Acessibilidade / Reportar erro

Perspectives of gene editing for cattle farming in tropical and subtropical regions

Abstract

Cattle productivity in tropical and subtropical regions can be severely affected by the environment. Reproductive performance, milk and meat production are compromised by the heat stress imposed by the elevated temperature and humidity. The resulting low productivity contributes to reduce the farmer’s income and to increase the methane emissions per unit of animal protein produced and the pressure on land usage. The introduction of highly productive European cattle breeds as well as crossbreeding with local breeds have been adopted as strategies to increase productivity but the positive effects have been limited by the low adaptation of European animals to hot climates and by the reduction of the heterosis effect in the following generations. Gene editing tools allow precise modifications in the animal genome and can be an ally to the cattle industry in tropical and subtropical regions. Alleles associated with production or heat tolerance can be shifted between breeds without the need of crossbreeding. Alongside assisted reproductive biotechnologies and genome selection, gene editing can accelerate the genetic gain of indigenous breeds such as zebu cattle. This review focuses on some of the potential applications of gene editing for cattle farming in tropical and subtropical regions, bringing aspects related to heat stress, milk yield, bull reproduction and methane emissions.

Keywords:
genome editing; bovine; livestock; heat stress; CRISPR

Introduction

Tropical and subtropical regions are home of about 40% of the world’s human population and where nations with the highest growth rates and poorest populations are located (United Nations Department of Economic and Social Affairs Population Division, 2022United NationsDepartment of Economic and Social Affairs Population Division. World population prospects 2022: summary of results. UN DESA/POP/2022/TR/NO 3 2022. New York; 2022.). These regions also contain more than 80% of the cattle population (Cooke et al., 2020Cooke RF, Daigle CL, Moriel P, Smith SB, Tedeschi LO, Vendramini JMB. Cattle adapted to tropical and subtropical environments: social, nutritional, and carcass quality considerations. J Anim Sci. 2020;98(2):skaa014. http://dx.doi.org/10.1093/jas/skaa014. PMid:31955200.
http://dx.doi.org/10.1093/jas/skaa014...
) and, therefore, have great potential to contribute to fulfill the global demand on animal-source food for a constantly growing population. However, tropical and subtropical environments have been challenging for livestock production. The high temperature and humidity found in several of those regions have a negative impact on animal physiology, altering metabolic and hormonal status (Santos et al., 2021Santos MM, Souza-Junior JBF, Dantas MRT, de Macedo Costa LL. An updated review on cattle thermoregulation: physiological responses, biophysical mechanisms, and heat stress alleviation pathways. Environ Sci Pollut Res Int. 2021;28(24):30471-85. http://dx.doi.org/10.1007/s11356-021-14077-0. PMid:33895955.
http://dx.doi.org/10.1007/s11356-021-140...
), resulting in low fertility and suboptimal milk and meat production (Summer et al., 2018Summer A, Lora I, Formaggioni P, Gottardo F. Impact of heat stress on milk and meat production. Anim Front. 2018;9(1):39-46. http://dx.doi.org/10.1093/af/vfy026. PMid:32002238.
http://dx.doi.org/10.1093/af/vfy026...
). The outputs of large numbers of less productive cattle in these regions are low farmer income, high methane emission per unit of milk or meat produced (Oosting et al., 2014Oosting SJ, Udo HMJ, Viets TC. Development of livestock production in the tropics: farm and farmers’ perspectives. Animal. 2014;8(8):1238-48. http://dx.doi.org/10.1017/S1751731114000548. PMid:24673769.
http://dx.doi.org/10.1017/S1751731114000...
) and pressure on land usage (DeFries and Rosenzweig, 2010DeFries R, Rosenzweig C. Toward a whole-landscape approach for sustainable land use in the tropics. Proc Natl Acad Sci USA. 2010;107(46):19627-32. http://dx.doi.org/10.1073/pnas.1011163107. PMid:21081701.
http://dx.doi.org/10.1073/pnas.101116310...
; Weindl et al., 2017Weindl I, Popp A, Bodirsky BL, Rolinski S, Lotze-Campen H, Biewald A, Humpenöder F, Dietrich JP, Stevanović M. Livestock and human use of land: productivity trends and dietary choices as drivers of future land and carbon dynamics. Global Planet Change. 2017;159:1-10. http://dx.doi.org/10.1016/j.gloplacha.2017.10.002.
http://dx.doi.org/10.1016/j.gloplacha.20...
).

In an attempt to improve cattle productivity, breeds from European origin have been introduced in Africa, Asia and Latin America. However, the introduction of breeds that were proved successful in developed nations located in regions of temperate climate usually results in lower efficiency because of the heat stress, low pasture quality (Manteca and Smith, 1994Manteca X, Smith AJ. Effects of poor forage conditions on the behaviour of grazing ruminants. Trop Anim Health Prod. 1994;26(3):129-38. http://dx.doi.org/10.1007/BF02241068. PMid:7809984.
http://dx.doi.org/10.1007/BF02241068...
) and parasites (Shyma et al., 2015Shyma KP, Gupta JP, Singh V. Breeding strategies for tick resistance in tropical cattle: a sustainable approach for tick control. J Parasit Dis. 2015;39(1):1-6. http://dx.doi.org/10.1007/s12639-013-0294-5. PMid:25698850.
http://dx.doi.org/10.1007/s12639-013-029...
) found in the tropics. There are two strategies to reduce the effect of heat stress on productivity: to increase the heat tolerance of exotic breeds and/or to increase the productivity of local breeds already adapted to tropical and subtropical environments, such as zebu breeds. Both strategies can be achieved by genetic improvement programs. Local breeds can also be crossed with exotic non-adapted breeds to take advantage of heterosis (Syrstad, 1996Syrstad O. Dairy cattle crossbreeding in the tropics: choice of crossbreeding strategy. Trop Anim Health Prod. 1996;28(3):223-9. http://dx.doi.org/10.1007/BF02240940. PMid:8888529.
http://dx.doi.org/10.1007/BF02240940...
, 1989Syrstad O. Dairy cattle cross-breeding in the tropics: performance of secondary cross-bred populations. Livest Prod Sci. 1989;23(1-2):97-106. http://dx.doi.org/10.1016/0301-6226(89)90008-0.
http://dx.doi.org/10.1016/0301-6226(89)9...
; Miranda and Freitas, 2009Miranda J, Freitas A. Raças e tipos de cruzamento para produção de leite. Juiz de Fora: Embrapa; 2009.). However, these approaches require several generations to change a desirable trait in a population, which takes decades because of the long generation interval in cattle (Jonas and Koning, 2015Jonas E, Koning D-J. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs. Front Genet. 2015;6:49. http://dx.doi.org/10.3389/fgene.2015.00049. PMid:25750652.
http://dx.doi.org/10.3389/fgene.2015.000...
). In addition, the effect of heterosis is reduced in the following generations (Syrstad, 1989Syrstad O. Dairy cattle cross-breeding in the tropics: performance of secondary cross-bred populations. Livest Prod Sci. 1989;23(1-2):97-106. http://dx.doi.org/10.1016/0301-6226(89)90008-0.
http://dx.doi.org/10.1016/0301-6226(89)9...
). Finally, although introgression by crossbreeding can transfer genes or alleles associated to favorable traits in a determined breed, it can also transfer alleles of non-desired traits that may further compromise animal fertility and performance.

Gene (or genome) editing tools have been developed and improved in the last two decades. These tools allow the precise introduction of mutations in a given gene (Gaj et al., 2013Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397-405. http://dx.doi.org/10.1016/j.tibtech.2013.04.004. PMid:23664777.
http://dx.doi.org/10.1016/j.tibtech.2013...
), for what they are referred to as precision breeding technologies. The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) - associated nuclease 9 (CRISPR/Cas9 system) technology is among the most efficient, easiest to use and lowest cost gene editing methods (Kim and Kim, 2014Kim H, Kim J-S. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15(5):321-34. http://dx.doi.org/10.1038/nrg3686. PMid:24690881.
http://dx.doi.org/10.1038/nrg3686...
; Zhao et al., 2021Zhao D, Zhu X, Zhou H, Sun N, Wang T, Bi C, Zhang X. CRISPR-based metabolic pathway engineering. Metab Eng. 2021;63:148-59. http://dx.doi.org/10.1016/j.ymben.2020.10.004. PMid:33152516.
http://dx.doi.org/10.1016/j.ymben.2020.1...
; Zhu, 2022Zhu Y. Advances in CRISPR/Cas9. BioMed Res Int. 2022;2022:9978571. http://dx.doi.org/10.1155/2022/9978571. PMid:36193328.
http://dx.doi.org/10.1155/2022/9978571...
). In the CRISPR technology, a small guide RNA (sgRNA) leads a nuclease (Cas9, for example) to a specific location in the genome to create a double-stranded break (DSB) in the DNA (Doudna and Charpentier, 2014Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. http://dx.doi.org/10.1126/science.1258096.
http://dx.doi.org/10.1126/science.125809...
). The sgRNA is designed to align to a specific target sequence in the DNA, reducing the chances of targeting undesired sequences (off-targets). Following the action of the nuclease, the repair of the DNA cleavage occurs mainly by non-homologous end joining (NHEJ) of the broken ends. In this process, some nucleotides can be inserted or deleted (indels) and create mutations in the target gene. If it is in frameshift, the mutations can disrupt the gene expression and, consequently, eliminate the production of the encoded protein, or eventually it can also create a stop-codon. This strategy can be useful to knock out the expression of a specific protein or to generate a truncated protein in a given organism. The cell can also repair the DSB by the homology-directed repair (HDR) mechanism. In this case, an oligodeoxynucleotide (ODN) donor template homologous to the target region designed with a target mutation is used. This ODN donor template containing the mutation is then inserted by homology into the cell genome during the DSB repair. However, HDR is much less frequent than the NHEJ mechanism (Liu et al., 2019Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W. Methodologies for Improving HDR Efficiency. Front Genet. 2019;9:691. http://dx.doi.org/10.3389/fgene.2018.00691. PMid:30687381.
http://dx.doi.org/10.3389/fgene.2018.006...
) and is restricted to the G2 and S phases of the cell cycle (Symington and Gautier, 2011Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45(1):247-71. http://dx.doi.org/10.1146/annurev-genet-110410-132435. PMid:21910633.
http://dx.doi.org/10.1146/annurev-genet-...
; Takata et al., 1998Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 1998;17(18):5497-508. http://dx.doi.org/10.1093/emboj/17.18.5497. PMid:9736627.
http://dx.doi.org/10.1093/emboj/17.18.54...
), making gene editing by HDR less common than NHEJ.

