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Abstract
Magnitude processing is one of the most central cognitive mechanisms that underlie persistent mathematics difficulties. No 
consensus has yet been reached about whether these difficulties can be predominantly attributed to deficits in symbolic or 
nonsymbolic magnitude processing. To investigate this issue, we assessed symbolic and nonsymbolic magnitude representations 
in children with low or typical achievement in school mathematics. Response latencies and the distance effect were comparable 
between groups in both symbolic and nonsymbolic tasks. The results indicated that both typical and low achievers were able 
to access magnitude representation via symbolic and nonsymbolic processing. However, low achievers presented higher error 
rates than typical achievers, especially in the nonsymbolic task. Furthermore, measures of nonsymbolic magnitude explained 
individual differences in school mathematics better than measures of symbolic magnitude when considering all of the children 
together. When examining the groups separately, symbolic magnitude representation explained differences in school mathematics 
in low achievers but not in typical achievers. These results suggest that symbolic magnitude is more relevant to solving arithmetic 
problems when mathematics achievement is particularly low. In contrast, individual differences in nonsymbolic processing appear 
to be related to mathematics achievement in a more general manner. Keywords: symbolic number processing; nonsymbolic 
number processing; cognition; child development; dyscalculia.
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Introduction
Mathematics difficulties (MD) are currently defined 

as persistent and severe difficulties in acquiring specific 
abilities related to mathematics that cannot be attributed 

to emotional or educational inadequacies, lack of general 
intelligence, or sensorimotor impairment (American 
Psychological Association, 1994; Butterworth, 2005). 
The terminology and diagnostic criteria for MD vary 
widely. Mathematics learning difficulties or disabilities 
as research criteria refer to performance on standardized 
achievement tests below cut-off scores at the 25th to 35th 
percentiles (Geary & Hoard, 2005; Jordan, Hanich, & 
Kaplan, 2003). In contrast, developmental dyscalculia is 
usually defined by more stringent criterion (i.e., the 10th 

percentile; Murphy, Mazzocco, Hanich, & Early, 2007).
One influential model of number processing attributes 

the main deficits encountered in MD to core magnitude 
representation difficulties (Piazza et al., 2010). Feigenson, 
Dehaene, & Spelke (2004) proposing that infants and adult 
humans share an approximate number system dedicated 
to representing number magnitude in an abstract form. 
According to the core deficit hypothesis, developmental 
dyscalculia is caused by a deficit that is specific to the 
approximate number system and is characterized by low 
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performance on tasks that assess number magnitude, such 
as nonsymbolic numerosity tasks (Dehaene, 1992, 2009). 
Recently, Piazza and colleagues (2010) showed that the 
acuity of the approximate number system is impaired 
in children with MD. Similarly, some authors have 
suggested that the deficits observed in MD constitute 
an impairment in the “number module,” a system 
dedicated to processing sets of objects and operating 
on them (Butterworth, Varma, & Laurillard, 2011). The 
approximate number system interacts with symbolic 
notational systems. Many authors argue that learning the 
symbolic number system may be at least as important for 
explaining deficits in MD as a deficit in the more basal 
competencies related to the approximate number system 
(e.g., Rousselle & Nöel, 2007). Furthermore, Mussolin, 
Mejias, & Noel (2010) proposed a Two-Factor Theory 
of developmental dyscalculia that relates arithmetic 
achievement to both symbolic and nonsymbolic number 
representations. According to this theory, children are 
born with a nonsymbolic number sense and learn in school 
to map exact numerical symbols onto the internal number 
representations. Accordingly, dyscalculic children may 
initially have a weak number sense, and this deficit 
may prevent them from benefiting from the increasing 
precision yielded by symbolic numbers (Mussolin et al., 
2010).

If the core magnitude deficit hypothesis is correct, 
then deficits in both symbolic and nonsymbolic tasks 
should be observed in MD (henceforth designating 
both of the experimental groups in the present 
study and MD in general) compared with typically 
achieving children (henceforth the control group in the 
present study) because magnitude representations are 
accessed in both tasks. However, deficits may be more 
pronounced in the nonsymbolic task because it more 
directly measures the approximate number system. 
Moreover, the nonsymbolic task should predict school 
mathematics achievement better than the symbolic 
task. However, if the disconnection hypothesis is 
true, then not only should one observe much more 
pronounced deficits in symbolic magnitude processing 
in the MD group, but this task should also be a better 
predictor of school mathematics achievement than 
nonsymbolic magnitude processing, regardless of the 
group. Finally, possible differences in basic magnitude 
comparisons between the MD group and the sample 
with MD associated with language difficulties (MD+L 
group) were also examined. If deficits in phonological 
and verbal abilities affect learning to connect symbols 
and magnitudes, a more severe deficit in symbolic 
magnitude processing should be observed in the MD+L 
group than in the MD group.

