combinadas e procedeu-se o agrupamento das 
amostras em classes para os atributos textura, matéria orgânica, saturação por bases, CTC e ferro total. Após 
classificadas, geraram-se curvas médias para cada classe de atributo. As informações espectrais foram 
utilizadas como membros finais para a geração dos mapas através do MESMA. Mapas dos mesmos 
atributos também foram obtidos através de análise geoestatística. A partir dos dois mapas gerados, realizou-
se uma análise de tabulação cruzada para verificar a eficiência do MESMA no mapeamento de atributos do 
solo. Observou-se elevada similaridade entre os mapas de textura, matéria orgânica, CTC e ferro total. 
Conclui-se que a metodologia mostra-se eficiente no mapeamento dos atributos do solo estudados. 
Palavras-chave: sensoriamento remoto, distribuição espacial, geoestatística. 

Introduction 

Mapping of the spatial distribution of soil 
properties is important for refining management 
practices and minimizing environmental problems. 
Knowledge of physical and chemical soil attributes is 
an important aspect of productivity analysis and the 
subsequent choice of management techniques for a 
given area (BASNYAT et al., 2004). In Brazil, for 
example, large  agricultural  areas  occur  on Oxisols, 
which are considered to be homogeneous from a 
pedological perspective  but  show  differences  in 

the spatial distribution of soil attributes, which 
may affect the management of such areas. 

Conventional and non-conventional statistical 
methods for soil attribute mapping require soil 
samples that are collected in the field and analyzed 
in the laboratory, which require time and financial 
resources.  

Data obtained through remote sensing can be used 
to characterize and map soil attributes in different 
ways, such as the implementation of direct 
measurements that are comparable to traditional forms, 
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i.e., the generation of information regarding the 
spectral behavior of soils, as well as the use of spectral 
mixture analysis (SMA) to isolate and discriminate 
soil properties and generate images of its components 
(HUETE, 2004). 

To achieve such results, the technique of 
mixture analysis is based on the fact that each pixel 
of the image is a single measure of an area that 
comprises multiple components, and the spectrum 
of this mixture is a linear combination of the 
reflectance of these components or endmembers. 
The endmembers are those elements whose 
presence and abundance in the image are being 
modeled (DENNISON; ROBERTS, 2003). 

However, this method considers all pixels as a 
mixture of a single initial set of endmembers. Thus, 
it is possible to have a pixel this is modeled by 
endmembers that are absent. For example, when 
considering a scene described by the endmembers 
vegetation, soil and shade, the calculation of the 
mixture will be performed based on these three 
elements, although none of these components may 
be present for the pixel (CARVALHO JUNIOR  
et al., 2003). 

To circumvent this problem, a new approach called 
multiple endmember spectral mixture analysis 
(MESMA) has been developed that identifies the best 
mixing model for each pixel. This technique has been 
used for mapping vegetation (DENNISON; 
ROBERTS, 2003), mineral deposits (CARVALHO 
JUNIOR et al., 2003) and wildfire fuels (ROBERTS et 
al., 2003); however, little is known regarding how 
MESMA might perform for soils. 

The spectral response of soil in satellite images is 
affected by the soil chemistry and physical attributes, 
thereby making it possible to identify and map these 
properties. Therefore, the objective of this present 
work is to determine the potential use of MESMA 
in the spatialization of soil attributes in a satellite 
image.  

Material and methods 

Study area  

The study area, covering approximately 184 ha, is 
located near the margins of the Capivari river in the 
Rafard municipality in the southwest region of São 
Paulo State, Brazil. The study area is bounded by the 
geographical coordinates 23°0’31.37” - 22° 58’53.97” 
south latitude and 53°39’47.81” - 53°3’25.65” west 
longitude (Figure 1).  

The geology of the region belongs to Itararé 
formation, Tubarão group, and it is composed of 
sandstones with a heterogeneous granulation, 
argillites and shale of various colors from light 
gray to dark gray. The area includes basalts from 
the Serra Geral formation, the São Bento group 
and rubble near the river. 

Soil sampling and analysis 

The area was demarcated and staked as a regular 
100 x 100 m grid to produce 184 points within a total 
of 184 ha. Each stake was georeferenced using GPS 
coordinates, and samples were collected from a depth 
of 0 to 20 cm. Soil samples were sieved through a 2 
mm mesh and oven dried at 50°C for 48 hours. The 
physical and chemical analyses were performed on the 
soil sample fraction smaller than 2 mm. 

