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Abstract  

Resumo

In hogging bending moment regions of continuous composite beams the collapse by lateral-distortional buckling (LDB) can occur. The design 
against LDB according to ABNT NBR 8800:2008 begins with the determination of the elastic critical moment, which depends, among other factors, 
of the distribution of the bending moment in the analyzed span, taken into account in the formulation through the modification parameter Cdist. To 
assess the analytical formulations prescribed by ABNT NBR 8800:2008, numerical FE models that simulate the LDB behavior of continuous steel-
concrete composite beams were developed in this paper. The different boundary conditions presented in ABNT NBR 8800:2008 were checked 
using two different models: a simplified model, with a single simply supported span; and models with multiple internal supports and more than one 
span. It was observed that the Cdist values prescribed by ABNT NBR 8800:2008 can be unsafe, and therefore new values for Cdist are proposed 
in this paper. 

Keywords: elastic critical moment, lateral-distortional buckling, continuous composite beams.

Nas regiões de momento negativo de vigas mistas contínuas pode ocorrer a flambagem lateral com distorção (FLD). A verificação à FLD pela 
ABNT NBR 8800:2008 tem como procedimento inicial determinar o momento crítico elástico que depende, dentre outros fatores, da distribuição 
do momento fletor no vão analisado, considerada por meio do parâmetro de modificação Cdist. Para avaliar a formulação analítica prescrita pela 
norma ABNT NBR 8800:2008, nesse trabalho, modelos numéricos em elementos finitos, que representam o comportamento à FLD de vigas 
mistas foram desenvolvidos. As diferentes condições de contorno apresentadas na ABNT NBR 8800:2008 foram verificadas, considerando duas 
modelagens distintas: modelo simplificado com um vão biapoiado e modelos com mais de um vão. Foi notado que os valores de Cdist da ABNT 
NBR 8800:2008 podem conduzir a resultados contrários à segurança, por isso, propõem-se, neste trabalho, novos valores para Cdist.

Palavras-chave: momento crítico elástico, flambagem lateral com distorção, vigas mistas contínuas.
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1.	 Introduction

The main advantage of the use of continuous steel-concrete 
composite beams is the redistribution of the bending moment 
along the member’s length, which allows for the use of smaller 
steel cross-sections and increases the overall structural stiffness. 
However, continuous composite beams are subjected to hogging 
bending moments at the internal supports, making them susceptible 
to lateral-distortional buckling (LDB).
In the hogging moment region of continuous composite beams 
the bottom flange is under compression, giving it the propensity to 
buckle about its major second moment of area axis since buckling 
about the minor second moment of area axis is prevented by 
the web. The top flange is connected through shear connectors 
to the concrete slab, which prevents the steel cross-section from 
rotating in-plane as a whole. If the web of the steel section does 
not have enough stiffness to prevent lateral bending it will distort, 
characterizing the failure mode named lateral-distortional buckling 
(LDB), shown in Figure 1.
To determine the composite beam’s LDB strength the Brazilian 
standard ABNT  NBR  8800:2008 provides an approximated 
method similar to that found in the European standard EN 1994-
1-1:2004, which first determines the elastic critical moment, Mcr, to 
then calculate the ultimate design strength. Equation 1 is the one 
prescribed by ABNT NBR 8800:2008 for the determination of Mcr 
and was obtained by Roik, Hanswille and Kina [8] by applying the 
energy method.

(1)

in which G is the steel transverse elastic modulus; L is the length 
of the beam between vertical supports (both flanges must be 
laterally contained at these supports); J is the torsional constant 
of the steel section; Iafy is the second moment of area of the 
bottom flange about its y axis (Figure 1); Cdist is a coefficient 
that depends upon the bending moment distribution along the 
member length L; kr is the rotational stiffness of the composite 
beam; αg is a factor associated with the geometry of the cross-
section of the composite beam.

For doubly symmetric sections the αg factor is determined by the 
following expression:

(2)

in which:
(3)

and yr is the distance from the geometric center of the steel section 
to the midplane of the concrete slab; Ix is the second moment of 
area of the composite section at the hogging moment region (taking 
into account the steel section and the steel reinforcement of the 
concrete slab) about the x axis; Iax and Iay are the second moments 
of area of the steel section about its x and y axes, respectively; 
Aa is the area of the steel section; A is the area of the composite 
section at the hogging moment region (taking into account the 
steel section and the steel reinforcement of the concrete slab); h0 is 
the distance between the geometric centers of the top and bottom 
flanges of the steel section.
In order to obtain the elastic critical moment equation (Equation 1) 
the structural behavior associated with the LDB was simulated using 
an inverted “U” mechanism, composed of two adjacent beams and a 
concrete slab to which the steel beams are connected (Figure 2-a). 
In Figure 2-b the simplified model adopted by Roik, Hanswille and 
Kina [8], consisting of a composite beam of length L subjected to 
bending moments of opposite signs at both ends, is presented. In 
this simplified model the rotational stiffness of the composite beam 
(kr) is replaced by introducing a spring connected to the top flange of 
the steel section. The spring acts as a surrogate for the composite 
action of the “U” mechanism in the determination of the ultimate 
LDB strength, replacing the combined stiffness associated with 
the bending of the concrete slab, the distortion of the web and the 
deformation of the shear connection.
From Figure 2 it is possible to notice that the simplified model 
(Figure 2-b) must include an axial force Na so that in it the position 
of the elastic neutral axis coincides with its position in the composite 
beam being represented (Figure 2-a). In addition, the elastic critical 
moment of the composite beam Mcr (Figure 2-a) is determined 
based on the elastic critical moment of the steel section Ma (Figure 
2-b) using the following relation:

(4)

the axial force in the steel section is given by:

(5)

in which y  is the distance between the neutral axes of the steel 
section and of the composite section. The rotational stiffness of 
the inverted “U” mechanism is fundamental for the calculation of 
the elastic critical moment. This stiffness k0 is calculated as the 
stiffness of a sequence of three springs connected in series that 
represent the stiffnesses of the concrete slab (k1), of the steel 
section web (k2), and of the shear connection (k3). For steel 
sections with a plane web the stiffness k3 displays a much higher 
value than the other two stiffnesses, being therefore eliminated 
from the calculation to determine the value of the overall stiffness 