Based on the hypothesis that the approximate 
number system has a continuous distribution in the 
population (Halberda, Mazzocco, & Feigenson, 2008), 
no categorical difference in nonsymbolic representation 
should exist between children with dyscalculia and 
typically developing children. To explore the nature of 
nonsymbolic representation, two criteria were used to 

classify children with MD in the present study: a liberal 
criterion (25th percentile) and a more conservative 
criterion (10th percentile). Using these two criteria, one 
can investigate how mathematics learning difficulties 
are associated with the severity of deficits in magnitude 
processing. Moreover, the numerical ranges used in 
symbolic and nonsymbolic tasks were chosen to prevent 
interference from factors such as subitizing (Piazza et 
al., 2010) in the nonsymbolic task and the unit–decade 
compatibility effect in the symbolic task. To avoid the 
occurrence of subitizing processes in the nonsymbolic 
task, the numerical interval used in the nonsymbolic 
task in the present study was above the subitizing range 
(1–4). Moreover, with regard to the symbolic task, we 
chose a simple version of the task, including single digits 
only, to avoid interference from more complex aspects 
of symbolic magnitude processing such as familiarity 
with round decade numbers (e.g., 10, 20, 30, and so 
on; Brysbaert, 1995) and the unit-decade compatibility 
effect (Nuerk, Weger, & Willmes, 2001).

Methods
Participants

Children participated only after written informed 
consent was obtained from their parents and orally from 
the children. Participants were recruited from schools 
in two southeastern Brazilian cities, Belo Horizonte 
and Mariana. Approximately 82% of the children 
attended public schools. Recruitment was conducted 
in two phases. In the screening phase, 16 schools, eight 
of which were public schools, were randomly selected 
from seven of a total of 10 school districts in the two 
cities. Classrooms were then selected in these schools, 
and the families were invited to participate in the 
project. The study was approved by the local research 
ethics committee of the Federal University of Minas 
Gerais.

A total of 1643 children were screened for MD. 
Subjects included in the screening sample had a 
mean age of 9.75 years (SD = 1.95 years; range = 6 
years; mean = 117.7 months; SD = 23.3 months). The 
mean formal schooling was 3.39 years (SD = 1.66 
years; range = 6 years), and 50.9% of the subjects 
were female. Testing was conducted in groups in 
the classrooms. Two instruments were used in the 
screening phase: the arithmetic and single word 
spelling subtests of the Brazilian School Achievement 
Test (Teste do Desempenho Escolar [TDE]; Stein, 
1994). After screening, more detailed individual 
testing was conducted. The parents of all of the 
children were invited to a meeting where the second 
phase of the research (i.e., an individual assessment of 
approximately three sessions, 1 h each) was explained. 
Four hundred twenty-four parents did not attend the 
meeting, 110 parents did not allow their children to 
participate in the second phase of the study, 123 children 
presented only isolated spelling difficulties, 581 
participants were not paired controls, and two children 
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presented genetic disorders. Mothers were interviewed 
with regard to the developmental, learning, and health 
histories of their children (Entrevista Semi-Estruturada 
para Diagnóstico em Psiquiatria da infância, K-SADS; 
Brasil, 2003). Testing was conducted in quiet rooms 
dedicated by the schools for the study. Children were 
assessed using Raven’s Coloured Progressive Matrices 
(Angelini, Alves, Custódio, Duarte, & Duarte, 1999), 
the reading subtest of the TDE, a simple reaction time 
task, and two computer tasks to assess magnitude 
comparisons. Children with performance below the 
25th percentile on Raven’s Coloured Progressive 
Matrices (Angelini et al., 1999) were excluded from 
the sample.

One hundred sixty-eight pupils participated in the 
second phase of the study that consisted of individual 
neuropsychological testing. The mean age was 10.10 
years (SD = 1.93 years) and 127.07 months (SD = 
23.42 months). The 53 children with performance 
below the 25th percentile in arithmetic but above the 
25th percentile in spelling were assigned to the MD 
group. The 26 children with performance below the 
25th percentile in both arithmetic and spelling were 
assigned to the MD+L group. The 89 children with 
performance above the 25th percentile in all of the tests 
were assigned to the control group. All groups were 
matched with regard to intelligence, age, and school 
grade (Table 1). Mean formal schooling was 3.81 years 
(SD = 1.72 years), and 49.7% of the participants were 
female. Table 2 presents the group performance in 
reading, spelling, and arithmetic and the mean age and 
intelligence scores.

Psychological instruments
Brazilian School Achievement Test (Teste do 

Desempenho Escolar, TDE; Stein, 1994). The TDE is 

the standardized test of school achievement most widely 
used in Brazil. The TDE comprises three subtests: 
arithmetic, single-word spelling, and single-word 
reading. Norms are provided for school-aged children 
between the first and sixth grades. The arithmetic 
subtest is composed of three simple orally presented 
word problems and 45 written arithmetic calculations 
of increasing complexity. The spelling subtest consists 
of 34-word dictation of increasing syllabic complexity. 
The single-word reading subtest of the TDE consists of 
75 stimuli that must be read aloud by the participant. 
Reliability coefficients (Cronbach’s α) are 0.87 or 
higher. The children were instructed to work as hard as 
they could without a time limit.