The applications of the CRISPR system in different fields of biology has been shown in several reports (Carroll, 2017Carroll D. Genome editing: past, present, and future. Yale J Biol Med. 2017;90(4):653-9. PMid:29259529.; Doudna, 2020Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229-36. http://dx.doi.org/10.1038/s41586-020-1978-5. PMid:32051598.
http://dx.doi.org/10.1038/s41586-020-197...
; Molla et al., 2021Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. Nat Plants. 2021;7(9):1166-87. http://dx.doi.org/10.1038/s41477-021-00991-1. PMid:34518669.
http://dx.doi.org/10.1038/s41477-021-009...
). In cattle, the application of this technology opens the opportunity to accelerate genetic improvement via the faster dissemination of desirable traits. The technology allows alleles associated with desirable traits in a particular breed to be introduced into another breed without crossbreeding, or to increase the frequency of such alleles in a given population (Hickey et al., 2016Hickey JM, Bruce C, Whitelaw A, Gorjanc G. Promotion of alleles by genome editing in livestock breeding programmes. J Anim Breed Genet. 2016;133(2):83-4. http://dx.doi.org/10.1111/jbg.12206. PMid:26995217.
http://dx.doi.org/10.1111/jbg.12206...
). Gene editing together with genomic selection has the potential to double the genetic gain after 20 years when multiple edits are performed (Jenko et al., 2015Jenko J, Gorjanc G, Cleveland MA, Varshney RK, Whitelaw CBA, Woolliams JA, Hickey JM. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genet Sel Evol. 2015;47(1):55. http://dx.doi.org/10.1186/s12711-015-0135-3. PMid:26133579.
http://dx.doi.org/10.1186/s12711-015-013...
).

Assisted reproductive technologies such as somatic cell nuclear transfer (animal cloning) or in vitro fertilization (IVF) are required to generate gene-edited embryos. When IVF is applied, a large number of gene-edited animals can be produced in one or two generations by commercial in vitro fertilization laboratories. The gene-edited embryos can be biopsied so that the genomic evaluation can be performed in order to select the ones with high estimated genomic values before transferring them into recipients. Thus, gene editing together with assisted reproductive technologies and genomic selection can play a major role in genetic breeding programs by either reducing the generation interval, increasing selection intensity and accuracy, and/or by increasing genetic variation (Mueller and Van Eenennaam, 2022Mueller ML, Van Eenennaam AL. Synergistic power of genomic selection, assisted reproductive technologies, and gene editing to drive genetic improvement of cattle. CABI Agric Biosci. 2022;3(1):13. http://dx.doi.org/10.1186/s43170-022-00080-z.
http://dx.doi.org/10.1186/s43170-022-000...
).

In this review we will focus on how cattle farming can benefit from gene editing technologies in the tropical and subtropical regions. This review will cover aspects related to gene editing applications regarding heat stress, milk yield and composition, bull reproduction and methane emissions.

Gene editing to alleviate the effects of heat stress on European cattle

Several breeds of Bos taurus cattle from central and south America such as Senepol, Romosinuano, Criollo Limonero and Carora have been selected for adaptation to tropical conditions. One of the first studies examining the thermotolerance of B. taurus cattle from the tropics was performed by Hammond et al. in subtropical Florida to compare the rectal temperature (RT) of Senepol, Angus, Hereford and Brahman cattle during summer (Hammond et al., 1996Hammond AC, Olson TA, Chase CC Jr, Bowers EJ, Randel RD, Murphy CN, Vogt DW, Tewolde A. Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus, and Hereford cattle in Florida. J Anim Sci. 1996;74(2):295-303. http://dx.doi.org/10.2527/1996.742295x. PMid:8690664.
http://dx.doi.org/10.2527/1996.742295x...
). The authors found that Senepol and Brahman had similar temperature, which was lower than Hereford and Angus animals. Crossbreeding of Hereford and short hair Senepol revealed that the offspring inherited the short hair phenotype and lower RT typical of Senepol cattle. When investigating this phenomenon further, Olson et al. performed backcross mating with Holstein, Charolais, or Angus to Senepol or Carora crosses and found evidence of a major gene with dominant inheritance responsible for creating the short, sleek hair coat phenotype seen in the tropical breeds (Olson et al., 2003Olson TA, Lucena C, Chase CC Jr, Hammond AC. Evidence of a major gene influencing hair length and heat tolerance in Bos taurus cattle. J Anim Sci. 2003;81(1):80-90. http://dx.doi.org/10.2527/2003.81180x. PMid:12597376.
http://dx.doi.org/10.2527/2003.81180x...
). They reported lower RT in crossbred calves (0.18-0.4 °C) and lactating cows (0.61 °C) that had short hair when compared to normal-haired contemporaries.

In 2014, Littlejohn et al. described a causative mutation in the prolactin receptor gene (PRLR) responsible for the short (slick) hair coat phenotype (Littlejohn et al., 2014Littlejohn MD, Henty KM, Tiplady K, Johnson T, Harland C, Lopdell T, Sherlock RG, Li W, Lukefahr SD, Shanks BC, Garrick DJ, Snell RG, Spelman RJ, Davis SR. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nat Commun. 2014;5(1):5861. http://dx.doi.org/10.1038/ncomms6861. PMid:25519203.
http://dx.doi.org/10.1038/ncomms6861...
). A frameshift mutation resulting from a single cystine deletion caused a premature stop codon (p.Leu462*) in the resulting protein. This mutation became known as the SLICK1 allele and, although the SLICK1 has been the best characterized mutation so far, additional variants of the PRLR have been reported that result in truncation of the protein at different points and causing the similar slick phenotype observed in criollo-derived B. taurus breeds (Porto-Neto et al., 2018Porto-Neto LR, Bickhart DM, Landaeta-Hernandez AJ, Utsunomiya YT, Pagan M, Jimenez E, Hansen PJ, Dikmen S, Schroeder SG, Kim ES, Sun J, Crespo E, Amati N, Cole JB, Null DJ, Garcia JF, Reverter A, Barendse W, Sonstegard TS. Convergent evolution of slick coat in cattle through truncation mutations in the prolactin receptor. Front Genet. 2018;9:57. http://dx.doi.org/10.3389/fgene.2018.00057. PMid:29527221.
http://dx.doi.org/10.3389/fgene.2018.000...
; Flórez Murillo et al., 2021Flórez Murillo JM, Landaeta‐Hernández AJ, Kim E, Bostrom JR, Larson SA, Pérez O’Brien AM, Montero-Urdaneta MA, Garcia JF, Sonstegard TS. Three novel nonsense mutations of prolactin receptor found in heat‐tolerant Bos taurus breeds of the Caribbean Basin. Anim Genet. 2021;52(1):132-4. http://dx.doi.org/10.1111/age.13027. PMid:33259090.
http://dx.doi.org/10.1111/age.13027...
). These alleles have been named SLICK2-SLICK6 (Flórez Murillo et al., 2021Flórez Murillo JM, Landaeta‐Hernández AJ, Kim E, Bostrom JR, Larson SA, Pérez O’Brien AM, Montero-Urdaneta MA, Garcia JF, Sonstegard TS. Three novel nonsense mutations of prolactin receptor found in heat‐tolerant Bos taurus breeds of the Caribbean Basin. Anim Genet. 2021;52(1):132-4. http://dx.doi.org/10.1111/age.13027. PMid:33259090.
http://dx.doi.org/10.1111/age.13027...
). Matings between Senepol and Holsteins were performed in Florida and Puerto Rico since the 1980s, and nowadays there are several registered Holstein sires that carry the SLICK1 allele. In Puerto Rico, crosses between Holsteins and other thermotolerant criollo breeds found in the Caribbean were done for many years before the introduction of the Senepol. As a result, Puerto Rican Holsteins are still genotyped as having the SLICK1 allele, but the mutation is most likely to have been introduced via a shared common ancestor between Senepol and the other criollo breeds in Puerto Rico (Hansen, 2020Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology. 2020;154:190-202. http://dx.doi.org/10.1016/j.theriogenology.2020.05.010. PMid:32622199.
http://dx.doi.org/10.1016/j.theriogenolo...
).

The thermotolerance of slick cattle during periods of heat stress have been mostly evaluated in regions of high humidity heat. Lactating slick Holstein cows had lower rectal and vaginal temperatures and respiratory rates during summer compared to non-slick contemporaries (Dikmen et al., 2008Dikmen S, Alava E, Pontes E, Fear JM, Dikmen BY, Olson TA, Hansen PJ. Differences in thermoregulatory ability between slick-haired and wild-type lactating holstein cows in response to acute heat stress. J Dairy Sci. 2008;91(9):3395-402. http://dx.doi.org/10.3168/jds.2008-1072. PMid:18765598.
http://dx.doi.org/10.3168/jds.2008-1072...
, 2014Dikmen S, Khan FA, Huson HJ, Sonstegard TS, Moss JI, Dahl GE, Hansen PJ. The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. J Dairy Sci. 2014;97(9):5508-20. http://dx.doi.org/10.3168/jds.2014-8087. PMid:24996281.
http://dx.doi.org/10.3168/jds.2014-8087...
). Slick-haired Criollo Limonero non-pregnant heifers had lower rectal temperature and respiratory rates than normal-haired heifers (Landaeta-Hernández et al., 2021Landaeta-Hernández AJ, Zambrano-Nava S, Verde O, Pinto-Santini L, Montero-Urdaneta M, Hernández-Fonseca JP, Fuenmayor-Morales C, Sonstegard TS, Huson HJ, Olson TA. Heat stress response in slick vs normal-haired Criollo Limonero heifers in a tropical environment. Trop Anim Health Prod. 2021;53(4):445. http://dx.doi.org/10.1007/s11250-021-02856-3. PMid:34427775.
http://dx.doi.org/10.1007/s11250-021-028...
). Pre-weaned Holstein calves and growing heifers carrying the SLICK1 allele also maintained lower rectal temperature when exposed to high-humidity heat during summer (Carmickle et al., 2022Carmickle AT, Larson CC, Hernandez FS, Pereira JMV, Ferreira FC, Haimon MLJ, Jensen LM, Hansen PJ, Denicol AC. Physiological responses of Holstein calves and heifers carrying the SLICK1 allele to heat stress in California and Florida dairy farms. J Dairy Sci. 2022;105(11):9216-25. http://dx.doi.org/10.3168/jds.2022-22177. PMid:36114060.
http://dx.doi.org/10.3168/jds.2022-22177...
). Criollo Limonero cattle slick females had larger sweat glands (more consistent with those of B. indicus cattle) compared to wild-type females (Landaeta-Hernández et al., 2011Landaeta-Hernández A, Zambrano-Nava S, Hernández-Fonseca JP, Godoy R, Calles M, Iragorri JL, Añez L, Polanco M, Montero-Urdaneta M, Olson T. Variability of hair coat and skin traits as related to adaptation in Criollo Limonero cattle. Trop Anim Health Prod. 2011;43(3):657-63. http://dx.doi.org/10.1007/s11250-010-9749-1. PMid:21104126.
http://dx.doi.org/10.1007/s11250-010-974...
). However, no differences between the number of sweat or sebaceous glands, or hair follicles per square centimeter, thickness of epidermis, or number of blood vessels per square centimeter between genotypes were found. Later studies found that slick Holstein cows had larger cross-sectional sweat gland area and perimeter compared to wild-type cows (Contreras-Correa et al., 2017Contreras-Correa Z, Peña-Alvarado N, Torres-Ruiz W, Almodóvar-Rivera J, Domenech-Pérez K, Youngblood C, Pagán-Morales M, Mesonero-Morales A, Curbelo-Rodríguez J, Randel-Follin PF, Muñiz-Colón GC, Colón-González V, Jiménez-Arroyo AL, Jiménez-Arroyo GM, Sánchez-Rodríguez HL. Slick-haired Puerto Rican Holstein cows have larger sweat glands than their wild type-haired counterparts. J Dairy Sci. 2017;100:M202.) and similar to that of Senepol cattle (Muñiz-Cruz et al., 2018Muñiz-Cruz J, Peña-Alvarado N, Torres-Ruiz W, Almodóvar-Rivera J, Domenech-Pérez K, Contreras-Correa Z, Muñiz-Colón GC, Cortés-Arocho AC, Santiago-Rodríguez JM, Ruiz-Ríos S, Soriano-Varela GA, Cortés-Viruet NN, Jiménez-Arroyo AL, Jiménez-Arroyo GM, Sánchez-Rodríguez HL. Sweat gland cross-sectional cut areas comparisons between slick and wild type-haired Holstein and Senepol cows in Puerto Rico. J Dairy Sci. 2018;101:T162.).