Figure 1
Lateral-distortional buckling
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kr. Consequently, the rotational stiffness kr for steel sections with a 
flat web is given by the following expression:

(6)

in which,

(7)

and
(8)

in which α is a coefficient that has its value dependent upon the 
position of the steel section: if the section is situated at the edges 

of the slab α is equal to 2, and if the section is placed in the inner 
region of the slab α is equal to 3 (for internal sections with four or 
more similar neighboring sections α can be taken as 4); (EI)2 is 
the bending stiffness of the homogenized composite section (disre-
garding concrete under tension) by unit length of the beam, taken 
as the smallest value among the stiffnesses at the center of the 
span and at the internal support; a is the distance between parallel 
beams (Figure 2-a); E is the elastic modulus of the steel section; tw 
is the thickness of the steel section’s web (Figure 2-a); h0 is the dis-
tance between the geometric centers of the steel section’s top and 
bottom flanges (Figure 2-b); na is the steel’s Poisson coefficient.
In Equation 1 it can be noted that the elastic critical moment is 

Figure 2
Models for the determination of the elastic critical moment

 

a) “U” mechanism 

 

b) Simplified model by Roik, Hanswille and Kina [8] 
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influenced by the shape of the bending moment diagram along 
the length of the beam, an effect that is captured by the coefficient 
Cdist. The values of this coefficient for continuous plain-webbed 
composite beams were determined by means of numerical 
analyses employing finite element simulations and are presented 
as tabled values by ABNT NBR 8800:2008. Table 1 and Table 2 list 
the values of Cdist for spans with uniformly distributed transverse 
loads, spans with point loads, and spans without loading along 
the length L.
Recent studies were performed to evaluate the elastic critical 
moment associated with LDB of continuous composite beams. 
Chen and Wang [4] analyzed numerically the structural behavior 
of continuous composite beams with and without transverse web-
stiffeners welded to the steel section. The beams were simulated 
using the finite element analysis software Ansys in order to study 
their behavior in the hogging moment region. The following 
parameters, which might affect the resistant capacity of the 
composite beam, were analyzed: bending stiffness of the concrete 
slab, stiffness of the stiffened web, slenderness of the steel section 

web, and the ratio of the distance between web stiffeners to the 
length of the beam. Chen and Wang [4] performed linear buckling 
and non-linear analyses. For the linear buckling analyses the 
model consisted of a simply supported steel beam subjected to 
hogging moment and with rotational restriction and lateral bracing 
applied to the top flange. The rotational restriction was imposed 
by using a torsional spring with a stiffness kr calculated using the 
formulation proposed by EN 1994-1-1:2004. In their parametric 
studies Chen and Wang [4] compared beams with identical cross-
sections with and without web stiffeners and concluded that 
such stiffeners increase the value of the elastic critical moment 
of composite beams and reduce the lateral displacement of the 
compressed flange.
Oliveira et al. [7] proposed a procedure to obtain the elastic critical 
moment associated with LDB of composite steel-concrete beams 
built with a sinusoidal web based on the results of numerical analyses 
simulating the inverted “U” mechanism. The proposed procedure 
uses the Roik, Hanswille and Kina [8] equation considering the 
geometric properties of a steel section with a sinusoidal web. 

Table 1
Values of Cdist for spans with uniformly distributed or point loads, adapted from ABNT NBR 8800:2008

Table 2
Values of Cdist for spans without loading along the length L, adapted from ABNT NBR 8800:2008

Loading 
and 

boundary 
conditions

Bending 
moment 
diagram1

Cdist

y=0.50 y=0.75 y=1.00 y=1.25 y=1.50 y=1.75 y=2.00 y=2.25 y=2.50

 

MoMoy
41.5 30.2 24.5 21.1 19.0 17.5 16.5 15.7 15.2

Mo
Moy 0.50 My o 33.9 22.7 17.3 14.1 13.0 12.0 11.4 10.9 10.6

 

Mo
Moy 0.75 My o 28.2 18.0 13.7 11.7 10.6 10.0 9.5 9.1 8.9

Mo
Moy Moy 21.9 13.9 11.0 9.6 8.8 8.3 8.0 7.8 7.6

yMo
Mo

28.4 21.8 18.6 16.7 15.6 14.8 14.2 13.8 13.5

 

Mo

MoyMoy 12.7 9.89 8.6 8.0 7.7 7.4 7.2 7.1 7.0

Note: 1Mo is the maximum design value of the bending moment, considering the analyzed span as simply supported.

Loading and 
boundary 
conditions

Bending moment 
diagram1

Cdist

y=0.00 y=0.25 y=0.50 y=0.75 y=1.00

 
M ÈM

acceptable
11.1 9.5 8.2 7.1 6.2

 

M

ÈM

acceptable

11.1 12.8 14.6 16.3 18.1

Note: 1M is the maximum design hogging moment, in absolute value, at the analyzed span, considering that y values grater than 1.00 have to be 

taken as 1.00.
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In addition to that, Oliveira et al. [7] recommend adopting, in the 
calculation of the rotational stiffness, the formulation proposed 
by Calenzani et al. [2]. New values for the Cdist coefficient were 
proposed by Oliveira et al. [7] for continuous composite beams with 
sinusoidal webs either subjected to uniformly distributed transverse 
load or without loading along their length. The values of the elastic 
critical moment calculated using the procedure proposed by Oliveira 
et al. [7] displayed good agreement with the values obtained through 
numerical analysis using the finite element software Ansys.
In this work, numerical models were created using ANSYS 15.0 [1] 
to simulate the lateral-distortional buckling behavior of composite 
steel-concrete beams in order to analyze the influence of the Cdist 
coefficient in the value of the elastic critical moment. The numeri-
cal model was validated using the numerical results of Chen and 
Wang [4]. To analyze the analytical formulation for Mcr prescribed 
by ABNT NBR 8800:2008 the composite beams were simulated 
with different boundary conditions, resulting in one hundred and 
eighteen different numerical models.

2.	 Validation of the numerical model

The finite element software ANSYS 15.0 [1] was used to create the 
numerical models with which the critical buckling load was calcu-
lated by performing a linear buckling analysis. The finite element 
model created to calculate the elastic critical moment associated 
with LDB is described in item 2.1. In order to determine which 
boundary conditions are ideal to simulate this physical problem a 
preliminary study of different forms of applying loads and creating 
supports was performed and is described in item 2.2. The valida-
tion of the numerical model was done by comparing the numerical 
results obtained in this paper against the numerical results pub-
lished by Chen and Wang [4].