Simple Reaction Time Task. The computerized 
reaction time task is a simple task in which a picture of 
a wolf (9.31 cm height, 11.59 cm length) is displayed in 
the center of a black screen for a maximum of 3000 ms. 
The participant is instructed to press the space bar on the 
keyboard as fast as he or she can at the moment he or 
she sees the wolf. Trials are terminated with the first key 
press. The task had 30 trials with an intertrial interval of 
2000, 3500, 5000, 6500, or 8000 ms. This task was used 
to control possible differences in basic processing speed 
unrelated to numerical tasks.

Symbolic Magnitude Comparison Task. In the 
symbolic number comparison task, Arabic numerals 
from 1 to 9 were presented on the computer screen 
(2.12 cm height, 2.12 cm length). The visual angle of 
the stimuli was 2.43° in both the vertical and horizontal 
dimensions. The children were instructed to decide 
whether the magnitudes were larger or smaller than 5. 
Arabic numerals were presented in white on a black 
background. If the presented number was lower than 5, 
the child had to press a predefined key on the left side 
of the keyboard with the left hand. If the stimulus was 

Table 2. Sample descriptions (age and intelligence) and performance in reading, spelling, and arithmetic (Z scores)

Measure Control (n = 89) MD (n = 53) MD+L (n = 26) F (2,165) p

Mean SD Mean SD Mean SD

Age (years) 10.19 1.66 9.68 1.95 10.65 2.57 2.45 .09

Raven .19 .54 -.01 .78 -.03 .79 2 .139

Spelling (TDE) .35 .44 .15 .46 -1.45 1.62 11.13 < .0001

Reading (TDE) .39 .3 0 .35 -1.38 1.84 10.1 .001

Arithmetic (TDE) .54 .73 -.42 .42 -1.46 .5 20.28 < .0001

Control, typical achievers; MD, mathematics difficulties; MD+L, mathematics and language difficulties.

Table 1. Individual assessment sample descriptions

Measure Control (n  = 89) MD (n  = 53) MD+L (n  = 26) c2 df p

Sex (Female) 58.40% 43.40% 38.50% 4.81 2 .090

School (Public) 77.30% 86.50% 88.50% 2.78 2 .249

Control, typical achievers; MD, mathematics difficulties; MD+L, mathematics and language difficulties.
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higher than 5, then the key to be pressed was located at 
the right side of the keyboard and had to be pressed with 
the right hand. The number 5 was not presented on the 
computer screen. Numerical distances between stimuli 
and the reference number (5) varied from 1 to 4, with each 
numerical distance presented the same number of times. 
Between trials, a fixation point (i.e., a cross designed 
with the same size and color as the stimuli) appeared on 
the screen. The task comprised eight learning trials and 
80 testing trials. The maximum stimulus presentation 
time was 4000 ms with an intertrial interval of 700 ms.

Nonsymbolic Magnitude Comparison Task. In the 
nonsymbolic magnitude comparison task, the participant 
was instructed to compare two simultaneously presented 
sets of dots, indicating which one contained the larger 
number. Black dots were presented on a white circle on 
a black background. In each trial, one of the two white 
circles contained 32 dots (i.e., reference numerosity), and 
the other one contained 20, 23, 26, 29, 35, 38, 41, or 44 
dots. Each dot set magnitude was presented eight times, 
each time in a different configuration. The task comprised 
eight learning trials and 64 testing trials. Perceptual 
variables were randomly varied such that individual dot 
size was held constant in half of the trials, whereas the size 
of the area occupied by the dots was held constant in the 
other half of the trials (Dehaene, Izard, & Piazza, 2005). 
The maximum stimulus presentation time was 4000 ms 
with an intertrial interval of 700 ms. Between each trial, a 
fixation point (i.e., a 3-cm diameter crossprinted in white) 
appeared on the screen. If the child judged that the right 
circle presented more dots, then a predefined key on the 
right side of the keyboard had to be pressed with the right 
hand. If the child judged that the left circle contained 
more dots, then a predefined key on the left side of the 
keyboard had to be pressed with the left hand.

Computer tasks were programmed with the 
Neurobehavioral Systems presentation software. 
Participants were seated approximately 50 cm from the 
computer screen.

Data analysis
Response time data were trimmed, eliminating 

in two iterative steps all of the responses that were 
more extreme than three standard deviations from the 
individual means and reaction times that were faster 
than 200 ms. Error data were arcsine-transformed to 
correct for skewness. The distance effect was calculated 
for performance accuracy (error rates) and speed 
(reaction time). Reaction times and error rates with 
large distances (6, 9, and 12 for the nonsymbolic task 
and 2, 3, and 4 for the symbolic task) were subtracted 
from those with small distances (3 for the nonsymbolic 
task and 1 for the symbolic task). To verify the presence 
of a distance effect, a series of mixed-design analyses of 
variances (ANOVAs) was conducted for each task and 
each group for reaction times and error rates, with group 
as the between-subjects factor. When the assumption of 
sphericity was not met and epsilon estimates were less 

than 0.75, the Greenhouse-Geisser correction was used. 
When main or interaction effects were significant, more 
specific Bonferroni Least Significant Difference post 
hoc comparisons were performed.