One of the major expected effects of the slick cattle thermotolerance is a less dramatic drop in milk yield during periods of heat stress as seen during summer months. In an arid region of Venezuela, slick-haired 3/4 Holstein x Carora crossbred cows had greater 305-d milk yield and lower rectal temperature than normal-haired 3/4 Holstein x Carora (Olson et al., 2003Olson TA, Lucena C, Chase CC Jr, Hammond AC. Evidence of a major gene influencing hair length and heat tolerance in Bos taurus cattle. J Anim Sci. 2003;81(1):80-90. http://dx.doi.org/10.2527/2003.81180x. PMid:12597376.
http://dx.doi.org/10.2527/2003.81180x...
). In Florida, USA, the milk yield of Holstein cows carrying the SLICK1 allele dropped on average 1.3 kg/day during the hot season compared to the cool season, whereas non-slick cows dropped on average 3.7 kg/day (Dikmen et al., 2014Dikmen S, Khan FA, Huson HJ, Sonstegard TS, Moss JI, Dahl GE, Hansen PJ. The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. J Dairy Sci. 2014;97(9):5508-20. http://dx.doi.org/10.3168/jds.2014-8087. PMid:24996281.
http://dx.doi.org/10.3168/jds.2014-8087...
). In Puerto Rico, slick-haired local Holstein cows had an increased grazing time under sunlight and produced on average 4.27 kg/day more milk than normal-haired cows during summer (Sánchez-Rodríguez and Domenech-Pérez, 2021Sánchez-Rodríguez HL, Domenech-Pérez K. Light sensors assess solar radiation vs. shade exposure of slick- and wild-type Puerto Rican Holstein cows. J Agric Univ P R. 2021;105(1):39-48. http://dx.doi.org/10.46429/jaupr.v105i1.19634.
http://dx.doi.org/10.46429/jaupr.v105i1....
). Although semen from a few dairy sires with SLICK mutations is available in the North American market, most of them are heterozygous and exhibit a low merit genetic when compared to their normal-haired counterparts. The only SLICK homozygous sire has a negative TPI (UF/IFA Range Cattle Research and Education, 2022UF/IFA Range Cattle Research and Education. The SLICK gene in Holstein cattle improves thermotolerance - Colleen Larson [Internet]. YouTube; 2022 [cited 2022 Oct 25]. Available from: https://www.youtube.com/watch?v=MHLjgl3gEGM
https://www.youtube.com/watch?v=MHLjgl3g...
).

Considering the positive effects of SLICK alleles on thermotolerance and the predicted effect on milk yield, mutations in the PRLR gene are strong candidates for gene editing in order to generate more heat-tolerant European dairy cows for tropical and subtropical regions. SLICK homozygous embryos from high genomic value sires and dams can be produced by introducing any of the SLICK mutations. To introduce one of those specific mutations in the PRLR gene, the DSB needs to be repaired by homologous recombination (HDR mechanism). For that, a single strand ODN (ssODN) donor template designed with one of the SLICK mutations can be used. As the HDR is not the usual DSB repair pathway employed by cells, the chances to introduce some of the SLICK mutations are limited. However, as the different mutations of SLICK alleles found in the different breeds are located between BTA20:39099113 and BTA20:39099321 positions (ARS-UCD1.2 genome assembly) (Flórez Murillo et al., 2021Flórez Murillo JM, Landaeta‐Hernández AJ, Kim E, Bostrom JR, Larson SA, Pérez O’Brien AM, Montero-Urdaneta MA, Garcia JF, Sonstegard TS. Three novel nonsense mutations of prolactin receptor found in heat‐tolerant Bos taurus breeds of the Caribbean Basin. Anim Genet. 2021;52(1):132-4. http://dx.doi.org/10.1111/age.13027. PMid:33259090.
http://dx.doi.org/10.1111/age.13027...
), it is likely that any stop-gain mutation introduced in that range will result in similar phenotype. This means that the DSB can be repaired by the HDR mechanism using a ssODN donor template designed with a stop-gain mutation that fits into this range, i.e., not necessarily with the mutations presented in the SLICK alleles. In addition, if the DSB is repaired by the NHEJ, which is the more frequent mechanism of DSB repair, insertions and/or deletions of nucleotides can occur in-between those genome positions and also generate a nonsense mutation. Thus, different gene editing approaches can be used to edit the PRLR gene, which would make it easier to generate animals with the SLICK phenotype.

SLICK animals can be generated from embryos produced by nuclear transfer performed with gene-edited somatic or embryonic stem cells (animal cloning), or from in vitro fertilized zygotes injected or electroporated with CRISPR/Cas9 (Figure 1). The animals derived from those embryos can then be used to breed European cattle raised in regions of high temperature and humidity index. The same approach can be used for thermosensitive European beef breeds, such as Angus, so that sires can have higher tolerance to heat stress during the breeding season in the tropics. Few gene-edited SLICK animals have been generated by a commercial company and demonstrated the feasibility of editing this specific gene in cattle.

Figure 1
Gene-edited embryos can be produced by either somatic cell nuclear transfer (SCNT) or in vitro fertilization (IVF). While in SCNT the somatic cells are edited by CRISPR systems and in vitro-selected before serving as nuclear donors to generate a cloning embryo, in IVF the matured oocyte or in vitro-fertilized zygote are injected or electroporated with the CRISPR system.

Gene editing to improve milk yield and composition in indigenous cattle in tropical and subtropical regions

It has been challenging to maintain efficient dairy production systems in tropical and subtropical regions. Because of heat stress, high productivity European breeds cannot produce milk as they usually do in temperate climates. On the other hand, despite the adaptation to the tropical environment, local indigenous (or adapted) breeds have low productivity, in part due to the lack of well-established genetic improvement programs. Heat stress also affects milk composition. Protein and fat content can be reduced, which may alter the coagulation properties of the milk used to make cheese, affecting cheese yield (Summer et al., 2018Summer A, Lora I, Formaggioni P, Gottardo F. Impact of heat stress on milk and meat production. Anim Front. 2018;9(1):39-46. http://dx.doi.org/10.1093/af/vfy026. PMid:32002238.
http://dx.doi.org/10.1093/af/vfy026...
).

Gene editing offers the possibility to enhance milk production and to improve milk composition in dairy cattle. Polymorphisms associated with milk yield and composition can be introduced in a given breed without crossbreeding exotic and local breeds. One example is the polymorphism in the growth hormone receptor (GHR) gene. One of the actions of the growth hormone (GH) is to stimulate milk and protein production, which can occur indirectly through systemic changes, such as food intake, blood flow and nutrient delivery to the mammary gland (Bauman, 1999Bauman DE. Bovine somatotropin and lactation: from basic science to commercial application. Domest Anim Endocrinol. 1999;17(2-3):101-16. http://dx.doi.org/10.1016/S0739-7240(99)00028-4. PMid:10527114.
http://dx.doi.org/10.1016/S0739-7240(99)...
) but may also involve direct mechanisms through GHR present in the epithelial cells of the mammary gland (Svennersten-Sjaunja and Olsson, 2005Svennersten-Sjaunja K, Olsson K. Endocrinology of milk production. Domest Anim Endocrinol. 2005;29(2):241-58. http://dx.doi.org/10.1016/j.domaniend.2005.03.006. PMid:15876512.
http://dx.doi.org/10.1016/j.domaniend.20...
). Some Holstein and Jersey animals have a mutation in exon 8 of the GHR gene that results in an amino acid change (phenylalanine>tyrosine). The resulting allele (Y) is associated with higher milk production (Blott et al., 2003Blott S, Kim J-J, Moisio S, Schmidt-Küntzel A, Cornet A, Berzi P, Cambisano N, Ford C, Grisart B, Johnson D, Karim L, Simon P, Snell R, Spelman R, Wong J, Vilkki J, Georges M, Farnir F, Coppieters W. Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics. 2003;163(1):253-66. http://dx.doi.org/10.1093/genetics/163.1.253. PMid:12586713.
http://dx.doi.org/10.1093/genetics/163.1...
; Viitala et al., 2006Viitala S, Szyda J, Blott S, Schulman N, Lidauer M, Mäki-Tanila A, Georges M, Vilkki J. The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in finnish ayrshire dairy cattle. Genetics. 2006;173(4):2151-64. http://dx.doi.org/10.1534/genetics.105.046730. PMid:16751675.
http://dx.doi.org/10.1534/genetics.105.0...
; Rahmatalla et al., 2011Rahmatalla SA, Müller U, Strucken EM, Reissmann M, Brockmann GA. The F279Y polymorphism of the GHR gene and its relation to milk production and somatic cell score in German Holstein dairy cattle. J Appl Genet. 2011;52(4):459-65. http://dx.doi.org/10.1007/s13353-011-0051-3. PMid:21660490.
http://dx.doi.org/10.1007/s13353-011-005...
), higher protein percentage (Sun et al., 2009Sun D, Jia J, Ma Y, Zhang Y, Wang Y, Yu Y, Zhang Y. Effects of DGAT1 and GHR on milk yield and milk composition in the Chinese dairy population. Anim Genet. 2009;40(6):997-1000. http://dx.doi.org/10.1111/j.1365-2052.2009.01945.x. PMid:19781040.
http://dx.doi.org/10.1111/j.1365-2052.20...
) and lower somatic cell count (Rahmatalla et al., 2011Rahmatalla SA, Müller U, Strucken EM, Reissmann M, Brockmann GA. The F279Y polymorphism of the GHR gene and its relation to milk production and somatic cell score in German Holstein dairy cattle. J Appl Genet. 2011;52(4):459-65. http://dx.doi.org/10.1007/s13353-011-0051-3. PMid:21660490.
http://dx.doi.org/10.1007/s13353-011-005...
). The Y allele accounted for a variation between 0.7 and 2.9% in milk yield in Dutch and New Zealand Holsteins cows, with a deviation between 67 and 162 kg in the first lactation (Blott et al., 2003Blott S, Kim J-J, Moisio S, Schmidt-Küntzel A, Cornet A, Berzi P, Cambisano N, Ford C, Grisart B, Johnson D, Karim L, Simon P, Snell R, Spelman R, Wong J, Vilkki J, Georges M, Farnir F, Coppieters W. Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics. 2003;163(1):253-66. http://dx.doi.org/10.1093/genetics/163.1.253. PMid:12586713.
http://dx.doi.org/10.1093/genetics/163.1...
) and an increase in milk yield by 320 kg per lactation in German Holstein cows (Rahmatalla et al., 2011Rahmatalla SA, Müller U, Strucken EM, Reissmann M, Brockmann GA. The F279Y polymorphism of the GHR gene and its relation to milk production and somatic cell score in German Holstein dairy cattle. J Appl Genet. 2011;52(4):459-65. http://dx.doi.org/10.1007/s13353-011-0051-3. PMid:21660490.
http://dx.doi.org/10.1007/s13353-011-005...
). This mutation has not been reported in indigenous cattle so far (Ramesha et al., 2016Ramesha K, Rao A, Basavaraju M, Geetha G, Kataktalware M, Jeyakumar S. Genetic variability of bovine GHR, IGF-1 and IGFBP-3 genes in Indian cattle and buffalo. S Afr J Anim Sci. 2016;45(5):485. http://dx.doi.org/10.4314/sajas.v45i5.5.
http://dx.doi.org/10.4314/sajas.v45i5.5...
; El-Nahas, 2018El-Nahas A. Variation in the Genetic Effects of ABCG2, Growth Hormone and Growth Hormone Receptor Gene Polymorphisms on Milk Production Traits in Egyptian Native, Holstein and Hybrid Cattle Populations. Pak Vet J. 2018;38(4):371-6. http://dx.doi.org/10.29261/pakvetj/2018.089.
http://dx.doi.org/10.29261/pakvetj/2018....
).