2.1	 Description of the numerical model 

In the numerical model of the steel-concrete composite beam used 
in this work neither the concrete slab nor the shear connectors 
were modeled. To simulate the inverted “U” mechanism a torsional 

spring (with stiffness kr) and continuous lateral bracing were 
applied to the centerline of the top flange along the whole length 
of the beam. The numerical model is similar to the one adopted by 
Oliveira [6], composed of SHELL181 elements simulating the steel 
section and COMBIN14 elements simulating the torsional springs 
(Figure 3). The torsional stiffness kr was taken as the value of the 
concrete slab’s flexural stiffness (k1), obtained from Equation 7, 
since the steel web’s stiffness (k2) is already accounted for in the 
numerical model by the presence of the SHELL181 elements that 
make up the steel profile’s web.
The finite element mesh was created using Ansys’s mapped 
meshing option, which is capable of generating rectangular 2D 
elements in a regular pattern. The size of the shell elements 
was chosen to be 3  cm based on the mesh refinement studies 
performed by Oliveira [6].
The results obtained and presented by Chen and Wang [4] were 
used to validate the numerical model. The finite element model 
adopted by Chen and Wang [4] consists of a simply supported 

Figure 3
Finite element mesh adopted by Oliveira [6]

Figure 4
Numerical model by Chen and Wang [4]

a) Numerical model b) Rotational restriction 
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welded steel beam, subjected to a hogging bending moment Ma 
of constant value along its length and with rotational restriction 
and lateral bracing applied to the top flange (Figure 4-a). In 
order to simplify the model the axial force Na was not applied 
to the steel section. The rotational restriction at the top flange 
was applied by using springs, as presented in Figure 4-a. The 
numerical model created by Chen and Wang [4] was validated 
by comparing their results against those obtained by Ng and  
Ronagh [5], who performed numerical analyses of composite I beams.

In their parametric study, Chen and Wang [4] used a steel section 
with an 800 mm depth (d), a 320 mm flange width (bf), a 16 mm 
flange thickness (tf), and a 10 mm web thickness (tw). Different ratios 
between the span (L) and the section depth (d) were analyzed by 
Chen and Wang [4].
To validate the numerical model used in this work, simply supported 
beams with the same geometric characteristics of those studied by 
Chen and Wang [4] were modeled, with span-depth ratios (L/d) of 
either 8 or 12. The steel’s Poisson’s coefficient and elastic modulus 
were taken as 0.3 and 200 GPa, respectively.

2.2	 Boundary condition study 

To determine the most adequate manner to apply the boundary 
conditions different situations (identified as MT-1 through MT-10) were 
simulated in numerical models with a single simply supported span.
In the first model, MT-1 (Figure 5), web stiffeners were added at the 
extremities of the beam, a common situation in real life structures since 
such stiffeners are often used to create connections for composite 
beams. Vertical displacement was restricted (UY=0) in all the nodes 
of the bottom flange at both supports and longitudinal displacement 
was restricted (UZ=0) in a single node of the bottom flange of one of 
the supports. Lateral displacement was restricted (UX=0) in the four 
corners of the top and bottom flanges at both supports. The bending 
moment was applied at one end by means of a force binary acting 
upon the top and bottom flanges, as illustrated in Figure 6. In addition, 
the distributed load was applied as a series of nodal forces in the 
Y direction acting on the nodes placed at the intersection of the top 
flange and the web along the whole span of the beam.
Model MT-2 is identical to model MT-1 except for the web stiffeners, 
which have been removed. This model was created to explore the 
hypothesis that the web stiffeners imposed a warping restriction 
at the supports that made the behavior deviate from that of a fork 
support, the desired boundary condition.
To evaluate the influence of the position of the vertical support, in 
model MT-3 the restriction UY=0 was applied, at both supports, at 
a single node located in the centroid of the steel section (Figure 7). 
The longitudinal restriction UZ=0 was kept at the bottom flange of 

Figure 5
Boundary conditions of model MT-1

Figure 6
Loads applied in model MT-1

Figure 7
Boundary conditions in model MT-3
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the steel section. In this model the web stiffeners were not included 
at the supports. The loads are applied as in MT-1, as illustrated in 
Figure 5.
The model MT-4 is identical to MT-3 in all aspects but one: in 
MT-4 additional truss elements (LINK180) were added at both 
supports connecting each node of the cross section to the node 
at the centroid of the steel section (Figure 8). The purpose of this 
stiffening is to reduce or eliminate distortion of the steel section at 
the supports. The loads were applied as in MT-1 (Figure 6).
To evaluate the influence of the position of the longitudinal support 
(z direction) the model MT-5 was given the same boundary 
conditions as MT-4, with the exception that the position of the 
UZ=0 restriction was moved from the node at the bottom of the 
steel section to the node at its centroid (Figure 9). The loads were 
applied as in MT-1 (Figure 6).
The approach adopted to apply the bending moment at the extremities 
was also studied. In model MT-6 (same boundary conditions as MT-
5) the magnitude of the axial nodal forces applied at the end of the 
beam varied linearly with the depth of the section (Figure 10). This 

force distribution generates a stress pattern that matches the elastic 
stress diagram of beams undergoing bending. This triangular force 
distribution replaces the force binary at the flanges previously adopted 
to introduce the bending moment, but the uniformly distributed 
transversal loads were applied as described for MT-1.
Model MT-7 has the same boundary conditions as MT-1 but the 
bending moment at the extremity was applied using the triangular 
force diagram described for MT-6 (Figure 10).
In models MT-1 through MT-7 the bending moment was applied at 
a single extremity. In order to simulate an internal span the model 
MT-8 was created with the same boundary conditions and load 
introduction approach as MT-1 (Figure 6), the only difference being 
that the bending moment was applied at both extremities. Model 
MT-9 has the same boundary condition configuration as MT-1, but 
the bending moment was applied at both extremities using the 
elastic triangular diagram described for MT-6 (Figure 10). Finally, 
model MT-10 is a copy of model MT-6 with bending moment 
applied at both ends.
Table 3 compiles the characteristics of the numerical models 
MT-1 through MT-10 used in the study of boundary conditions 
performed in this paper. Table 4 displays the numerical results 
λANSYS (eigenvalues of the linear buckling analysis) along with the 
buckling mode observed (LWB stands for local web buckling). The 
reference values were taken from MT-1 for models with bending 
moment at a single end and from MT-8 for models with bending 
moment at both ends. The ratios between the eigenvalues of the 
reference model (λREF) and the eigenvalues of each model (λANSYS) 
are also presented in Table 4.
From Table 4 the importance of the introduction of some form of 
restriction against distortion at the supports (either web stiffeners 
or LINK180 truss elements) becomes clear, since models without 
such restriction displayed the local phenomenon of web buckling 
instead of the global phenomenon of lateral-distortional buckling. 