Results
Simple reaction time measure

Hand, foot, and eye dominance were assessed 
using the standard protocol of Lefevre & Diament 
(1982). All analyses were conducted by merging the 
data from left- and right-handed boys and girls. No 
significant differences were found among the three 
groups with regard to reaction times in the simple 
reaction time task (F (2,165) = 1.61, MSE = 56256.67, 
p = .204, η² = .024). Mean reaction times were 418.9 
ms (SD = 131.43 ms) in the control group, 457.75 ms 
(SD =173.19 ms) in the MD group, and 500.53 ms 
(SD = 337.33 ms) in the MD+L group. These results 
indicate no significant baseline differences in simple 
reaction times.

Group comparisons in the symbolic task
A one-way ANOVA was conducted to compare the 

three groups (MD, MD+L, and control) in the symbolic 
task. No significant differences were found among groups 
in overall reaction time (F [2,115] = 2.62, MSE = 205135, 
p = .076, η² = .037). Mean reaction times were 907 ms 
(SD = 323 ms) in the MD group, 916 ms (SD = 223 ms) 
in the MD+L group, and 851 ms (SD = 262 ms) in the 
control group. Bonferroni post hoc comparisons indicated 
no significant differences among the three experimental 
groups. Reaction times for each distance and each group 
in the symbolic task are presented in Figure 1A.

Figure 1A. Reaction time as a function of numerical distance in the 
MD, MD+L, and control groups in the symbolic task.

One-way ANOVA revealed significant differences 
in total error rates among the three groups in the 
symbolic task (F [2,139] = 3.33, MSE = .073, p = .039, 
η² = .036). Error rates were 11% in the control group, 
16.38% in the MD+L group, and 18.37% in the MD 
group. However, pairwise comparisons revealed no 
significant differences among groups (p > .05). Error 
rates for each distance are presented in Figure 1B.
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Group comparisons in the nonsymbolic task
The analysis of the perceptual control factors did 

not reveal any differences in overall correct responses 
for size (mean = 78%) and luminance (mean = 79%, p = 
.262, Cohen’s d = .02). Consequently, we assumed that 
children processed the numerosity characteristics of the 
stimuli, so the perceptual factors were not considered in 
the subsequent analyses.

A one-way ANOVA was conducted to assess 
the presence of statistically significant differences in 
response latency and accuracy across the three groups. 
The MD group presented numerically higher total 
reaction times (mean = 1242 ms, SD= 423 ms) than 
the MD+L group (mean = 1201 ms, SD = 347 ms) and 
control group (mean = 1191 ms, SD = 294 ms), but 
this difference did not reach statistical significance (F 
[2, 160] = .318, MSE = 38479.47, p = .728, η² = .004). 
Figure 2A shows the reaction times for each distance 
and each group in the nonsymbolic task.

rates (26%) than the MD+L (25%) and control (18%) 
groups. Corrected Bonferroni comparisons between the 
MD and control groups revealed a significant effect of 
group (t [141] = -4.15, p < .05, Cohen’s d = .70).Bonferroni 
post hoc comparisons revealed no significant difference 
between the MD+L and control groups or between the 
MD and MD+L groups. Figure 2B shows the error rates 
for each distance and each group in the nonsymbolic task.

Figure 1B. Error rates (%) and standard errors as a function of nu-
merical distance in the MD, MD+L, and control groups in the sym-
bolic task.

Figure 2A. Reaction time (mean and standard error) as a function 
of numerical distance in the MD, MD+L, and control groups in the 
nonsymbolic task. 

With regard to total errors in the nonsymbolic task, 
one-way ANOVA revealed significant differences among 
the three groups (F [2, 160] = 9.04, MSE = 0.133, p  
< .0001, η² = .113). The MD group presented higher error 

Figure 2B. Error rates (%) and standard errors as a function of nu-
merical distance in the MD, MD+L, and control groups in the non-
symbolic task.

Distance effect
The distance effect was analyzed by repeated-

measures ANOVAs calculated separately for each task 
for reaction times and error rates, with group as the 
between-subjects factor.

Distance effect for the symbolic task. A significant 
distance effect on reaction times was found in the 
symbolic task (F [2, 141] = 70.93, MSE = 380986, p 
< .001, η² = .350), but no significant interaction with 
group was observed (F [2, 141] = 1.07, MSE = 5739, p 
= .346, η² = .016). This indicates that the three groups 
presented comparable distance effects in the symbolic 
task. Reaction times for each distance and each group in 
the symbolic task are shown in Figure 1A.

A significant distance effect was found when 
considering error rates (F [1, 141] = 29.26, MSE = .428, 
p < .001, η² = .180), but no significant interaction with 
group was observed (F [2, 142] = 1.28, MSE = .020, p 
= .281, η² = .019). This indicates that the distance effect 
for errors in the symbolic task was comparable across 
groups. Bonferroni post hoc comparisons did not reveal 
any significant differences among groups with regard to 
either response latencies or accuracy. Error rates in the 
symbolic task are shown in Figure 1B for each distance 
and each group.