 

 

Figure 1. Location of the studied area.  
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For the physical analysis, the sand, silt and clay 
contents were determined using the densimeter 
method (CAMARGO et al., 1986). Chemical 
analyses included the pH, which was determined in 
water and KCl. The elements K+, Ca2+, Mg2+ and 
Al3+, H+ + Al3+ and organic matter (OM) were 
determined according to Raij and Quaggio (1989). 

The cation exchange capacity (CEC) and base 
saturation (V%) were calculated using the soil 
analysis results. Total iron concentrations (Fe2O3) 
were determined by sulfuric attack according to the 
methodology described by Camargo et al. (1986). 

Subsequently samples were grouped according to 
a particular attribute. The evaluation of soil 
attributes using the spectral data was performed 
based on intervals for each attribute (GENÚ et al., 
2011). The OM levels were designated as high (> 
25 g dm-3), medium (15 - 25 g dm-3) or low (< 15 g 
dm-3). Base saturation (V%) was classified as 
dystrophic (<50%) or eutrophic (> 50%). Total 
iron (Fe2O3) levels were categorized as hypoferric 
(< 80 g kg-1), mesoferric (80 - 180 g kg-1) or ferric 
(> 180 g kg-1). The cation exchange capacity was 
considered to be very low (< 30 mmolc dm-3), low 
(30 - 60 mmolc dm-3), medium (60 - 100 mmolc dm-3), 
high (100 - 150 mmolc dm-3) or very high 
(> 150 mmolc dm-3). The following texture classes, 
defined based on the clay contents were used: sand 
(< 150 g kg-1), sandy loam (150-250 g kg-1), clay 
loam (250 - 350 g kg-1), clay (350 – 600 g kg-1) and 
very clayey (> 600 g kg-1). 

Spectral Information 

The ASTER sensor of the TERRA satellite has 
14 bands. Three of these bands are in the visible and 
near-infrared wavelengths, six are in the shortwave-
infrared range and five are in the thermal infrared 
range. In this work, the analysis was restricted to 
bands situated in the visible, near infrared and 
shortwave-infrared ranges, including the following: 
ASTER 1 (green, 520-600 nm), ASTER 2 (red, 630-
690 nm), ASTER 3 (near infrared, 760-860 nm), 
ASTER 4 (infrared, 1600-1700 nm), ASTER 5 
(infrared, 2145-2185 nm), ASTER 6 (infrared, 2185-
2225 nm), ASTER 7 (infrared, 2235-2285 nm), and 
ASTER 8 (infrared, 2295-2365 nm). The image was 
acquired on August 6, 2004.  

Because bands 1, 2 and 3 have a spectral 
resolution of 15 m, and the others have a resolution 
of 30 m, bands 1-3 were resampled at 30 m using 
the ENVI (Environment for Visualizing Images) 
program (ESRI, 2005). 

To convert the gray levels of the image to 
reflectance values, and to reduce the atmospheric 
effect in the ASTER satellite image, the ACORN 
(Atmospheric Correction Now) program was used. 
An additional geometric correction of the image was 
necessary to integrate the image with a cartographic 
map. Thus, the control points of the study area were 
collected using a Trimble PRO-XRS GPS receiver 
with submetric precision and post-processing. This 
correction was performed using ENVI (ESRI, 2005). 
The UTM projection system and the South 
American 1969 Datum (SAD-1969) were used. 

The position information of the 184 sampling 
points was overlain on colored composites of the 
images for the collection of the orbital spectral data. 
To ensure that the points were located over areas of 
exposed soil, a Normalized Difference Vegetation 
Index (NDVI) image was generated, and the soil 
line method was used to verify that the soil was bare 
(NANNI; DEMATTÊ, 2006). 

A number of different vegetation indices have 
been developed to quantitatively and qualitatively 
assess vegetation cover based on spectral data 
(THENKABAIL et al., 2004). The successful use of 
vegetation indices is attributed to the strong spectral 
contrast between chlorophyll absorption in the 
visible wavelength (400-740 nm) and strong 
scattering in the near-infrared (740-1400 nm). The 
NDVI is defined as the ratio between the red and 
near-infrared bands (THENKABAIL et al., 2004). 
For the ASTER image, bands ASTER 2 (red) and 
ASTER 3 (near infrared) were used to obtain the 
NDVI. 