Figure 8
Boundary conditions in model MT-4

Figure 9
Boundary conditions in model MT-5

Figure 10
Bending moment applied at an extremity of the 
steel section in model MT-6
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The buckling modes obtained for MT-2 and MT-3 were LWB 
and an interaction between LWB and LDB, respectively, neither 
of interest to this study. Comparing models MT-4 and MT-1 it is 
possible to conclude that the presence of the web stiffener does 
not compromise the free warping behavior of the fork support, 
since the difference between the eigenvalues was of 1%.
With respect to the position of the vertical and longitudinal supports, 
Table 4 shows that placing the restriction either at the centroid or at 
the bottom flange (models MT-1 and MT-5) does not significantly 
alter the results (difference of 1% between the eigenvalues). 
Therefore the fact that the cross sections at the supports pivot 
around either the centroid or the bottom flange does not influence 
the results and either approach can be adopted.
When comparing models MT-1 with MT-7 and models MT-8 with MT-
9, it is possible to notice that the approach to introduce the bending 
moment (either the force binary or the elastic triangular force diagram) 
and its consequent stress distribution did not influence the results, 
since the λREF / λANSYS ratios were equal to 1.02 and 0.99, respectively.
Based on the observations that resulted from this study of the 

boundary conditions it is possible to conclude that the boundary 
conditions of models MT-5 and MT-10 (displacement restrictions 
applied at the steel section centroid, LINK180 elements at the 
supports to prevent distortion, and elastic triangular force diagram 
to apply the bending moment) are satisfactory for the study of 
lateral-distortional buckling and were, therefore, adopted in the 
parametric analysis performed in this paper.

2.3	 Description of the numerical model

For the validation of the numerical model two kinds of torsional 
restriction were implemented using the spring element COMBIN14: 
infinite rotational stiffness (considering that the concrete slab has 
infinite flexural stiffness) and k1 rotational stiffness (calculated 
based on the actual flexural stiffness of the concrete slab). In 
each case the elastic critical moment was obtained from the 
numerical analysis (Mcr,∞ and Mcr, respectively). Table 5 displays 
the examples analyzed in order to validate the numerical model 
adopted in this paper, with the ratios k1/k2 and Mcr / Mcr,∞ 

taken from 

Table 3
Boundary conditions studied

Model Web stiffeners 
at supports

Distortional 
restriction 
(Link 180)

Position of 
vertical support

Position of 
longitudinal 

support

Bending moment 
application

MT-1 Yes No Bottom flange Bottom flange Force binary

MT-2 No No Bottom flange Bottom flange Force binary

MT-3 No No Centroid Bottom flange Force binary

MT-4 No Yes Centroid Bottom flange Force binary

MT-5 No Yes Centroid Centroid Force binary

MT-6 No Yes Centroid Centroid Elastic diagram

MT-7 Yes No Bottom flange Bottom flange Elastic diagram

MT-8 Yes No Bottom flange Bottom flange Force binary

MT-9 Yes No Bottom flange Bottom flange Elastic diagram

MT-10 No Yes Centroid Centroid Elastic diagram

Table 4
Results obtained

Model lANSYS lReference/lANSYS Buckling mode

MT1 54.9362 – LDB

MT2 20.2109 2.72 LWB at support

MT3 45.3439 1.21 LDB + LWB at support

MT4 55.5789 0.99 LDB

MT5 55.5789 0.99 LDB

MT6 54.6327 1.01 LDB

MT7 53.9052 1.02 LDB

MT8 9.77831 – LDB

MT9 9.79843 0.99 LDB

MT10 9.9057 0.98 LDB
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the graphics presented by Chen and Wang [4]. The slab stiffness 
k1 was calculated based on the ratios k1/k2 described by Chen and 
Wang [4], given that the stiffness of the steel web (k2) is equal to 
70,08 kNm/m, as determined by Equation 8.
From the graphics in Figure 11 it can be noted that the results of 
the numerical model present similar behavior to the one obtained 
by Chen and Wang [4]. The values display a maximum deviation 
of 4% for models with L/d ratio equal to 8 (Table 5) and of 10% for 
models with L/d ratio equal to 12 (Table 5).
Given the results comparison presented it can be concluded that 
the numerical model adopted in this work is validated and proved 
itself accurate in the determination of the elastic critical moment 
associated with lateral-distortional buckling.

3.	 Parametric study 

In the parametric study the boundary conditions of the numerical 
model were altered. The simply supported span (simplified model 

proposed by Roik, Hanswille and Kina [8]) was simulated, along with 
models with either two or three spans, representing end and internal 
composite beam spans. The boundary conditions for a single simply 
supported span are described in item 2.2. For models with two or 
three spans the boundary conditions are similar to those of the 
simply supported beams: all supports restrict vertical displacement 
and a single support prevents longitudinal displacement.
The steel-concrete composite section represented in Figure 12-a 
was adopted and the lateral-distortional buckling was studied in 
this paper using the simplified numerical model of Figure 12-b. To 
obtain the value of the slab stiffness k1 Equation 7 was applied 
considering an edge beam (that is, a equals 2) and the distance 
between adjacent parallel beams (a) equal to 200 cm; the flexural 
stiffness of the homogenized composite section, discarding the 
concrete under tension, was equal to 528 kNm, resulting in k1 equal 
to 528 kN/rad. The length of the span (L) was equal to 1500 cm, 
approximately 25 times the depth of the beam. The factor related to 
the geometry of the cross section of the composite beam (ag) was 

Table 5
Results obtained by Chen and Wang [4] and numerical results obtained in this work

a) ratio L/d = 8

Chen and Wang (2012) Numerical results

k1/k2 k1 Mcr/Mcr,∞ Mcr/Mcr,∞ Relative deviation (%)