Distance effect in the nonsymbolic task. Similar 
to the results found for the symbolic task, a significant 
main effect of distance on reaction time was found 
in the nonsymbolic task (F [1, 141] = 45.96, MSE = 
658316, p < .001, η² = .245). This indicates a robust 
distance effect on response latencies (Figure 2A). No 
significant interaction between distance and group was 
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found (F [2, 141] = 1.87, MSE = 26765, p =.158, η² = 
.026), indicating a similar distance effect in all three 
groups.

With regard to error rates, a significant distance 
effect was found (F [2, 141] = 309.47, MSE = 4.26, p 
< .001, η² = .685), but no significant interaction with 
group was observed (F [2, 141] = .733, MSE = .010, p = 
.482, η² = .010). These results indicate that the distance 
effect was comparable in all three groups. Error rates for 
each distance and each group in the nonsymbolic task 
are shown in Figure 2B.

Conservative selection criterion
To evaluate the generalizability of the results to 

more severe forms of MD, analyses were repeated 
in subsamples selected according to a much stricter 
criterion for MD (i.e., 10th percentile). Considering 
the stricter criterion, the MD group comprised seven 
children, and the MD+L group comprised 12 children. 
The groups were matched with regard to intelligence and 
age. Generally, the results replicated those obtained for 
the entire sample. The analysis that considered the strict 
group classification criterion revealed no significant 
differences among groups (p > .05) with regard to 
simple reaction times. The mean reaction times were 
436.15 ms (SD = 81.15) in the control group, 448.29 ms 
(SD = 86.42) in the MD group, and 365.42 ms (SD = 
116.82) in the MD+L group.

No differences in reaction time were found in 
either the nonsymbolic task (F [2, 48] = 1.499, MSE = 
112736, p = .234, η² = .061) or symbolic task (F [2, 48] 
= 2.30, MSE = 122231, p = .112, η² = .095). However, 
specific comparisons among groups revealed significant 
differences between the MD group (mean = 1078 ms, 
SD= 157 ms) and MD+L group (mean = 840 ms, SD 
= 142 ms) in reaction times in the symbolic task (t14 = 
3.11, p = .008, Cohen’s d = 1.58).

With regard to error rates, significant differences 
among the three groups were observed in the 
nonsymbolic task (F [2, 48] = 4.35, MSE = .047, p = 
.019, η² = .159). Corrected Bonferroni t-tests revealed 
significant differences between the MD group (mean = 
31%) and control group (mean = 20%, t (36) = -2.96, 
p = .005, Cohen’s d = 1.29). No significant differences 
were found when comparing the MD+L group (mean = 
27%) with the other two groups (p > .05). Importantly, 
no significant differences in error rates were found in 
the symbolic task (F [2, 48] = 0.527, MSE = 0.025, p = 
.594, η² = .023).

A significant distance effect was found on reaction 
time in the nonsymbolic task (F [1, 46] = 22.24, MSE 
= 246849, p < .001, η² = .326), but no significant 
interaction between distance and group was observed 
(F [2, 46] = .188, MSE = 2090, p = .829, η² = .008), 
indicating a similar distance effect in all three groups. 
Similarly, a significant distance effect was found on 
reaction time in the symbolic task (F [1, 46] = 18.65, 
MSE = 100069, p = .0001, η² = .308), but no significant 
interaction between distance and group was observed 

(F [2, 46] = 3.03, MSE = 16294, p = .059, η² = .126), 
indicating a similar distance effect in all three groups. 

Significant distance effects were found on error 
rates in the nonsymbolic task (F [1, 46] = 92.54, MSE = 
1.11, p < .001, η² = .668) and symbolic task (F [1, 46] 
= 12.06, MSE = .111, p = .001, η² = .214). However, no 
significant distance × group interaction was observed in 
the nonsymbolic task (F [2, 46] = 2.93, MSE = .035, p = 
.063, η² = .113) or symbolic task (F [2, 46] = .001, MSE 
= .000128, p = .999, η² = .000).

Predictive effects of symbolic and nonsymbolic 
numerical representations on arithmetic 
achievement

To investigate the role of nonsymbolic and 
symbolic tasks in arithmetic achievement, a multiple 
linear regression was calculated with performance in 
the arithmetic achievement task (TDE) as the dependent 
variable. Age, gender, intelligence, school grade, 
distance effect, mean total reaction time, and the arcsine 
of the total error rate were the independent variables 
in both the symbolic and nonsymbolic tasks. The 
intervening variables (i.e., age, gender, intelligence, and 
school grade) were inserted in the model using the enter 
method, and the experimental variables were inserted in 
the model using the stepwise method.