The fat content of milk has been reported to decrease during summer or under high temperature and humidity index conditions (i.e., under conditions leading to heat stress) (Liu et al., 2017Liu Z, Ezernieks V, Wang J, Arachchillage NW, Garner JB, Wales WJ, Cocks BG, Rochfort S. Heat Stress in Dairy Cattle Alters Lipid Composition of Milk. Sci Rep. 2017;7(1):961. http://dx.doi.org/10.1038/s41598-017-01120-9. PMid:28424507.
http://dx.doi.org/10.1038/s41598-017-011...
; Summer et al., 2018Summer A, Lora I, Formaggioni P, Gottardo F. Impact of heat stress on milk and meat production. Anim Front. 2018;9(1):39-46. http://dx.doi.org/10.1093/af/vfy026. PMid:32002238.
http://dx.doi.org/10.1093/af/vfy026...
), although unsaturated fatty acid indicators can increase (Bohlouli et al., 2021Bohlouli M, Yin T, Hammami H, Gengler N, König S. Climate sensitivity of milk production traits and milk fatty acids in genotyped Holstein dairy cows. J Dairy Sci. 2021;104(6):6847-60. http://dx.doi.org/10.3168/jds.2020-19411. PMid:33714579.
http://dx.doi.org/10.3168/jds.2020-19411...
; Penev et al., 2021Penev T, Naydenova N, Dimov D, Marinov I. Influence of heat stress and physiological indicators related to it on health lipid indices in milk of holstein-friesian cows. J Oleo Sci. 2021;70(6):745-55. http://dx.doi.org/10.5650/jos.ess20251. PMid:33967167.
http://dx.doi.org/10.5650/jos.ess20251...
). Diacylglycerol acyltransferase 1 (DGAT1) is an enzyme that acts on triacylglycerol metabolism (Bhatt-Wessel et al., 2018Bhatt-Wessel B, Jordan TW, Miller JH, Peng L. Role of DGAT enzymes in triacylglycerol metabolism. Arch Biochem Biophys. 2018;655:1-11. http://dx.doi.org/10.1016/j.abb.2018.08.001. PMid:30077544.
http://dx.doi.org/10.1016/j.abb.2018.08....
). The K232A mutation in the DGAT1 gene is a non-synonymous substitution of lysine to alanine that was found to be associated not only with milk fatty acid content (Grisart et al., 2002Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002;12(2):222-31. http://dx.doi.org/10.1101/gr.224202. PMid:11827942.
http://dx.doi.org/10.1101/gr.224202...
; Winter et al., 2002Winter A, Krämer W, Werner FAO, Kollers S, Kata S, Durstewitz G, Buitkamp J, Womack JE, Thaller G, Fries R. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc Natl Acad Sci USA. 2002;99(14):9300-5. http://dx.doi.org/10.1073/pnas.142293799. PMid:12077321.
http://dx.doi.org/10.1073/pnas.142293799...
) but also with milk yield in cows (Grisart et al., 2002Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002;12(2):222-31. http://dx.doi.org/10.1101/gr.224202. PMid:11827942.
http://dx.doi.org/10.1101/gr.224202...
). The K allele has been associated with higher percentage of C6:0, C8:0, C16:0 and C16:1 fractions, as well as a lower percentage of C14:0, C18:1 and CLA fractions in the milk (Bouwman et al., 2011Bouwman AC, Bovenhuis H, Visker MH, van Arendonk JA. Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genet. 2011;12(1):43. http://dx.doi.org/10.1186/1471-2156-12-43. PMid:21569316.
http://dx.doi.org/10.1186/1471-2156-12-4...
; Kęsek-Woźniak et al., 2020Kęsek-Woźniak MM, Wojtas E, Zielak-Steciwko AE. Impact of SNPs in ACACA, SCD1, and DGAT1 genes on fatty acid profile in bovine milk with regard to lactation phases. Animals. 2020;10(6):997. http://dx.doi.org/10.3390/ani10060997. PMid:32521715.
http://dx.doi.org/10.3390/ani10060997...
). The A allele has been reported to contribute to increase the proportion of unsaturated fatty acids (Tăbăran et al., 2015Tăbăran A, Balteanu VA, Gal E, Pusta D, Mihaiu R, Dan SD, Tăbăran AF, Mihaiu M. Influence of DGAT1 K232A Polymorphism on Milk Fat Percentage and Fatty Acid Profiles in Romanian Holstein Cattle. Anim Biotechnol. 2015;26(2):105-11. http://dx.doi.org/10.1080/10495398.2014.933740. PMid:25380462.
http://dx.doi.org/10.1080/10495398.2014....
; Bovenhuis et al., 2016Bovenhuis H, Visker MHPW, Poulsen NA, Sehested J, van Valenberg HJF, van Arendonk JAM, Larsen LB, Buitenhuis AJ. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. J Dairy Sci. 2016;99(4):3113-23. http://dx.doi.org/10.3168/jds.2015-10462. PMid:26898284.
http://dx.doi.org/10.3168/jds.2015-10462...
), which is considered beneficial to human health (Lee and Park, 2014Lee H, Park WJ. Unsaturated fatty acids, desaturases, and human health. J Med Food. 2014;17(2):189-97. http://dx.doi.org/10.1089/jmf.2013.2917. PMid:24460221.
http://dx.doi.org/10.1089/jmf.2013.2917...
). It was suggested that the effect of the K232A polymorphism on milk fat synthesis and composition may be caused by differences in the membrane organization or cell structure of epithelial cells in the mammary gland between KK and AA genotype (Lu et al., 2015Lu J, Boeren S, van Hooijdonk T, Vervoort J, Hettinga K. Effect of the DGAT1 K232A genotype of dairy cows on the milk metabolome and proteome. J Dairy Sci. 2015;98(5):3460-9. http://dx.doi.org/10.3168/jds.2014-8872. PMid:25771043.
http://dx.doi.org/10.3168/jds.2014-8872...
). The A allele has also been associated with higher milk yield in Holstein cows (Bovenhuis et al., 2015Bovenhuis H, Visker MHPW, van Valenberg HJF, Buitenhuis AJ, van Arendonk JAM. Effects of the DGAT1 polymorphism on test-day milk production traits throughout lactation. J Dairy Sci. 2015;98(9):6572-82. http://dx.doi.org/10.3168/jds.2015-9564. PMid:26142855.
http://dx.doi.org/10.3168/jds.2015-9564...
; Grisart et al., 2002Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002;12(2):222-31. http://dx.doi.org/10.1101/gr.224202. PMid:11827942.
http://dx.doi.org/10.1101/gr.224202...
), and the estimated effect of AA over the KK genotype on milk yield was 774 kg, 1,042 and 1,028 kg milk for first, second and third lactation, respectively (Bovenhuis et al., 2015Bovenhuis H, Visker MHPW, van Valenberg HJF, Buitenhuis AJ, van Arendonk JAM. Effects of the DGAT1 polymorphism on test-day milk production traits throughout lactation. J Dairy Sci. 2015;98(9):6572-82. http://dx.doi.org/10.3168/jds.2015-9564. PMid:26142855.
http://dx.doi.org/10.3168/jds.2015-9564...
). The A allele is presented in frequencies over 50% in Holstein breed (Banos et al., 2008Banos G, Woolliams JA, Woodward BW, Forbes AB, Coffey MP. Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and Diacylglycerol Acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows. J Dairy Sci. 2008;91(8):3190-200. http://dx.doi.org/10.3168/jds.2007-0930. PMid:18650297.
http://dx.doi.org/10.3168/jds.2007-0930...
; Näslund et al., 2008Näslund J, Fikse WF, Pielberg GR, Lundén A. Frequency and Effect of the bovine Acyl-CoA:Diacylglycerol Acyltransferase 1 (DGAT1) K232A polymorphism in Swedish dairy cattle. J Dairy Sci. 2008;91(5):2127-34. http://dx.doi.org/10.3168/jds.2007-0330. PMid:18420644.
http://dx.doi.org/10.3168/jds.2007-0330...
; Bobbo et al., 2018Bobbo T, Tiezzi F, Penasa M, De Marchi M, Cassandro M. Short communication: association analysis of diacylglycerol acyltransferase (DGAT1) mutation on chromosome 14 for milk yield and composition traits, somatic cell score, and coagulation properties in Holstein bulls. J Dairy Sci. 2018;101(9):8087-91. http://dx.doi.org/10.3168/jds.2018-14533. PMid:30007808.
http://dx.doi.org/10.3168/jds.2018-14533...
). In contrast, the frequency of A allele in zebu cattle was reported to be lower than 5%, as reported for Gir (4%) and Red Sindhi (2.5%) breeds (Lacorte et al., 2006Lacorte GA, Machado MA, Martinez ML, Campos AL, Maciel RP, Verneque RS, Teodoro RL, Peixoto MG, Carvalho MR, Fonseca CG. DGAT1 K232A polymorphism in Brazilian cattle breeds. Genet Mol Res. 2006;5(3):475-82. PMid:17117362.). Low frequency of A allele was also found in African indigenous cattle, as Borgou (23%) and White Fulani (8%) breeds (Houaga et al., 2018Houaga I, Muigai AWT, Ng’ang’a FM, Ibeagha-Awemu EM, Kyallo M, Youssao IAK, Stomeo F. Milk fatty acid variability and association with polymorphisms in SCD1 and DGAT1 genes in White Fulani and Borgou cattle breeds. Mol Biol Rep. 2018;45(6):1849-62. http://dx.doi.org/10.1007/s11033-018-4331-4. PMid:30168097.
http://dx.doi.org/10.1007/s11033-018-433...
). As result, milk from those African breeds exhibited a high percentage of total saturated fatty acids and low C18 unsaturation index.