0 0 0.808 0.839 4%

0.90 62.87 0.880 0.871 -1%

2.93 205.46 0.931 0.910 -2%

4.97 348.25 0.949 0.931 -2%

6.92 484.84 0.964 0.944 -2%

9.93 696.01 0.976 0.956 -2%

11.97 838.91 0.976 0.962 -1%

14.90 1043.92 0.979 0.983 0%

29.88 2093.85 0.991 0.982 -1%

49.91 3497.99 0.991 0.989 0%

b) ratio L/d = 12

Chen and Wang (2012) Numerical results

k1/k2 k1 Mcr/Mcr,∞ Mcr/Mcr,∞ Relative deviation (%)

0 0 0.484 0.530 9%

1.02 75.09 0.697 0.642 -9%

2.98 219.01 0.833 0.754 -10%

5.02 369.19 0.885 0.814 -9%

6.97 513.11 0.914 0.850 -8%

9.95 732.12 0.937 0.883 -6%

11.99 882.29 0.946 0.899 -5%

14.97 1101.30 0.955 0.915 -4%

29.93 2202.61 0.979 0.954 -3%

49.91 3673.10 0.986 0.971 -1%
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equal to 1.09. Torsional stiffness, GaJ, was equal to 143617 kNcm². 
The elastic modulus of the steel was equal to 20000 kN/cm² and 
the second moment of area of the bottom flange of the steel section 
about the y axis (Iafy) was equal to 267 cm4. Finally, the ratio Mcr/Cdist 
was equal to 5379 kNcm.
All scenarios in Table 1 and Table 2 were studied. The Table 1 
beams have either uniformly distributed or point load. M0 is the 
maximum value of the bending moment (at the middle of the 
span) and though the beams were simply supported, the bending 
moment at the extremity is equal to yM0, a value directly applied to 
simulate a continuous beam.
For the inner spans of the continuous composite beams with 
uniformly distributed transverse loads, three possible ratios 
between the maximum sagging bending moment (M0) and the 
hogging bending moment at the extremities were studied: 0.5yM0, 
0.75yM0, and yM0.
To simulate the end span of continuous composite beams, 
simplified models (consisting of a single simply supported span) 

were adopted and a hogging bending moment ML was applied at 
the left end of the beam. The values of ML are listed in Table 6 
and Table 8 (models M1 through M9 and M73 through M81). The 
simplified models of the inner spans were obtained in a similar 
manner, by applying hogging bending moments ML and MR to 
the left and right ends (respectively) of a simply supported beam. 
The values of ML and MR for models M10 through M26 and M82 
through M90 are given in Table 6 and Table 8.
To analyze the influence of the adjacent spans a more complex 
model was adopted. Beams with two spans were modeled to 
simulate end spans and beams with three spans were modeled to 
simulate inner spans. For the end spans of continuous beams with 
uniformly distributed transverse load (models M37 through M45 in 
Table 7) it was possible to obtain a relation between the distributed 
loads q1 and q2 by employing the three-moment equation. Taking 
the distributed load in the analyzed span q2 as being equal to 
1 kN/m it follows that:

(9)

Figure 11
Comparison between the numerical results obtained in this work and the results published by Chen 
and Wang [4]

a) ratio L/d = 8 b) ratio L/d = 12

Figure 12
Model adopted for the numerical study

a) Real structure b) Numerical model
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Similar analytical relations were obtained for the models containing 
the inner span (M46 through M72 in Table 7) by also applying the 
three-moment equation to the three possible variations of the 

bending moment diagram. For the hogging moments at the ends 
equal to yM0 and 0.5yM0 the relations are:

(10)

Table 6
Numerical models of simply supported continuous composite beams with uniformly distributed 
transverse load

Model Boundary conditions Bending moment 
diagram y ML (kNm) MR (kNm)

M1 0.5 14.06 –

M2 0.75 21.09 –

M3 1 28.13 –

M4 1.25 35.16 –

M5 1.5 42.19 –

M6 1.75 49.22 –

M7 2 56.25 –

M8 2.25 63.28 –

M9 2.5 70.31 –

M10 0.5 14.06 7.03

M11 0.75 21.09 10.55

M12 1 28.13 14.06

M13 1.25 35.16 17.58

M14 1.5 42.19 21.09

M15 1.75 49.22 24.61

M16 2 56.25 28.13

M17 2.25 63.28 31.64

M18 2.5 70.31 35.16

M19 0.5 14.06 10.55

M20 0.75 21.09 15.82

M21 1 28.13 21.09

M22 1.25 35.16 26.37

M23 1.5 42.19 31.64

M24 1.75 49.22 36.91

M25 2 56.25 42.19

M26 2.25 63.28 47.46

M27 2.5 70.31 52.73

M28 0.5 14.06 14.06

M29 0.75 21.09 21.09

M30 1 28.13 28.13

M31 1.25 35.16 35.16

M32 1.5 42.19 42.19

M33 1.75 49.22 49.22

M34 2 56.25 56.25

M35 2.25 63.28 63.28

M36 2.5 70.31 70.31
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		  (11)

For bending moments at the end of the analyzed span equal  

to yM0 and 0.75yM0 the relations become:

(12)
	

Table 7
Numerical models with two or three spans of continuous composite beams with uniformly distributed 
transverse load

Model Boundary conditions Bending moment 
diagram y q1 (kN/m) q2 (kN/m)

M37 0.5 0 –

M38 0.75 0.50 –

M39 1 1.00 –

M40 1.25 1.50 –

M41 1.5 2.00 –

M42 1.75 2.50 –

M43 2 3.00 –

M44 2.25 3.50 –

M45 2.5 4.00 –

M46 0.5 0.13 -0.25

M47 0.75 0.69 0.13

M48 1 1.25 0.5

M49 1.25 1.81 0.88

M50 1.5 2.38 1.25

M51 1.75 2.94 1.63

M52 2 3.50 2

M53 2.25 4.06 2.38

M54 2.5 4.63 2.75

M55 0.5 0.19 0

M56 0.75 0.78 0.5

M57 1 1.38 1

M58 1.25 1.97 1.5

M59 1.5 2.56 2

M60 1.75 3.16 2.5

M61 2 3.75 3

M62 2.25 4.34 3.5

M63 2.5 4.94 4

M64 0.5 0.25 0.25

M65 0.75 0.88 0.88

M66 1 1.50 1.5

M67 1.25 2.13 2.13

M68 1.5 2.75 2.75

M69 1.75 3.38 3.38

M70 2 4 4

M71 2.25 4.63 4.63

M72 2.5 5.25 5.25
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Table 8
Numerical models of simply supported continuous composite beams with point load