In the model that considered three groups together, 
the arcsine of the total error rate in the nonsymbolic task 
was the only experimental variable that remained in the 
model (B = -9.15, SE = 3.91, t [127] = -0.151, p = .02). 
The other experimental variables were excluded from 
the model (Table 3).

Linear multiple regressions were conducted 
for each group separately. In the control group, all 
experimental variables were excluded from the model. 
The only experimental variable that showed a marginally 
significant result was the distance effect for error rates 
in the nonsymbolic task (B = .135, t [127] = 1.79, p = 
.07; Table 3). In the MD group, the only experimental 
variable that remained in the model was the distance 
effect for error rates in the symbolic task (Table 3). 
In the MD+L group, the experimental variable that 
remained in the model was the arcsine of total errors in 
the symbolic task (Table 3).

Discussion
In the present study the relative impact of symbolic and 

nonsymbolic magnitude processing on the development 
of mathematics learning disabilities was investigated. 
Children with isolated or associated math learning 
difficulties and normal mathematics achievers matched 
with regard to general intelligence and processing speed 
were selected from a large population and evaluated 
for symbolic and nonsymbolic magnitude processing. 
No significant difference was found between groups in 
response latencies in either the symbolic or nonsymbolic 
task. In contrast, there were more errors in the MD group 
than in the control group, for both the symbolic task and 
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especially the nonsymbolic task. Although the same trend 
was observed in the comparison between the MD+L and 
control groups, the statistical comparison did not reach 
significance. Moreover, no differences between the 
MD and MD+L groups were found in basic magnitude 
processing. A closer inspection of the distance effect in the 
symbolic and nonsymbolic tasks revealed that children 
in all of tested groups presented a distance effect on 
both reaction times and error rates in both symbolic and 
nonsymbolic tasks. Finally, a series of regression models 
revealed that both symbolic and nonsymbolic magnitudes 
appeared to specifically contribute to differences between 
children with and without MD. These results are discussed 
in more detail below.

With regard to the symbolic task, response latencies 
did not differ across groups. In response accuracy, 
significant differences were revealed by the one-way 
ANOVA when comparing the three groups, but these 
differences could not be replicated in the post hoc 
comparisons. Generally, one could argue that a failure 
to find differences in response latencies and accuracy 
between groups is attributable to a lack of sensitivity 
of our symbolic magnitude task. However, several 
studies have reported significant differences in reaction 
times in the symbolic task (De Smedt & Gilmore, 2011; 
Iuculano et al., 2008; Landerl, Bevan, & Butterworth, 
2004; Landerl & Kölle, 2009; Rousselle & Noël, 2007). 
However, other studies that used the same set of stimuli 
and a comparable set of instructions as the present 
study failed to find significant differences in reaction 
times (Landerl, Fussenegger, Moll, & Willburger, 
2009; Mussolin et al., 2010). With regard to differences 
between groups in response accuracy in the symbolic 
task, results have also been quite mixed. Two studies 
that used one-digit numbers (Iuculano et al., 2008; 
Rousselle & Noel, 2007) and one study that used two-
digit numbers found higher error rates in the MD group 
(Landerl & Kolle, 2009). Two other studies that used 
one-digit numbers failed to find such differences (De 
Smedt & Gilmore, 2011; Mussolin et al., 2010). 

The symbolic task used in the present study is 
comparable to the one used in most of the studies 
mentioned above. Failure to find significant differences 
in the present study may be attributable to task difficulty 
alone. Moreover, the significant distance effect found 
on response latencies and accuracy in all of the groups 
indicates that the MD and MD+L groups were able to 
access magnitudes in the symbolic task at speed and 
accuracy levels comparable to the control group. Again, 
with regard to response latencies, one could argue that the 
lack of differences among groups is attributable to very 
low task difficulty. Our results again appear to refute this 
hypothesis because error rates in the symbolic task were 
substantial in all of the groups, ranging from 11% in the 
control group to 16% and 18% in the MD+L and MD 
groups, respectively. This indicates that children with 
and without MD in our study systematically activated 
magnitude representation in the symbolic task to a 
comparable extent.

A significant distance effect was found on both 
reaction times and error rates in all groups, regardless of 
their mathematics achievement. This indicates that all 
children correctly understood the task instructions and 
were able to access number magnitudes independently 
of its format. Moreover, nonsignificant interactions 
between distance and group indicated that the distance 
effect was equally pronounced in the three groups. With 
regard to response latencies and accuracy, conflicting 
distance effect results have been published for MD 
and control groups. Rousselle and Noël (2007) found 
that children with MD had a smaller distance effect 
than control subjects in the symbolic task. Mussolin 
et al. (2010) found that children with MD had a larger 
distance effect than control subjects. Discrepancies 
among studies increase further when evaluating the 
study by Landerl et al. (2009). These authors showed 
that although MD children were specifically slower 
than typically developing children they did not show 
a deviant or atypically large distance effect. Therefore, 
definitive conclusions from the literature about a 

Table 3. Linear multiple regression (enter and stepwise methods) for the Control, MD, and MD+L groups separately, with 
arithmetic achievement as the dependent variable