The soil line used to verify areas of exposed soil 
is a graphical relationship between red and near-
infrared bands. The bands used for this analysis 
were the same those used for the vegetation index, 
i.e., ASTER 2 and 3. 

Image analysis using MESMA 

The first step in the analysis was the generation 
of an NDVI image, which was used to differentiate 
the vegetated areas from those with exposed soil. 
Next, the NDVI image was used as a mask 
(threshold of 0.30) such that the vegetation would 
be set to zero, thereby generating a new image.  

Subsequently, the vector file of the sampling 
points was overlaid on the new image using ENVI 
4.1 (ESRI, 2005). The reflectance of the pixels 
related to the sampling points was then obtained. 

For each sampling point, the reflectance of the 
eight bands of the ASTER sensor were correlated with 
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data from the laboratory analysis such that each of the 
184 points were related to a value of the clay content 
(texture), CEC, OM, V% and total iron. Subsequently, 
the samples were grouped according to the attribute 
classes mentioned above. After grouping, a mean 
reflectance value was generated for each ASTER band 
in the attribute classes; i.e., the mean spectral curves 
were obtained for the classes of soil attributes. 

Mean spectral curves were included in the ENVI 
program as spectral libraries (SLs). Five spectral 
libraries were generated, one for each attribute, and 
each library was composed of the mean spectral 
curves for the corresponding class (Figure 2).  

MESMA analysis was performed using the 
image obtained earlier (i.e., after applying the 
mask) using the five generated spectral libraries as 
endmembers. The analysis was performed for 
each specific library for each attribute. This 
analysis generated an image in which each pixel is 
classified as belonging to an attribute class. If the 
spectrum in the SL did not match the spectrum in 
the image (i.e., the mixing constraints for the 
attribute class and RMS error were not attained), 
the pixel remained unclassified. These classified 
images were exported to ArcGIS 9.0 (ESRI, 2005) 
and named as MESMA maps.  

 

 
Figure 2. Spectral curves of soil attributes used as endmember for MESMA analysis. (a) Texture; (b) Organic Matter (OM); (c) Base 
saturation (V%); (d) Cation Exchange Capacity (CEC); (e) Total iron (Fe2O3). 
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Collection of attribute maps using geostatistics 

The soil characteristics data and the geographical 
coordinates of each point sampling were imported to 
Matlab 7.0 (MATHWORKS, 2005) for the 
geostatistical analysis. Initially, a semivariogram of 
the soil attributes was generated to check for the 
existence of spatial continuity. Subsequently, the 
statistical model was adjusted to fit the data; based 
on the type of the adjusted model, nugget effect, 
range and sill (Table 1), an interpolation of the 
sampling points was performed using kriging, and a 
new map for each attribute was generated. 

Table 1. Semivariogram parameters for kriging interpolation. 

Soil Attribute Model adjusted Sill Range 
Organic Matter (OM) Gaussian 50 700 
Texture Spherical 10000 700 
Cation Exchange Capacity 
(CEC) 

Exponential 2500 700 

Base Saturation (V%) Spherical 200 700 
Total iron (Fe2O3) Spherical 1000 700 
 

Further maps were exported to ArcGIS 9.0, in 
which they were divided into the previously 
mentioned classes by assessing the layer properties and 
choosing the unique values category. For the purpose 
of discussion and to compare with the MESMA map, 
maps generated from the geostatistical analysis were 
named kriging interpolated maps. 

Comparison of maps 

The kriging-generated map included the entire 
study area (184 ha), whereas the MESMA map 
included only a part of the area (100 ha) due to the 
presence of vegetation. The geostatistical and MESMA 
maps were reconciled using the clip function available 
in the ArcToolbox of the ArcGIS software. 

Both maps comprised the same area; therefore, the 
agreement between the maps was determined using 
ArcGIS 9.0 and the raster calculator function of the spatial 
analyst module, to determine the percentage of 
similarity between the two methods. This procedure 
was performed for each attribute to produce a 
confusion matrix. 

Results and discussion 

The generated texture maps (Figure 3) showed that 
the spatial distribution of the sand, sandy loam and clay 
classes is very similar.  