Model Boundary conditions Bending moment 
diagram y ML (kN/m) MR (kN/m)

M73 0.5 1.88 –

M74 0.75 2.81 –

M75 1 3.75 –

M76 1.25 4.69 –

M77 1.5 5.63 –

M78 1.75 6.56 –

M79 2 7.50 –

M80 2.25 8.44 –

M81 2.5 9.38 –

M82 0.5 1.88 1.88

M83 0.75 2.81 2.81

M84 1 3.75 3.75

M85 1.25 4.69 4.69

M86 1.5 5.63 5.63

M87 1.75 6.56 6.56

M88 2 7.50 7.50

M89 2.25 8.44 8.44

M90 2.5 9.38 9.38

Table 9
Numerical models of continuous composite beams with two or three spans with point loads

Model Boundary conditions Bending moment 
diagram y P1 (kN) P2 (kN)

M91

 

0.5 0.33 –

M92 0.75 1 –

M93 1 1.67 –

M94 1.25 2.33 –

M95 1.5 3 –

M96 1.75 3.67 –

M97 2 4.33 –

M98 2.25 5 –

M99 2.5 5.67 –

M100 0.5 0.67 0.67

M101 0.75 1.5 1.5

M102 1 2.33 2.33

M103 1.25 3.17 3.17

M104 1.5 4 4

M105 1.75 4.83 4.83

M106 2 5.67 5.67

M107 2.25 6.5 6.5

M108 2.5 7.33 7.33
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(13)

Finally, when the hogging moment at both ends is equal to yM0 the 
relation becomes:

(14)

For continuous composite beams with point loads (models M91 
through M99 in Table 9) the three-moment equation was also 
applied and the relation between the point loads P1 and P2 is given 
by Equation 15:

(15)

For the models with the inner span (M100 through M108 in Table 
9), the relations between the point loads P1, P2 and P3 were:

(16)

The beams in Table 2 do not have transverse load applied along 
the length of the span (L), only hogging moments applied at the 
ends of the span, which causes the bending moment diagram to 
display a linear shape. For these cases only the simplified models 
(a single simply supported span with bending moments applied at 
the ends) were simulated. For models M109 through M113 in Table 
10 a bending moment M of 1kNm was applied to the left end and a 
bending moment equal to yM was applied at the right end in order 
to produce a bending moment diagram with a trapezoidal shape.

4.	 Analysis of the results 

4.1	 Numerical models of composite beams  
	 with uniformly distributed transverse load

Table 11 presents the results obtained numerically for the simplified 
models (M1 through M36) and for the models with more than one 
span (M37 through M72) with distributed transverse load. The 
results obtained for the simplified models (Mcr,s) and for the models 

with more than one span (Mcr,v) are confronted with the values 
obtained by applying Equation 1, proposed by Roik, Hanswille and 
Kina [8] and adopted by ABNT NBR 8800:2008 (Mcr,ABNT).
From Figure 13 it is possible to observe that the simplified model 
displays the same behavioral tendency that can be generated by 
applying the formulation prescribed by ABNT NBR 8800:2008, i.e., 
Mcr decreases with the increase of the y factor. However, the slope 
of the curve obtained by implementing the ABNT NBR 8800:2008 
procedure is steeper and the numerical results display lower 
values than the ones obtained from Equation 1.
In Figure 13 it can be noted that beams modeled with more than 
one span also displayed the same tendency derived from the 
ABNT NBR 8800:2008 procedure for ψ  values greater than 1.0 
(Mcr decreases with the increase of y). For y values below 1.0 
it is not possible to analyze the Mcr obtained, since in this case 
the adjacent span is the one that displays the lateral-distortional 
buckling behavior. It is also clear that the results obtained using 
the simplified model (single span) are very close to the ones 
obtained modelling beams with more spans, demonstrating that 
the adjacent span influences very little in the results collected from 
the analyzed span. Therefore, it is possible to conclude that the 
simplified numerical model displays very good accuracy.
When comparing the numerical results of the simplified models 
with the values obtained by applying the ABNT NBR 8800:2008 
procedure (Table 11), ratios of Mcr,s/Mcr,ABNT ranging from 0.35 to 
0.65 for end spans (models M1 through M9) and from 0.43 to 1.11 
for inner spans (M10 through M36) were observed. For models 
with more than one span (M37 through M45) the Mcr,v/Mcr,ABNT 
ratio ranges between 0.49 and 0.77 for end spans, meaning 
that ABNT NBR 8800:2008 predicts unsafe values for the elastic 
critical moment. For inner spans (models M46 through M72) a 
greater similarity between numerical values and analytical values 
was observed, with the Mcr,v/Mcr,ABNT ratio varying between 0.71  
and 1.39.
4.2	 Numerical models of compositee beams  
	 with point load 

Table 10
Numerical models of simply supported continuous composite beams without loading along the 
member length L 

Model Boundary conditions Bending moment 
diagram y ML (kN/m) MR (kN/m)

M109 0 1 0

M110 0.25 1 0.25

M111 0.5 1 0.5

M112 0.75 1 0.75

M113 1 1 1

M114 0 1 0

M115 0.25 1 -0.25

M116 0.5 1 -0.5

M117 0.75 1 -0.75

M118 1 1 -1
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Table 11
Numerical and analytical results of continuous composite beams with uniformly distributed 
transverse load

Models
y Cdist

Mcr,ABNT
(kNm)

Mcr,s
(kNm)

Mcr,v
(kNm)