Group Measure B SE Beta T p

Control Age
Gender
School grade
Intelligence
Distance effect nonsymbolic

.399

.724
3.153
.871
5.83

.926
1.068
.895
1.026
3.257

.087

.053
.71
.066
.135

.431

.678
3.52
.849
1.791

.71
.5

.001

.399

.078

MD Age
Gender
School grade
Intelligence
Distance effect symbolic

.302

.032
3.25
.203
5.25

.356

.474

.352

.399
2.43

.083

.003

.868

.028

.138

.848

.068
9.22
.598
2.16

.402

.946
0

.554
.03

MD+L Age
Gender
School grade
Intelligence
Error symbolic

1.31
2.67
4.51
.325
-11.7

1.1
1.307
1.28
.793
4.88

.493

.243
1.47
.053
-.382

1.189
2.046
3.526
.41
2.39

.269

.075

.008

.692

.038

Control, typical achievers; MD, mathematics difficulties; MD+L, mathematics and language difficulties.
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difference between MD children and control subjects 
with regard to the distance effect are still elusive. To 
some extent, absence of significant differences in the 
symbolic task between the MD and control groups and 
inconsistencies in the literature do not fit the predictions 
derived from the disconnection hypothesis. According 
to this view, robust differences between MD children 
and control subjects should be observed foremost in the 
symbolic task. However, these findings are compatible 
with the core deficit hypothesis that predicts stronger 
deficits in the nonsymbolic task.

In the nonsymbolic task, differences in response 
latencies among groups also did not reach significance. 
These results are consistent with most studies that 
compared reaction times between children with 
mathematics learning difficulties and controls in the 
nonsymbolic task (De Smedt & Gilmore, 2011; Iuculano 
et al., 2008; Landerl & Kölle, 2009; Piazza et al., 2010; 
Rousselle & Noël, 2007; but see Landerl et al., 2009). 
Importantly, some studies that failed to report significant 
differences in response latencies in the nonsymbolic 
task used a set of numerical stimuli in the range of 1 
to 9 (Iuculano et al., 2008; Mussolin et al., 2010; De 
Smedt & Gilmore, 2011). At least partially, failure to 
find significant differences among groups in these 
studies may be attributable to the occurrence of more 
perceptual phenomena such as subitizing (Mandler & 
Shebo, 1982; Piazza et al., 2010) that may have masked 
the occurrence of a distance effect in the numerical range 
of 1 to 4. However, in the present study the numerical 
range used in the nonsymbolic task was far beyond 
the subitizing range. For this reason, negative results 
obtained in the present study may not be attributable to 
confounds by the more perceptual aspects of magnitude 
processing. Interestingly, an inspection of the studies 
that used stimuli within the same magnitude range as the 
present study reveals contradictory evidence. Landerl et 
al. (2009) found differences in reaction times between 
children with and without MD, but Rousselle and Noël 
(2007), Landerl and Kölle (2009), and Piazza et al. 
(2010) failed to report such differences. These previous 
studies and the present study used comparable stimulus 
sets, task instructions, and selection criteria for sample 
assignment. Therefore, explaining why only Landerl et 
al. (2009) were able to find significantly slower response 
latencies in MD children is difficult. Future studies 
should use more sensitive methods (e.g., the Weber 
fraction) to investigate possible deficits in magnitude 
processing in MD (Piazza et al., 2010; Mazzocco, 
Feigenson, & Halberda, 2011).

In contrast to the nonsignificant results obtained in 
the symbolic task, significantly higher error rates were 
observed in the nonsymbolic task in the MD group 
than in the control group. These findings indicate a 
deficit in nonsymbolic representation in the MD group 
compared with the control group (Landerl et al., 2009; 
Mazzocco et al., 2011; Mussolin et al., 2010; Piazza 
et al., 2010). Although differences between the MD 
group and control group in the nonsymbolic task can be 

conciliated with the disconnection hypothesis, they also 
better fit the predictions of the core deficit hypothesis 
because deficits observed in the symbolic task failed to 
reach significance.

To investigate the stability of our results with 
regard to symbolic and nonsymbolic magnitude 
processing across more or less conservative criteria for 
the classification of mathematics learning difficulties, 
we selected a subsample of children who presented a 
more severe form of MD. Generally, these comparisons 
confirmed the pattern of results found with the more 
liberal classification criterion (i.e., 25th percentile). 
The MD group presented higher error rates in the 
nonsymbolic task compared with the control group. 
A further inspection of the effect size found in this 
comparison revealed more robust differences between 
the control group and the subsample with severe MD 
(Cohen’s d = 1.29) than between the control group and 
the entire MD sample (Cohen’s d = 0.70). Interestingly, 
Mazzocco et al. (2011) found the same effect size when 
performing the same comparison between controls 
and MD children with regard to the acuity of the 
approximate number system using the Weber fraction. 
These results suggest that differences in accuracy in 
nonsymbolic magnitude processing reflect a deficit in 
core magnitude representation (Piazza et al., 2010). A 
possible exception to the pattern of effects found when 
using the more conservative classification was the 
comparison between the MD+L and control groups. 
However, further analyses of these data using an inverted 
efficiency score (Iuculano et al., 2008) did not confirm 
the existence of any differences. Apparently, the MD+L 
group tended to respond more quickly than the MD 
group in the symbolic task, but also committed more 
errors. These differences between groups were far from 
significant in the nonsymbolic task. This may indicate a 
particular deficit in the MD+L group when manipulating 
symbolic stimuli. Together our results for response 
latencies, accuracy, and the distance effect in symbolic 
and nonsymbolic tasks are compatible with a deficit 
in the approximate number system in MD children, 
independent of the classification criterion used to 
classify them. These analyses corroborate the existence 
of a statistically significant deficit in nonsymbolic 
magnitude processing, whereas differences between 
the MD and control groups in symbolic magnitude 
comparison were less pronounced. To what extent is 
performance in symbolic and nonsymbolic tasks related 
to more general mathematics achievement?