The stearoyl-CoA desaturase 1 (SCD1) is an enzyme responsible for fatty acid desaturation in the mammary gland and other tissues, playing an important role in lipid metabolism of mammary tissues by introducing a cis double bond at the C-9 position of a wide range of fatty acids (Paton and Ntambi, 2009Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab. 2009;297(1):E28-37. http://dx.doi.org/10.1152/ajpendo.90897.2008. PMid:19066317.
http://dx.doi.org/10.1152/ajpendo.90897....
; Jacobs et al., 2013Jacobs AAA, Dijkstra J, Hendriks WH, van Baal J, van Vuuren AM. Comparison between stearoyl-CoA desaturase expression in milk somatic cells and in mammary tissue of lactating dairy cows. J Anim Physiol Anim Nutr. 2013;97(2):353-62. http://dx.doi.org/10.1111/j.1439-0396.2012.01278.x. PMid:22369625.
http://dx.doi.org/10.1111/j.1439-0396.20...
). The preferred substrate is C18:0 and to a lesser extent C16:0, which are converted to C18:1 cis-9 and C16:1 cis-9, respectively (Ntambi and Miyazaki, 2004Ntambi J, Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res. 2004;43(2):91-104. http://dx.doi.org/10.1016/S0163-7827(03)00039-0. PMid:14654089.
http://dx.doi.org/10.1016/S0163-7827(03)...
). The enzyme SCD1 plays a vital role in maintaining the fluidity of the cell membrane and milk fat. SCD1 is also responsible for the conversion of C18:1 trans-11 to C18:2 cis-9, trans-11 which in turn has been linked to human health benefits (Bhattacharya et al., 2006Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G. Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem. 2006;17(12):789-810. http://dx.doi.org/10.1016/j.jnutbio.2006.02.009. PMid:16650752.
http://dx.doi.org/10.1016/j.jnutbio.2006...
; Reynolds and Roche, 2010Reynolds CM, Roche HM. Conjugated linoleic acid and inflammatory cell signalling. Prostaglandins Leukot Essent Fatty Acids. 2010;82(4-6):199-204. http://dx.doi.org/10.1016/j.plefa.2010.02.021. PMid:20207526.
http://dx.doi.org/10.1016/j.plefa.2010.0...
). There is a non-synonymous mutation (A293V) in the SCD1 gene that results in an alanine to valine substitution in the enzyme and it is associated to changes in milk fatty acid composition in Holstein cows (Mele et al., 2007Mele M, Conte G, Castiglioni B, Chessa S, Macciotta NPP, Serra A, Buccioni A, Pagnacco G, Secchiari P. Stearoyl-coenzyme A desaturase gene polymorphism and milk fatty acid composition in Italian holsteins. J Dairy Sci. 2007;90(9):4458-65. http://dx.doi.org/10.3168/jds.2006-617. PMid:17699067.
http://dx.doi.org/10.3168/jds.2006-617...
; Schennink et al., 2008Schennink A, Heck JML, Bovenhuis H, Visker MHPW, van Valenberg HJF, van Arendonk JAM. Milk fatty acid unsaturation: genetic parameters and effects of Stearoyl-CoA Desaturase (SCD1) and Acyl CoA: Diacylglycerol Acyltransferase 1 (DGAT1). J Dairy Sci. 2008;91(5):2135-43. http://dx.doi.org/10.3168/jds.2007-0825. PMid:18420645.
http://dx.doi.org/10.3168/jds.2007-0825...
; Kęsek-Woźniak et al., 2020Kęsek-Woźniak MM, Wojtas E, Zielak-Steciwko AE. Impact of SNPs in ACACA, SCD1, and DGAT1 genes on fatty acid profile in bovine milk with regard to lactation phases. Animals. 2020;10(6):997. http://dx.doi.org/10.3390/ani10060997. PMid:32521715.
http://dx.doi.org/10.3390/ani10060997...
). Milk fat of AA-genotype Holstein cows can have higher content of mono unsaturated fatty acids, as C14:1 cis-9 and C18:1 cis-9 (Mele et al., 2007Mele M, Conte G, Castiglioni B, Chessa S, Macciotta NPP, Serra A, Buccioni A, Pagnacco G, Secchiari P. Stearoyl-coenzyme A desaturase gene polymorphism and milk fatty acid composition in Italian holsteins. J Dairy Sci. 2007;90(9):4458-65. http://dx.doi.org/10.3168/jds.2006-617. PMid:17699067.
http://dx.doi.org/10.3168/jds.2006-617...
), and also polyunsaturated fatty acids, as cis-9, trans-11 conjugated linoleic acid (Schennink et al., 2008Schennink A, Heck JML, Bovenhuis H, Visker MHPW, van Valenberg HJF, van Arendonk JAM. Milk fatty acid unsaturation: genetic parameters and effects of Stearoyl-CoA Desaturase (SCD1) and Acyl CoA: Diacylglycerol Acyltransferase 1 (DGAT1). J Dairy Sci. 2008;91(5):2135-43. http://dx.doi.org/10.3168/jds.2007-0825. PMid:18420645.
http://dx.doi.org/10.3168/jds.2007-0825...
), although this later effect is controversial and may be influenced by the diet (Clark et al., 2010Clark LA, Thomson JM, Moore SS, Oba M. The effect of Ala293Val single nucleotide polymorphism in the stearoyl-CoA desaturase gene on conjugated linoleic acid concentration in milk fat of dairy cows. Can J Anim Sci. 2010;90(4):575-84. http://dx.doi.org/10.4141/cjas10053.
http://dx.doi.org/10.4141/cjas10053...
). The frequency of the A allele has been reported to be over 50% in Holstein (Kgwatalala et al., 2007Kgwatalala PM, Ibeagha-Awemu EM, Hayes JF, Zhao X. Single nucleotide polymorphisms in the open reading frame of the stearoyl-CoA desaturase gene and resulting genetic variants in Canadian Holstein and Jersey cows. DNA Seq. 2007;18(5):357-62. http://dx.doi.org/10.1080/10425170701291921. PMid:17654011.
http://dx.doi.org/10.1080/10425170701291...
; Demeter et al., 2009Demeter RM, Schopen GC, Lansink AG, Meuwissen MP, van Arendonk JA. Effects of milk fat composition, DGAT1, and SCD1 on fertility traits in Dutch Holstein cattle. J Dairy Sci. 2009;92(11):5720-9. http://dx.doi.org/10.3168/jds.2009-2069. PMid:19841232.
http://dx.doi.org/10.3168/jds.2009-2069...
; Wulandari et al., 2019Wulandari AS, Rahayu H, Volkandari S, Herlina N, Anwar S, Irnidayanti Y. Genetic polymorphism of SCD1 gene of Holstein-Friesian cows in Indonesia. J Ilmu Ternak Vet. 2019;24(2):56. http://dx.doi.org/10.14334/jitv.v24i2.1905.
http://dx.doi.org/10.14334/jitv.v24i2.19...
; Kęsek-Woźniak et al., 2020Kęsek-Woźniak MM, Wojtas E, Zielak-Steciwko AE. Impact of SNPs in ACACA, SCD1, and DGAT1 genes on fatty acid profile in bovine milk with regard to lactation phases. Animals. 2020;10(6):997. http://dx.doi.org/10.3390/ani10060997. PMid:32521715.
http://dx.doi.org/10.3390/ani10060997...
) and Jersey (Kgwatalala et al., 2007Kgwatalala PM, Ibeagha-Awemu EM, Hayes JF, Zhao X. Single nucleotide polymorphisms in the open reading frame of the stearoyl-CoA desaturase gene and resulting genetic variants in Canadian Holstein and Jersey cows. DNA Seq. 2007;18(5):357-62. http://dx.doi.org/10.1080/10425170701291921. PMid:17654011.
http://dx.doi.org/10.1080/10425170701291...
) breeds, while African indigenous breeds such as the White Fulani were found to have a high frequency (>83%) of the V allele, which was associated with a lower C18:1 cis-9 percentage in milk (Houaga et al., 2018Houaga I, Muigai AWT, Ng’ang’a FM, Ibeagha-Awemu EM, Kyallo M, Youssao IAK, Stomeo F. Milk fatty acid variability and association with polymorphisms in SCD1 and DGAT1 genes in White Fulani and Borgou cattle breeds. Mol Biol Rep. 2018;45(6):1849-62. http://dx.doi.org/10.1007/s11033-018-4331-4. PMid:30168097.
http://dx.doi.org/10.1007/s11033-018-433...
).

As shown above, the alleles found in GHR (Y allele), DGAT1 (A allele) and SDC1 (A allele) genes are the result of point mutations presented in higher frequency in European dairy breeds compared to indigenous breeds, and are associated to milk yield and fat content. Thus, those point mutations are potential candidates to increase the milk yield and improve milk composition in adapted indigenous breed in tropical and subtropical zones, such as zebu dairy breeds. The introgression of those alleles in the genome of dairy breeds can be performed by gene editing, preserving other racial features of indigenous breeds.

The HDR mechanism is required to insert these point mutations into the genome. For that, the DSB caused by the Cas9 enzyme (or other nucleases) can be repaired using a ssODN donor template designed with the target mutation and homology arms (upstream and downstream of the mutation site). Moreover, the donor template must contain a silent mutation to avoid the re-cut of the repaired DNA by the Cas9. Finally, to increase the chances of successful HDR, the DNA cleavage site needs to be as close as possible from the mutation insertion site (Paquet et al., 2016Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533(7601):125-9. http://dx.doi.org/10.1038/nature17664. PMid:27120160.
http://dx.doi.org/10.1038/nature17664...
; Schubert et al., 2021Schubert MS, Thommandru B, Woodley J, Turk R, Yan S, Kurgan G, McNeill MS, Rettig GR. Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair. Sci Rep. 2021;11(1):19482. http://dx.doi.org/10.1038/s41598-021-98965-y. PMid:34593942.
http://dx.doi.org/10.1038/s41598-021-989...
). The problem is that HDR occurs in a frequency usually below 10% (Liu et al., 2019Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W. Methodologies for Improving HDR Efficiency. Front Genet. 2019;9:691. http://dx.doi.org/10.3389/fgene.2018.00691. PMid:30687381.
http://dx.doi.org/10.3389/fgene.2018.006...
).