Mcr,s/ 
Mcr,ABNT

Mcr,v/ 
Mcr,ABNT

Simplified
1 span

With 2 or 
3 spans

M1 M37 0.5 41.5 2223.26 789.20 496.71 0.35 0.22

M2 M38 0.75 30.2 1617.89 715.78 642.09 0.44 0.40

M3 M39 1 24.5 1312.53 659.29 649.58 0.50 0.49

M4 M40 1.25 21.1 1130.38 619.98 646.65 0.55 0.57

M5 M41 1.5 19 1017.88 591.95 641.85 0.58 0.63

M6 M42 1.75 17.5 937.52 571.20 637.42 0.61 0.68

M7 M43 2 16.5 883.95 555.31 633.76 0.63 0.72

M8 M44 2.25 15.7 841.09 542.79 630.78 0.65 0.75

M9 M45 2.5 15.2 814.30 532.69 628.36 0.65 0.77

M10 M46 0.5 33.9 1816.11 777.62 526.19 0.43 0.29

M11 M47 0.75 22.7 1216.10 692.52 656.40 0.57 0.54

M12 M48 1 17.3 926.80 630.32 653.99 0.68 0.71

M13 M49 1.25 14.1 755.37 587.93 643.06 0.78 0.85

M14 M50 1.5 13 696.44 558.03 632.38 0.80 0.91

M15 M51 1.75 12 642.87 536.02 623.62 0.83 0.97

M16 M52 2 11.4 610.73 519.22 616.75 0.85 1.01

M17 M53 2.25 10.9 583.94 506.00 611.40 0.87 1.05

M18 M54 2.5 10.6 567.87 495.35 607.17 0.87 1.07

M19 M55 0.5 28.2 1510.75 770.93 619.86 0.51 0.41

M20 M56 0.75 18 964.31 679.83 661.59 0.70 0.69

M21 M57 1 13.7 733.94 614.75 652.72 0.84 0.89

M22 M58 1.25 11.7 626.80 570.75 637.34 0.91 1.02

M23 M59 1.5 10.6 567.87 539.77 623.43 0.95 1.10

M24 M60 1.75 10 535.73 516.96 612.26 0.96 1.14

M25 M61 2 9.5 508.94 499.53 603.66 0.98 1.19

M26 M62 2.25 9.1 487.51 485.81 597.00 1.00 1.22

M27 M63 2.5 8.9 476.80 474.75 591.75 1.00 1.24

M28 M64 0.5 21.9 1173.24 760.93 631.82 0.65 0.54

M29 M65 0.75 13.9 744.66 666.41 664.87 0.89 0.89

M30 M66 1 11 589.30 596.53 647.70 1.01 1.10

M31 M67 1.25 9.6 514.30 548.51 625.86 1.07 1.22

M32 M68 1.5 8.8 471.44 514.93 607.51 1.09 1.29

M33 M69 1.75 8.3 444.65 490.43 593.63 1.10 1.34

M34 M70 2 8 428.58 471.84 583.22 1.10 1.36

M35 M71 2.25 7.8 417.87 457.31 574.93 1.09 1.38

M36 M72 2.5 7.6 407.15 445.65 567.73 1.09 1.39
Mcr,s = Elastic critical moment for simplified model with a single simply supported span; Mcr,v = Elastic critical moment for models with two or three spans
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Figure 13
Mcr x y for continuous composite beams with uniformly distributed load

a) end span models (M1 through M9 and M37 through M45) b) inner span models (M10 through M18 and M46 through M54)

c) inner span models (M19 through M27 and M55 through M63) d) inner span models (M28 through M36 and M64 through M72)

Table 12
Numerical and analytical results of continuous composite beams with point loads

Models
y Cdist

Mcr,ABNT
(kNm)

Mcr,s
(kNm)

Mcr,v
(kNm)

Mcr,s/ 
Mcr,ABNT

Mcr,v/ 
Mcr,ABNT

Simplified
1 span

With 2 or 
3 spans

M73 M91 0.5 28.4 1521.46 687.29 582.41 0.45 0.38

M74 M92 0.75 21.8 1167.88 617.80 609.90 0.53 0.52

M75 M93 1 18.6 996.45 577.94 602.99 0.58 0.61

M76 M94 1.25 16.7 894.66 552.58 592.30 0.62 0.66

M77 M95 1.5 15.6 835.73 535.10 582.52 0.64 0.70

M78 M96 1.75 14.8 792.87 522.33 622.65 0.66 0.79

M79 M97 2 14.2 760.73 512.60 567.22 0.67 0.75

M80 M98 2.25 13.8 739.30 504.93 561.33 0.68 0.76

M81 M99 2.5 13.5 723.23 498.74 556.33 0.69 0.77

M82 M100 0.5 12.7 680.37 636.42 617.16 0.94 0.91

M83 M101 0.75 9.89 529.83 554.48 595.37 1.05 1.12

M84 M102 1 8.6 460.72 507.39 563.68 1.10 1.22

M85 M103 1.25 8 428.58 477.59 537.51 1.11 1.25

M86 M104 1.5 7.7 412.51 457.03 516.42 1.11 1.25

M87 M105 1.75 7.4 396.44 441.96 499.16 1.11 1.26

M88 M106 2 7.2 385.72 430.42 484.87 1.12 1.26

M89 M107 2.25 7.1 380.36 421.29 472.93 1.11 1.24

M90 M108 2.5 7 375.01 413.88 462.90 1.10 1.23
Mcr,s = Elastic critical moment for simplified model with a single simply supported span; Mcr,v = Elastic critical moment for models with two or three spans
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Table 12 displays the results obtained numerically for the simplified 
models (M73 through M90) and for the models with more than one 
span (M91 through M108) with point loads. The results obtained for 
the simplified models (Mcr,s) and for the models with more than one 
span (Mcr,v) were confronted against those obtained by applying 
Equation 1 (Mcr,ABNT).
From Figure 14-a it is possible to observe that the numerical 
models, both the simplified and those with more than a single 
span, displayed the same overall behavior detected in the models 
with distributed load (Figure 13-a). Figure 14-b shows that for all 
values of y the numerical results are higher than those obtained by 
applying the ABNT NBR 8800:2008 procedure.
When comparing the numerical results of the simplified models 
against the ABNT NBR 8800:2008 results (Table 12), ratios of Mcr,s/
Mcr,ABNT ranging from 0.45 to 0.69 for end spans (M73 through M81) 
and from 0.94 to 1.11 for inner spans (M82 through M90) were 
observed. For models with more than one span (M91 through M99) 
the Mcr,v/Mcr,ABNT ratio ranges between 0.38 and 0.79 for end spans, 

meaning that yet again ABNT NBR8800:2008 predicts unsafe 
values for the elastic critical moment Mcr. For inner spans (models 
M100 through M108) a greater similarity between numerical values 
and analytical values was observed, with the Mcr,v/Mcr,ABNT ratio 
varying between 1.12 and 1.26, always predicting safe values.