The classes with the highest levels of accuracy were 
sand (56.5%) and clay (56.8%). Sandy loam was, in 
most cases, classified as sand (35.0%), and the values of 
clay loam, which did not show similarities between the 
maps, were confounded with the clay (42.7%) and 
sandy loam (31.7%) (Table 2). 

Okin et al. (2001), working with AVIRIS images 
and the MESMA method, successfully discriminated 
between clay and sandy soils with approximately 90% 
accuracy. Similarly, Drake et al. (1999) successfully 
mapped the clay content of soils using Airborne Visible 
Infrared Imaging Spectrometer (AVIRIS) data. 

 

 
 

 
Figure 3. Kriging interpolated map and MESMA map of texture 
classes of the area. 
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Table 2. Percentage of similarity between the maps generated by 
MESMA and by kriging methods of the area for classes of soil 
attributes. 

Attribute classes in the map generated by kriging 
Texture 

 Sand Sandy loam Clay loam Clay 
Sand 56.5 35.0 14.5 4.7 
Sandy loam 23.6 29.8 31.7 34.1 
Clay loam 8.8 14.7 11.1 4.4 
Clay 11.1 20.5 42.7 56.8 
Total (%) 100.0 100.0 100.0 100.0 

Organic Matter (OM) 
 Low Medium High 

Low 58.7 32.2 4.7 
Medium 20.5 64.3 95.3 
High 20.8 3.5 0.0 
Total (%) 100.0 100.0 100.0 

Base Saturation (V%) 
 Distrophic Eutrophic 

Distrophic 96.1 57.2 
Eutrophic 3.9 42.8 
Total (%) 100.0 100.0 

Cation Exchange Capacity (CEC) 
 Very low Low Medium High Very high 

Very low 35.1 15.1 9.0 12.8 0.0 
Low 16.7 21.2 13.4 2.7 0.0 
Medium 25.9 55.0 57.0 20.1 1.4 
High 22.3 5.3 8.3 25.4 32.6 
Very high 0.0 3.4 12.3 39.0 66.0 
Total (%) 100.0 100.0 100.0 100.0 100.0 

Total Iron (Fe2O3) 
 Hypoferric Mesoferric 

Hypoferric 75.2 20.9 
Mesoferric 24.8 79.1 
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Total (%) 100.0 100.0 
 

Texture is a factor that directly affects the soil 
spectral soil response. Higher soil clay content 
tends to exhibit lower soil reflectances (BEN-
DOR et al., 2009). The spectral curve of the sandy 
soil showed a higher reflectance than the clay soil, 
which resulted in a high index of success for these 
two texture classes (Figure 2). However, for clay 
loam and sandy loam, the spectral curves used as 
endmembers (Figure 2) are very similar to those 
of clay and sandy soil, respectively, causing the 
highest levels of error (Table 2).  

With respect to the OM, the maps show some 
similarity, especially for the medium and low 
classes. The majority of areas classified as belonging 
to the high organic matter class in the kriging map 
were confused with the medium organic matter 
class in the MESMA map (Figure 4). This result can 
be explained by the very similar spectral response of 
the high and medium OM classes (Figure 2). 

This confusion of the OM classes is shown in 
Table 2, which indicates that 95.3% of the area 
with high OM in the kriging map belongs to the 
medium organic matter class in the MESMA map. 
The similarities between the maps for the high 
and medium classes were 58.7 and 64.3%, 
respectively. 

 

 

Figure 4. Kriging interpolated map and MESMA map of organic 
matter of the area.  

Organic matter has a strong influence on soil 
reflectance. In general, an increase in OM content 
leads to reduced soil reflectance between 400 to 2500 
nm (DEMATTÊ et al., 2003a), allowing for the 
differentiation of OM classes based on spectral orbital 
curves. 
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Palacios-Orueta et al. (1999), using a modified 
form of spectral mixture analysis applied to an 
AVIRIS image collected over two study areas 
located in California, was able to discriminate the 
OM contents of soils with a high degree of 
accuracy. According to these authors, despite the 
fact that the range in OM content was the same 
for both areas (0 to 6%), one of the study sites (La 
Jolla) had a higher number of pixels with values 
between 4 to 5%, whereas the other site (Serrano) 
had more pixels at the lower range between 2.5 to 
3.5%. 