Strategies can be employed to increase the chances of HDR over the NHEJ mechanism for DSB repair. Some small molecules can act to inhibit NHEJ while others can be used to stimulate HDR. One of the NHEJ inhibitor molecules is SCR7, which acts by inhibiting the DNA ligase IV enzyme, necessary for double-strand break repair (Ryu et al., 2019Ryu S-M, Hur JW, Kim K. Evolution of CRISPR towards accurate and efficient mammal genome engineering. BMB Rep. 2019;52(8):475-81. http://dx.doi.org/10.5483/BMBRep.2019.52.8.149. PMid:31234957.
http://dx.doi.org/10.5483/BMBRep.2019.52...
). In mice it was possible to obtain 59% HDR (versus 28% NHEJ) in blastocysts when using 1 µM of SCR7 in the cytoplasmic microinjection with CRISPR/Cas9 (Maruyama et al., 2015Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33(5):538-42. http://dx.doi.org/10.1038/nbt.3190. PMid:25798939.
http://dx.doi.org/10.1038/nbt.3190...
). In fetal porcine cells, SCR7 increased the HDR rate by 2-3 times (Li et al., 2017Li G, Zhang X, Zhong C, Mo J, Quan R, Yang J, Liu D, Li Z, Yang H, Wu Z. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Sci Rep. 2017;7(1):8943. http://dx.doi.org/10.1038/s41598-017-09306-x. PMid:28827551.
http://dx.doi.org/10.1038/s41598-017-093...
); however, no improvements were observed in rabbit zygotes (Song et al., 2016Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun. 2016;7(1):10548. http://dx.doi.org/10.1038/ncomms10548. PMid:26817820.
http://dx.doi.org/10.1038/ncomms10548...
). RS-1 is another small molecule and it is important for catalyzing the repair by homologous recombination by stimulating the function of the Rad51 protein (DNA repair protein). A concentration of 7.5 µM RS-1 in the post-microinjection culture increased the HDR rate in rabbit embryos to 24%, as measured by the knock in proportion, when compared to 4.4% in the control group; a similar difference was also observed in the born animals (Song et al., 2016Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun. 2016;7(1):10548. http://dx.doi.org/10.1038/ncomms10548. PMid:26817820.
http://dx.doi.org/10.1038/ncomms10548...
). In bovine embryos, culturing zygotes with 7.5 µM RS-1 for 24h after microinjection of CRISPR/Cas9 doubled the HDR rate (Lamas‐Toranzo et al., 2020Lamas‐Toranzo I, Martínez‐Moro A, O’Callaghan E, Millán‐Blanca G, Sánchez JM, Lonergan P, Bermejo-Álvarez P. RS‐1 enhances CRISPR‐mediated targeted knock‐in in bovine embryos. Mol Reprod Dev. 2020;87(5):542-9. http://dx.doi.org/10.1002/mrd.23341. PMid:32227559.
http://dx.doi.org/10.1002/mrd.23341...
).

Gene editing to improve bull reproduction in tropical and subtropical regions

The high temperature and humidity index typical of tropical and subtropical climates alters the behavior of breeds from European origin; examples of behavioral changes are a decrease in dry matter intake and the seeking for shade (Mishra, 2021Mishra SR. Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: an updated review. Trop Anim Health Prod. 2021;53(3):400. http://dx.doi.org/10.1007/s11250-021-02790-4. PMid:34255188.
http://dx.doi.org/10.1007/s11250-021-027...
). Moreover, environmental heat stress can affect sperm quality (Morrell, 2020Morrell JM. Heat stress and bull fertility. Theriogenology. 2020;153:62-7. http://dx.doi.org/10.1016/j.theriogenology.2020.05.014. PMid:32442741.
http://dx.doi.org/10.1016/j.theriogenolo...
) and reduce bull fertility (Rahman et al., 2018Rahman MB, Schellander K, Luceño NL, Van Soom A. Heat stress responses in spermatozoa: mechanisms and consequences for cattle fertility. Theriogenology. 2018;113:102-12. http://dx.doi.org/10.1016/j.theriogenology.2018.02.012. PMid:29477908.
http://dx.doi.org/10.1016/j.theriogenolo...
). Thus, heat stress is a problem for bull behavior and fertility, especially for non-adapted bulls. As beef farmers usually adopt natural mating as the main reproductive strategy, efficiency in producing calves is usually lower for bulls from non-adapted breeds than that from adapted breeds. However, because of carcass quality, a demand for bulls from European breeds in tropical and subtropical regions still persists.

Gene editing can allow a male to produce sperm from another male, which could be useful for bulls in the tropics. The NANOS homology 2 (NANOS2) belongs to a family of zinc-finger motif-contained RNA-binding protein and it is necessary for generating the spermatogenic cell lineage and for spermatogonial stem cell (SSC) self-renewal (Sada et al., 2009Sada A, Suzuki A, Suzuki H, Saga Y. The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science. 2009;325(5946):1394-8. http://dx.doi.org/10.1126/science.1172645.
http://dx.doi.org/10.1126/science.117264...
; Shen and Xie, 2010Shen R, Xie T. NANOS: a germline stem cell’s guardian angel. J Mol Cell Biol. 2010;2(2):76-7. http://dx.doi.org/10.1093/jmcb/mjp043. PMid:20008335.
http://dx.doi.org/10.1093/jmcb/mjp043...
). The CRISPR/Cas9 system has been used to knockout the NANOS2 gene in pigs to generate male offspring without germline cells (spermatogonia) but with preserved testicular development (Park et al., 2017Park K-E, Kaucher AV, Powell A, Waqas MS, Sandmaier SES, Oatley MJ, Park CH, Tibary A, Donovan DM, Blomberg LA, Lillico SG, Whitelaw CB, Mileham A, Telugu BP, Oatley JM. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci Rep. 2017;7(1):40176. http://dx.doi.org/10.1038/srep40176. PMid:28071690.
http://dx.doi.org/10.1038/srep40176...
). The authors have suggested that NANOS2-null male offspring may serve as potential surrogates for spermatogonial stem cells transplantation (SSCT). In fact, the phenotype has been replicated and proved feasible in mice, pigs, goats and cattle (Ciccarelli et al., 2020Ciccarelli M, Giassetti MI, Miao D, Oatley MJ, Robbins C, Lopez-Biladeau B, Waqas MS, Tibary A, Whitelaw B, Lillico S, Park CH, Park KE, Telugu B, Fan Z, Liu Y, Regouski M, Polejaeva IA, Oatley JM. Donor-derived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males. Proc Natl Acad Sci USA. 2020;117(39):24195-204. http://dx.doi.org/10.1073/pnas.2010102117. PMid:32929012.
http://dx.doi.org/10.1073/pnas.201010211...
). Adult NANOS2 knockout surrogate male pigs and bucks have been able to sustain spermatogenesis after SCCT. Moreover, this study confirmed that NANOS2 knockout male cattle presented a phenotype consistent with germline ablation, expanding the exciting prospect of using the SSCT technique in the cattle industry (Ciccarelli et al., 2020Ciccarelli M, Giassetti MI, Miao D, Oatley MJ, Robbins C, Lopez-Biladeau B, Waqas MS, Tibary A, Whitelaw B, Lillico S, Park CH, Park KE, Telugu B, Fan Z, Liu Y, Regouski M, Polejaeva IA, Oatley JM. Donor-derived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males. Proc Natl Acad Sci USA. 2020;117(39):24195-204. http://dx.doi.org/10.1073/pnas.2010102117. PMid:32929012.
http://dx.doi.org/10.1073/pnas.201010211...
).

Applications of gene editing to produce NANOS2 knockout offspring associated with SSCT may impact positively the field of cattle production. Surrogate sires generated from adapted indigenous breeds (such as zebu breeds) could carry sperm from thermosensitive high genomic value sires (from European breeds) and be used to breed cows by natural mating in the tropical or tropical regions (Figure 2), particularly in regions with low prevalence of artificial insemination use. In animal breeding, genetic gain can be accelerated if spermatogonia are collected from high genomic value male calves at a very young age and transplanted into surrogate knockout adult males, enabling the surrogate male to produce normal sperm from the young donor. Semen from the surrogate sire can then be used for in vitro fertilization of oocytes collected from prepubertal heifers or calves (Baruselli et al., 2021Baruselli PS, Rodrigues CA, Ferreira RM, Sales JNS, Elliff FM, Silva LG, Viziack MP, Factor L, D’Occhio MJ. Impact of oocyte donor age and breed on in vitro embryo production in cattle, and relationship of dairy and beef embryo recipients on pregnancy and the subsequent performance of offspring: a review. Reprod Fertil Dev. 2021;34(2):36-51. http://dx.doi.org/10.1071/RD21285. PMid:35231233.
http://dx.doi.org/10.1071/RD21285...
; Silva et al., 2022Silva MO, Borges MS, Fernandes LG, Rodrigues NN, Watanabe YF, Joaquim DC, Oliveira CS, da Feuchard VLS, Dos Cyrillo JNSG, Mercadante MEZ, Monteiro FM. Effect of Nellore (Bos indicus) donor age on in‐vitro embryo production and pregnancy rate. Reprod Domest Anim. 2022;57(9):980-8. http://dx.doi.org/10.1111/rda.14164. PMid:35612981.
http://dx.doi.org/10.1111/rda.14164...
) thus dramatically reducing generation interval. This latter application can be particularly interesting for breeds with delayed puberty, as found in some indigenous cattle (Cooke et al., 2020Cooke RF, Daigle CL, Moriel P, Smith SB, Tedeschi LO, Vendramini JMB. Cattle adapted to tropical and subtropical environments: social, nutritional, and carcass quality considerations. J Anim Sci. 2020;98(2):skaa014. http://dx.doi.org/10.1093/jas/skaa014. PMid:31955200.
http://dx.doi.org/10.1093/jas/skaa014...
).

Figure 2
Transplantation of spermatogonial stem cell (SCC) from a thermosensitive breed to the testes of a NANOS2-null thermotolerant breed. SCCs from a donor male (e.g Angus cattle) are collected and expanded in vitro before being transplanted into the seminiferous tubules of gene-edited NANOS2-null surrogate male (e.g. Nelore cattle). The surrogate males can then be used to breed Nelore cows to produce Angus x Nelore F1 calves in large beef farms in the tropics (adapted from Giassetti et al., 2019Giassetti MI, Ciccarelli M, Oatley JM. Spermatogonial stem cell transplantation: insights and outlook for domestic animals. Annu Rev Anim Biosci. 2019;7(1):385-401. http://dx.doi.org/10.1146/annurev-animal-020518-115239. PMid:30762440.
http://dx.doi.org/10.1146/annurev-animal...
).