Regression models showed that nonsymbolic 
magnitude processing explained individual differences 
in school mathematics better than measures of symbolic 
processing when considering all of the children 
together. Similar but less robust results were obtained 
when considering the regression model for the control 
group only. No predictor related to number processing 
reached significance in the control group. However, 
error rates in the nonsymbolic task were the only 
variable specifically related to magnitude processing 
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that approached significance. Importantly, discrepant 
results were obtained by Holloway and Ansari (2009). 
After controlling for general abilities, these authors 
found that the distance effect that arose from reaction 
times in the symbolic task was the best variable to 
explain mathematical achievement in a group of typically 
achieving 6- to 8-year-old children. However, the 
nonsymbolic task in that study included magnitudes in 
the range of 1 to 9, which can be discriminated easier and 
consequently activate the approximate number system 
less than higher numerical intervals. This may have 
reduced the demands on the approximate number system 
and reduced the sensitivity of the nonsymbolic task to 
individual differences in mathematics achievement in 
the study by Holloway and Ansari (2009). Together our 
results suggest that nonsymbolic magnitude processing 
can explain mathematics achievement independently of 
the actual level of performance presented by children. 
Moreover, the results suggest that nonsymbolic number 
magnitude is a more specific predictor of mathematics 
achievement than symbolic magnitude.

Analysis of the regression models for each group 
separately revealed another pattern of results. Symbolic 
processing was the only variable specifically related to 
number processing that explained individual differences 
in low mathematics achievers. Are these results 
consistent with the disconnection hypothesis? Our results 
indicate that symbolic magnitude is more important 
for explaining mathematics learning in children with 
particularly low mathematics achievement. However, 
the MD group should then present more pronounced 
deficits in the symbolic task, and these deficits 
should explain mathematics achievement better than 
performance in the nonsymbolic task. The MD group 
was not significantly impaired in symbolic processing. 
Although ANOVA suggested the presence of significant 
differences between groups and the absolute difference 
in errors between the control and MD groups was 
approximately 7%, pairwise comparisons did not reveal 
a significant difference. Furthermore, performance in 
the symbolic task explained mathematics performance 
only for the MD group and not for the control group. 
Considering these results, our data cannot be interpreted 
as consistent with an access deficit. However, the 
present results may be consistent with Halberda et al. 
(2008), in which deficits in nonsymbolic representation 
may interfere with symbolic mathematics learning. We 
found that the MD and MD+L groups committed more 
errors in the symbolic task, but this difference was not 
sufficiently large to reach statistical significance. This 
suggests that symbolic representation is not significantly 
impaired in MD.

Considering that symbolic representation is slightly 
preserved in MD, this representation is used by MD 
children as a compensatory strategy to deal with the 
pronounced impairment observed in nonsymbolic 
representation. Considering that nonsymbolic 
representation is an important predictor of mathematics 
achievement demonstrated in the global regression 

model, symbolic representation may be used as a 
kind of “compensatory number line” utilized to solve 
mathematical problems. For children with preserved 
nonsymbolic processing (i.e., the control group), this 
representation predicts arithmetic performance. This 
result favors the hypothesis that lower acuity of the 
approximate number system is a core deficit of MD 
(Dehaene & Cohen, 1997; Halberda et al., 2008). 
However, the disconnection hypothesis also predicts 
more pronounced deficits in symbolic tasks than in 
nonsymbolic tasks, which was not observed in our study.

In conclusion, children with MD appeared to be 
able to access magnitude representations via both 
symbolic and nonsymbolic tasks, but they were 
less accurate than typically achieving children in 
nonsymbolic processing than in symbolic processing. 
Generally, nonsymbolic processing also appears to 
predict mathematics achievement more accurately 
than symbolic processing. However, when considering 
low-achieving children only, symbolic processing 
predicted mathematics achievement more accurately 
than nonsymbolic processing. For these reasons, basic 
magnitude representations of the approximate number 
system appear to be a more general predictor of 
mathematics achievement, whereas symbolic magnitude 
representation appears to compensate for deficits in the 
approximate number system.
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