4.3	 Numerical models of composite beams 
	 without transverse loads 

Table 13 presents the results obtained numerically for the 
simplified models with hogging moments at the ends causing a 
single curvature (M109 through M113) and for the models with 
bending moments at the ends generating a double curvature (M91 
through M108). The results obtained using the simply supported 
model (Mcr,b) were confronted with the ones obtained by applying 
the procedure prescribed by ABNT NBR 8800:2008 (Mcr,ABNT).
From Figure 15 it can be noted that the simply supported model 
displays the same behavioral tendency than can be generated 

Figure 14
Mcr x y for continuous composite beams with point loads

a) end span models (M73 through M81 and M91 through M99) b) inner span models (M82 through M90 and M100 through M108)

Table 13
Numerical and analytical results of continuous composite beams without loading along the member 
length L 

Models
y Cdist

Mcr,ABNT
(kNm)

Mcr,b
(kNm) Mcr,b/ Mcr,ABNTSimply supported

M109 0 11.1 594.66 440.29 0.74

M110 0.25 9.5 508.94 420.20 0.83

M111 0.5 8.2 439.29 398.70 0.91

M112 0.75 7.1 380.36 375.05 0.99

M113 1 6.2 332.15 344.77 1.04

M114 0 11.1 594.66 440.29 0.74

M115 0.25 12.8 685.73 459.41 0.67

M116 0.5 14.6 782.16 477.81 0.61

M117 0.75 16.3 873.23 495.66 0.57

M118 1 18.1 969.66 513.03 0.53
Mcr,b = Elastic critical moment for simplified model with a single simply supported span
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by applying the ABNT NBR8800:2008 method, i.e., Mcr decreases 
with the increase of the y factor. However, the slope of the curves 
associated with Mcr,ABNT is steeper than the one associated with the 
numerical results. The numerical model returns values that are 
inferior to those obtained by applying Equation 1 in all cases but 
the one in which there is single curvature and y is greater than 0.5.
From Table 13 the Mcr,s/Mcr,ABNT ratio can be seen ranging from 
0.74 to 1.04 (models M109 through M113, single curvature) and 
from 0.53 to 0.74 (models M114 through M118, double curvature), 
leading to the conclusion that ABNT NBR 8800:2008 predicts 
unsafe values for Mcr (except for beams with a single curvature 
when ψ is greater than 0.5).
4.4	 Proposed values for the modification parameter 

Previous discussion in items 4.1 through 4.3 showed there was 

a small difference between the simplified models and the models 
with more than one span. Since models with multiple spans more 
accurately simulate the behavior of continuous composite beams, 
the use of Table 14 and Table 15 is suggested in place of Table 
1 and Table 2 from ABNT NBR 8800:2008 in order to determine 
the values of the Cdist coefficient. The Cdist values in Table 14 and 
Table 15 were obtained based on the numerical results by applying 
Equation 17.

(17)

in which Mcr is the value of the elastic critical moment obtained 
using the numerical models with more than one span, if y is equal 
to or greater than 1, and using the numerical models with a single 

Figure 15
Mcr x y for continuous composite beams without loads along member length L

a) models with single curvature (M109 through M113) b) models with double curvature (M114 through M118)

Table 14
Proposed values of Cdist for spans with uniformly distributed or point loads

Loading 
and 

boundary 
conditions

Bending 
moment 
diagram1

Cdist

y=0.50 y=0.75 y=1.00 y=1.25 y=1.50 y=1.75 y=2.00 y=2.25 y=2.50

 

MoMoy
14.7 13.4 12.1 12.1 12.0 11.9 11.8 11.8 11.7

Mo
Moy 0.50 My o 14.5 12.9 12.2 12.0 11.8 11.6 11.5 11.4 11.3

 

Mo
Moy 0.75 My o 14.4 12.7 12.2 11.9 11.6 11.4 11.3 11.1 11.0

Mo
Moy Moy 14.2 12.4 12.1 11.7 11.3 11.1 10.9 10.7 10.6

yMo
Mo

12.8 11.5 11.3 11.1 10.9 11.6 10.6 10.5 10.4

 

Mo

MoyMoy 11.9 11.1 10.5 10.0 9.6 9.3 9.1 8.8 8.6

Note: 1Mo is the maximum design value of the bending moment, considering the analyzed span as simply supported.
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simply supported span if y is smaller than 1.

5.	 Conclusion

In this paper, numerical models were developed in the finite 
element software Ansys to simulate the lateral-distortional buckling 
behavior of continuous steel-concrete composite beams and 
determine the elastic critical moment. The different boundary 
conditions presented in ABNT  NBR  8800:2008 were replicated 
in simplified models with a single simply supported span and in 
more complex models with more than one span, which made it 
possible to evaluate the modification parameter Cdist. The influence 
of the bending moment distribution was analyzed and ultimately 
led to the conclusion that the formulation proposed by ABNT NBR 
8800:2008 might lead to unsafe predictions.
This paper proposes new values for the modification parameter 
Cdist based on the numerical results obtained for models with more 
than a single span and a y value greater than 1. Since in models 
with more than one span it is not possible to analyze the cases 
in which y is smaller than 1, the Cdist obtained in the simplified 
numerical model (single simply supported span) was used. The 
observation was made that, for continuous composite beams, 
the bending moment distribution along the length of the span 
influences very little the resulting Mcr value, given that the Cdist 
values are nearly constant. A revision of the Cdist values proposed 
by ABNT  NBR  8800:2008 is recommended based on the Cdist 
values obtained numerically in this paper.
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Table 15
Proposed values of Cdist for spans without loads along the member length L

Loading and 
boundary 
conditions

Bending moment 
diagram1

Cdist

y=0.00 y=0.25 y=0.50 y=0.75 y=1.00

 
M ÈM

acceptable
8.2 7.8 7.4 7.0 6.4

 

M

ÈM

acceptable

8.2 8.6 8.9 9.3 9.6

Note: 1M is the maximum design hogging moment, in absolute value, at the analyzed span, considering that y values grater than 1.00 have to be 

taken as 1.00.