Gene editing to modulate cattle methane emissions

One of the gases with high impact on global warming is methane (CH4), although it has a short lifetime (Balcombe et al., 2018Balcombe P, Speirs JF, Brandon NP, Hawkes AD. Methane emissions: choosing the right climate metric and time horizon. Environ Sci Process Impacts. 2018;20(10):1323-39. http://dx.doi.org/10.1039/C8EM00414E. PMid:30255177.
http://dx.doi.org/10.1039/C8EM00414E...
). In ruminants, during the fermentation process the microbiota in the rumen use H2 to reduce carbon dioxide (CO2) and produce methane, which is released to the atmosphere mainly through eructation and breathing (Johnson and Johnson, 1995Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci. 1995;73(8):2483-92. http://dx.doi.org/10.2527/1995.7382483x. PMid:8567486.
http://dx.doi.org/10.2527/1995.7382483x...
). Cattle is the species that most contribute to methane emissions (Gerber et al., 2013Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Rome: Food and Agriculture Organization of the United Nations; 2013.; Black et al., 2021Black JL, Davison TM, Box I. Methane emissions from ruminants in Australia: mitigation potential and applicability of mitigation strategies. Animals. 2021;11(4):951. http://dx.doi.org/10.3390/ani11040951. PMid:33805324.
http://dx.doi.org/10.3390/ani11040951...
) and countries in tropical and subtropical regions tend to have a greater methane emission (Gerber et al., 2013Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Rome: Food and Agriculture Organization of the United Nations; 2013.; Chang et al., 2019Chang J, Peng S, Ciais P, Saunois M, Dangal SRS, Herrero M, Havlík P, Tian H, Bousquet P. Revisiting enteric methane emissions from domestic ruminants and their δ13CCH4 source signature. Nat Commun. 2019;10(1):3420. http://dx.doi.org/10.1038/s41467-019-11066-3. PMid:31366915.
http://dx.doi.org/10.1038/s41467-019-110...
). The low productivity plays an important role in the amount of methane emitted, as more animals are required to produce meat and milk in tropical and subtropical regions and, thus, the methane emission per unit of milk or meat produced is high. Indeed, Latin America, Asia and Africa, where cattle have low meat and milk productivity, emit more greenhouse gases and produce less protein from cattle compared with North America and Europe (Gerber et al., 2013Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Rome: Food and Agriculture Organization of the United Nations; 2013.). Therefore, increasing productivity and reducing the relative number of animals can be one of the keys to reduce methane emissions in tropical and subtropical zones.

As mentioned in the previous paragraphs, gene editing can be used to increase thermotolerance in European breeds or improve milk yield in indigenous breeds, contributing to generate more productive animals for tropical and subtropical conditions. In that context, the gene editing can indirectly contribute to reduce cattle methane emission per unit of protein produced. Nevertheless, gene editing technologies may potentially be applied to reduce the methane production directly in the rumen. The rumen methane is produced by Archaea and the largest groups in the rumen are Methanobrevibacter gottschalkii and Methanobrevibacter ruminantium (Henderson et al., 2015Henderson G, Cox F, Ganesh S, Jonker A, Young W, Abecia L, Angarita E, Aravena P, Nora Arenas G, Ariza C, Attwood GT, Mauricio Avila J, Avila-Stagno J, Bannink A, Barahona R, Batistotti M, Bertelsen MF, Brown-Kav A, Carvajal AM, Cersosimo L, Vieira Chaves A, Church J, Clipson N, Cobos-Peralta MA, Cookson AL, Cravero S, Cristobal Carballo O, Crosley K, Cruz G, Cerón Cucchi M, de la Barra R, De Menezes AB, Detmann E, Dieho K, Dijkstra J, dos Reis WLS, Dugan MER, Hadi Ebrahimi S, Eythórsdóttir E, Nde Fon F, Fraga M, Franco F, Friedeman C, Fukuma N, Gagić D, Gangnat I, Javier Grilli D, Guan LL, Heidarian Miri V, Hernandez-Sanabria E, Gomez AXI, Isah OA, Ishaq S, Jami E, Jelincic J, Kantanen J, Kelly WJ, Kim S-H, Klieve A, Kobayashi Y, Koike S, Kopecny J, Nygaard Kristensen T, Julie Krizsan S, LaChance H, Lachman M, Lamberson WR, Lambie S, Lassen J, Leahy SC, Lee S-S, Leiber F, Lewis E, Lin B, Lira R, Lund P, Macipe E, Mamuad LL, Cuquetto Mantovani H, Marcoppido GA, Márquez C, Martin C, Martinez G, Eugenia Martinez M, Lucía Mayorga O, McAllister TA, McSweeney C, Mestre L, Minnee E, Mitsumori M, Mizrahi I, Molina I, Muenger A, Muñoz C, Murovec B, Newbold J, Nsereko V, O’Donovan M, Okunade S, O’Neill B, Ospina S, Ouwerkerk D, Parra D, Pereira LGR, Pinares-Patiño C, Pope PB, Poulsen M, Rodehutscord M, Rodriguez T, Saito K, Sales F, Sauer C, Shingfield K, Shoji N, Simunek J, Stojanović-Radić Z, Stres B, Sun X, Swartz J, Liang Tan Z, Tapio I, Taxis TM, Tomkins N, Ungerfeld E, Valizadeh R, van Adrichem P, Van Hamme J, Van Hoven W, Waghorn G, John Wallace R, Wang M, Waters SM, Keogh K, Witzig M, Wright A-DG, Yamano H, Yan T, Yáñez-Ruiz DR, Yeoman CJ, Zambrano R, Zeitz J, Zhou M, Wei Zhou H, Xia Zou C, Zunino P, Janssen PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5(1):14567. http://dx.doi.org/10.1038/srep14567. PMid:26449758.
http://dx.doi.org/10.1038/srep14567...
). Several enzymes and cofactors are involved in the methanogenic pathway (Shima et al., 2002Shima S, Warkentin E, Thauer RK, Ermler U. Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. J Biosci Bioeng. 2002;93(6):519-30. http://dx.doi.org/10.1016/S1389-1723(02)80232-8. PMid:16233244.
http://dx.doi.org/10.1016/S1389-1723(02)...
; Ferry, 2011Ferry JG. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr Opin Biotechnol. 2011;22(3):351-7. http://dx.doi.org/10.1016/j.copbio.2011.04.011. PMid:21555213.
http://dx.doi.org/10.1016/j.copbio.2011....
) and its biochemistry has been widely reported (Ferry, 1992Ferry JG. Biochemistry of Methanogenesis. Crit Rev Biochem Mol Biol. 1992;27(6):473-503. http://dx.doi.org/10.3109/10409239209082570. PMid:1473352.
http://dx.doi.org/10.3109/10409239209082...
; Deppenmeier, 2002Deppenmeier U. The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol. 2002;71:223-83. http://dx.doi.org/10.1016/S0079-6603(02)71045-3.
http://dx.doi.org/10.1016/S0079-6603(02)...
; Ferry, 2011Ferry JG. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr Opin Biotechnol. 2011;22(3):351-7. http://dx.doi.org/10.1016/j.copbio.2011.04.011. PMid:21555213.
http://dx.doi.org/10.1016/j.copbio.2011....
). The genome sequence of Methanobrevibacter ruminantium is available (Leahy et al., 2010Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT. The genome sequence of the rumen methanogen methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One. 2010;5(1):e8926. http://dx.doi.org/10.1371/journal.pone.0008926. PMid:20126622.
http://dx.doi.org/10.1371/journal.pone.0...
) as well as the prediction of functional properties of its operome (Bharathi et al., 2020Bharathi M, Senthil Kumar N, Chellapandi P. Functional prediction and assignment of methanobrevibacter ruminantium M1 operome using a combined bioinformatics approach. Front Genet. 2020;11:593990. http://dx.doi.org/10.3389/fgene.2020.593990. PMid:33391347.
http://dx.doi.org/10.3389/fgene.2020.593...
). It has been shown that the genome of Archaea can be manipulated using the CRISPR/Cas system (Li et al., 2016Li Y, Pan S, Zhang Y, Ren M, Feng M, Peng N, Chen L, Liang YX, She Q. Harnessing Type I and Type III CRISPR-Cas systems for genome editing. Nucleic Acids Res. 2016;44(4):e34. http://dx.doi.org/10.1093/nar/gkv1044. PMid:26467477.
http://dx.doi.org/10.1093/nar/gkv1044...
; Nayak and Metcalf, 2017Nayak DD, Metcalf WW. Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans. Proc Natl Acad Sci USA. 2017;114(11):2976-81. http://dx.doi.org/10.1073/pnas.1618596114. PMid:28265068.
http://dx.doi.org/10.1073/pnas.161859611...
). This knowledge opens the possibilities for the use of gene editing strategies to modulate the methane production in the rumen.

Gene editing with Cas9 has already been used to introduce insertions and deletions via HDR with high efficiency in the archaeon Methanosarcina acetivorans, (Nayak and Metcalf, 2017Nayak DD, Metcalf WW. Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans. Proc Natl Acad Sci USA. 2017;114(11):2976-81. http://dx.doi.org/10.1073/pnas.1618596114. PMid:28265068.
http://dx.doi.org/10.1073/pnas.161859611...
). As most Archaea encode CRISPR/Cas systems, another strategy would be to perform the gene editing using the Archaeon’s own system, requiring only the sgRNA to target a DNA sequence and the ODN donor template for HDR (Li and Peng, 2019Li Y, Peng N. Endogenous CRISPR-Cas system-based genome editing and antimicrobials: review and prospects. Front Microbiol. 2019;10:2471. http://dx.doi.org/10.3389/fmicb.2019.02471. PMid:31708910.
http://dx.doi.org/10.3389/fmicb.2019.024...
). One challenge is to choose the best targets for gene editing, as the wrong targets could generate less competitive methanogens in the rumen microbiome. One option could be to knock down key genes in the methanogenesis pathway. The transcript abundance of genes encoding enzymes involved in the hydrogenotrophic methanogenesis pathway was shown to be lower in the rumen methanogens from sheep with low methane emission compared with those with high emission. The largest differences were found in transcripts from genes that belong to the operon that encodes subunits of methyl-coenzyme M reductase (Shi et al., 2014Shi W, Moon CD, Leahy SC, Kang D, Froula J, Kittelmann S, Fan C, Deutsch S, Gagic D, Seedorf H, Kelly WJ, Atua R, Sang C, Soni P, Li D, Pinares-Patiño CS, McEwan JC, Janssen PH, Chen F, Visel A, Wang Z, Attwood GT, Rubin EM. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res. 2014;24(9):1517-25. http://dx.doi.org/10.1101/gr.168245.113. PMid:24907284.
http://dx.doi.org/10.1101/gr.168245.113...
), important for methane biogenesis. Based on that, one can infer that perhaps the downregulation of genes involved in the hydrogenotrophic methanogenesis can be an adequate strategy to reduce the rumen methane emission.