The generated base saturation (V%) maps proved 
to be very distinct (Figure 5). In the krigring map, 
almost the entire area is eutrophic due to chemical 
soil management performed locally. In contrast, 
almost the entire area in the MESMA map was 
classified as dystrophic. 

Due to the differences between maps, the 
dystrophic class that represents only 4.1% of the area 
in the kriging map when overlapped with the 
MESMA map was almost entirely classified in the 
same class (distrophic), resulting in the similarity 
shown in Table 2. According to Ben-Dor et al. 
(2009), there are soil properties that do not generate 
an absorption feature in the spectral curve, such as 
the pH and electrical conductivity. Perhaps this is 
the case for the base saturation, and therefore, the 
resulting maps generated using MESMA were 
distinct from the krigring map. Demattê et al. 
(2003b) indicated that higher base concentration and 
base saturation is associated with higher reflectance. 
However such behavior was not observed by Sousa 
Junior et al. (2008) using an ASTER image. 

In contrast, the CEC maps were similar, 
especially for the medium class, which represents 
the majority of the area (Figure 6).  

The very low and very high classes represented a 
smaller area of 1.4% and 3.1%, respectively. 
Nevertheless, there was a high rate of success for 
these classes with 35.1 and 66.0% agreement 
between the maps (Table 2). 

The similarity between the maps shows that 
the low class, representing 38.8% of the area, was 
confused with the medium class with an index of 
similarity of 55%. The medium and high classes 
had higher rates of success. For the medium class, 
which occupies 45.1% of the study area, the 
classification accuracy was 57.0%, whereas the 
high class, which occupies 11.8% of the area, had 
a classification accuracy of 25.4% (Table 2). 

 
Figure 5. Kriging interpolated map and MESMA map of base 
saturation of the area. 

CEC is a chemical attribute that is highly 
influenced by the type and quantity of clay 
minerals as well as the soil organic matter content. 
For example, clayey soils with high organic matter 
contents have higher CEC values than sandy soils 
with low organic matter levels. 
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Figure 6. Kriging interpolated map and MESMA map of CEC of 
the area. 

As observed by Ben-Dor et al. (2009), soil 
properties without features can be quantified and 
mapped based on the spectral curves due to their 
strong correlation with other properties that have 
absorption bands, including certain types of minerals 

and soil organic matter. This may explain the similarity 
between the CEC maps, as well as the dissimilarity 
between the V% maps. 

The strong effect of iron on the spectral response of 
the soil resulted in a high extent similarity between the 
krigring and MESMA maps for this attribute (Figure 7).  

 

 
Figure 7. Kriging interpolated map and MESMA map of total 
iron of the area. 
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The total iron levels were divided into three 
classes, but only two of the classes were present in 
both of the maps because vegetation covered the 
areas with ferric samples. 

The majority of the total area was classified as 
hypoferric (86.4%), and the index of similarity was 
75.2%. For the mesoferric class, covering 13.67% of 
the area, the similarity index was 79.1% (Table 2). 

It is interesting to note that the accuracy between 
the maps appeared to be higher when the number of 
classes is lower, as verified for the OM and total iron 
compared to the texture and CEC. 

Total iron has a large effect on the spectral 
response of soils depending on its chemical form 
(DEMATTÊ et al., 2003a). Several features in the 
spectral curve can be attributed to the presence of 
iron because hematite and goethite show absorption 
bands at 530 nm and 480 nm, respectively. For the 
absorption band at 900 nm, the spectral curve 
becomes deeper as the iron content increases 
(DALMOLIN et al., 2005). 

Palacios-Orueta et al. (1999) produced maps of 
iron levels that ranged from 2 to 6% in an AVIRIS 
image for two study areas in California using a 
modified spectral mixture analysis with accuracy 
determinations. It was also possible to assess the 
difference in the range of iron contents for the two 
areas of the Vale Serrano, which is mainly composed of 
basic igneous rocks. The higher iron contents ranged 
from 4 to 6%, whereas in the La Jolla Valley, which is 
composed of surficial sediments of sand and leaves, the 
iron contents were between 3 to 4%. 

Conclusion 

MESMA proved to be an efficient method for 
mapping texture, organic matter, total iron and CEC 
attributes and showed a high level of similarity when 
compared to the kriging method. However, these 
results are related to this specific area of study and 
must be tested in other areas with different soil types 
and attributes; this method can then be used as a 
tool in soil surveys and management practices.  
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