Regulatory aspects of gene editing

The approaches used to edit a gene using nucleases can be classified in three categories: site-directed nucleases type 1 (SDN-1), SDN-2 and SDN-3 (Jones, 2015Jones HD. Future of breeding by genome editing is in the hands of regulators. GM Crops Food. 2015;6(4):223-32. http://dx.doi.org/10.1080/21645698.2015.1134405. PMid:26930115.
http://dx.doi.org/10.1080/21645698.2015....
; Sprink et al., 2016Sprink T, Eriksson D, Schiemann J, Hartung F. Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep. 2016;35(7):1493-506. http://dx.doi.org/10.1007/s00299-016-1990-2. PMid:27142995.
http://dx.doi.org/10.1007/s00299-016-199...
). The approach using SDN-1 relies only on NHEJ mechanism (NHEJ) and it can be applied to cause mutations to promote gene knockout or insert a premature stop codon, interfering with protein expression. Because SDN-1 does not insert foreign DNA into the genome, gene-edited organisms generated using this approach can be considered non-genetically modified organisms (GMO) in some countries on a case-by-case analysis. That is the case of Brazil, Argentina, Australia and Japan. On the other hand, the SDN-2 approach relies on a short ODN donor template to repair the DSB by HDR and it can be used to introduce few bases in the genome without introducing foreign DNA, being more precise than SDN-1. Brazil, Argentina and Japan can also consider gene-edited organisms generated by SDN-2 as non-GMO (Whelan and Lema, 2015Whelan AI, Lema MA. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food. 2015;6(4):253-65. http://dx.doi.org/10.1080/21645698.2015.1114698. PMid:26552666.
http://dx.doi.org/10.1080/21645698.2015....
; Vieira et al., 2021Vieira LR, Freitas NC, Justen F, Miranda VDJ, Garcia BDO, Nepomuceno AL, Fuganti-Pagliarini R, Felipe M, Molinari H, Velini E, Pinto E, Dagli M, Andrade G, Fernandes P, Mertz-Henning L, Kobayashi A. Regulatory framework of genome editing in Brazil and worldwide. In: Molinari HBC, Vieira LR, Silva NV, Prado GS, Lopes JF Fo, editors. CRISPR technology in plant genome editing: biotechnology applied to agriculture. Brasilia: Embrapa; 2021. p. 169-95.; Jones et al., 2022Jones MGK, Fosu-Nyarko J, Iqbal S, Adeel M, Romero-Aldemita R, Arujanan M, Kasai M, Wei X, Prasetya B, Nugroho S, Mewett O, Mansoor S, Awan MJA, Ordonio RL, Rao SR, Poddar A, Hundleby P, Iamsupasit N, Khoo K. Enabling Trade in gene-edited produce in Asia and Australasia: the developing regulatory landscape and future perspectives. Plants. 2022;11(19):2538. http://dx.doi.org/10.3390/plants11192538.
http://dx.doi.org/10.3390/plants11192538...
). In contrast, Australia regulates organisms generated by SDN-2 approach as GMO (Jones et al., 2022Jones MGK, Fosu-Nyarko J, Iqbal S, Adeel M, Romero-Aldemita R, Arujanan M, Kasai M, Wei X, Prasetya B, Nugroho S, Mewett O, Mansoor S, Awan MJA, Ordonio RL, Rao SR, Poddar A, Hundleby P, Iamsupasit N, Khoo K. Enabling Trade in gene-edited produce in Asia and Australasia: the developing regulatory landscape and future perspectives. Plants. 2022;11(19):2538. http://dx.doi.org/10.3390/plants11192538.
http://dx.doi.org/10.3390/plants11192538...
).

In the European Union, the Court of Justice decided that products developed by gene editing techniques are subject to the same regulation of GMOs regardless of the approach employed,, although the matter is still under discussion (Tani, 2022Tani C. EU agriculture ministers move closer to consensus on gene editing of crops. Sci Bussiness; 20 sep 2022.). In the United States of America, the Food and Drug Administration (FDA) released a guidance document that proposed to regulate food animals with an intentionally altered genomic (IGA) DNA using molecular technologies as new animal drug (Van Eenennaam et al., 2021van Eenennaam AL, Silva FF, Trott JF, Zilberman D. Genetic engineering of livestock: the opportunity cost of regulatory delay. Annu Rev Anim Biosci. 2021;9(1):453-78. http://dx.doi.org/10.1146/annurev-animal-061220-023052. PMid:33186503.
http://dx.doi.org/10.1146/annurev-animal...
); in 2022, however, the FDA performed a risk assessment of SLICK animals generated by gene editing and concluded that the IGA contained in the SLICK cattle posed low risk to people, animals, the food supply and the environment. Thus, there was no objection to introduce the animals or their products in the market and no distinction between facilities to raise conventional animals and gene-edited SLICK cattle was required (U.S. Food and Drug Administration, 2022U.S. Food and Drug Administration. FDA makes low-risk determination for marketing of products from genome-edited beef cattle after safety review. Silver Spring: FDA; 2022.).

For SDN-3, the DNA repair is also performed by HDR, but usually with a large donor template where an exogenous DNA sequence (a whole foreign gene, part of its sequence or a recombinant DNA) is included. Organisms generated by SDN-3 approach are uniformly considered as GMOs.

Thus, depending on the country, gene-edited products generated by SDN-1 or SDN-2 approaches can be classified as non-GMO on a case-by-case analysis by local regulatory agencies (Table 1). That can be the case of cattle generated with the SLICK, GHR, SCD1 and DGAT1 mutations discussed in this review. Indeed, gene-edited SLICK cattle have already been classified as non-GMO in Brazil and Argentina.

Table 1
Classification of gene-edited animals in same countries according to the approaches used to edit the target gene (SDN). Decisions taken by the regulatory agencies to classify gene-edited products as non-GMO are based on case-by-case analysis.

Final considerations

Cattle farming in tropical and subtropical regions have several challenges imposed by the environment, one of the main ones being heat stress. Heat stress results in low productivity and is one of the main constraints for efficient cattle farming activity in such regions. Gene editing technologies can be applied to decrease the negative effects of heat stress on productivity. Mutations associated with heat tolerance can be inserted in thermosensitive European breeds; similarly, mutations associated with milk yield and composition can be inserted in thermotolerant but low productivity indigenous breeds. Surrogate sires from adapted breeds can carry sperm from non-adapted, high genomic value bulls for natural mating. Increasing cattle productivity in the tropics and subtropics will contribute to produce more animal protein without significantly increasing methane emissions. Finally, gene editing could also be applied to modify the expression of genes in Archaea in order to modulate methane production in the rumen. Those potential applications are summarized in the Table 2. The association of reproductive biotechnologies, gene editing and genomic selection can be applied to generate large numbers of gene edited animals with high estimated genomic value, contributing to boost the genetic improvement and productivity in tropical and subtropical countries.

Table 2
Potential applications of genome editing for cattle farming in the tropics.

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Holstein Association USA Research Grants Program for the financial support for their researches. The authors also thank Carter Fernandes Camargo for drawing the figures.

  • Financial support: LSAC received funding from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 440562/2022-8) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG APQ-02189-21). ACD received funding from Holstein Association USA Research Grants Program. DRL was supported by a scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES; finance code 001).
  • How to cite: Camargo LSA, Saraiva NZ, Oliveira CS, Carmickle A, Lemos DR, Siqueira LGB, Denicol AC. Perspectives of gene editing for cattle farming in tropical and subtropical regions. Anim Reprod. 2022;19(4):e20220108. https://doi.org/10.1590/1984-3143-AR2022-0108

References

  • Balcombe P, Speirs JF, Brandon NP, Hawkes AD. Methane emissions: choosing the right climate metric and time horizon. Environ Sci Process Impacts. 2018;20(10):1323-39. http://dx.doi.org/10.1039/C8EM00414E PMid:30255177.
    » http://dx.doi.org/10.1039/C8EM00414E
  • Banos G, Woolliams JA, Woodward BW, Forbes AB, Coffey MP. Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and Diacylglycerol Acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows. J Dairy Sci. 2008;91(8):3190-200. http://dx.doi.org/10.3168/jds.2007-0930 PMid:18650297.
    » http://dx.doi.org/10.3168/jds.2007-0930
  • Baruselli PS, Rodrigues CA, Ferreira RM, Sales JNS, Elliff FM, Silva LG, Viziack MP, Factor L, D’Occhio MJ. Impact of oocyte donor age and breed on in vitro embryo production in cattle, and relationship of dairy and beef embryo recipients on pregnancy and the subsequent performance of offspring: a review. Reprod Fertil Dev. 2021;34(2):36-51. http://dx.doi.org/10.1071/RD21285 PMid:35231233.
    » http://dx.doi.org/10.1071/RD21285
  • Bauman DE. Bovine somatotropin and lactation: from basic science to commercial application. Domest Anim Endocrinol. 1999;17(2-3):101-16. http://dx.doi.org/10.1016/S0739-7240(99)00028-4 PMid:10527114.
    » http://dx.doi.org/10.1016/S0739-7240(99)00028-4
  • Bharathi M, Senthil Kumar N, Chellapandi P. Functional prediction and assignment of methanobrevibacter ruminantium M1 operome using a combined bioinformatics approach. Front Genet. 2020;11:593990. http://dx.doi.org/10.3389/fgene.2020.593990 PMid:33391347.
    » http://dx.doi.org/10.3389/fgene.2020.593990
  • Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G. Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem. 2006;17(12):789-810. http://dx.doi.org/10.1016/j.jnutbio.2006.02.009 PMid:16650752.
    » http://dx.doi.org/10.1016/j.jnutbio.2006.02.009
  • Bhatt-Wessel B, Jordan TW, Miller JH, Peng L. Role of DGAT enzymes in triacylglycerol metabolism. Arch Biochem Biophys. 2018;655:1-11. http://dx.doi.org/10.1016/j.abb.2018.08.001 PMid:30077544.
    » http://dx.doi.org/10.1016/j.abb.2018.08.001
  • Black JL, Davison TM, Box I. Methane emissions from ruminants in Australia: mitigation potential and applicability of mitigation strategies. Animals. 2021;11(4):951. http://dx.doi.org/10.3390/ani11040951 PMid:33805324.
    » http://dx.doi.org/10.3390/ani11040951
  • Blott S, Kim J-J, Moisio S, Schmidt-Küntzel A, Cornet A, Berzi P, Cambisano N, Ford C, Grisart B, Johnson D, Karim L, Simon P, Snell R, Spelman R, Wong J, Vilkki J, Georges M, Farnir F, Coppieters W. Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics. 2003;163(1):253-66. http://dx.doi.org/10.1093/genetics/163.1.253 PMid:12586713.
    » http://dx.doi.org/10.1093/genetics/163.1.253
  • Bobbo T, Tiezzi F, Penasa M, De Marchi M, Cassandro M. Short communication: association analysis of diacylglycerol acyltransferase (DGAT1) mutation on chromosome 14 for milk yield and composition traits, somatic cell score, and coagulation properties in Holstein bulls. J Dairy Sci. 2018;101(9):8087-91. http://dx.doi.org/10.3168/jds.2018-14533 PMid:30007808.
    » http://dx.doi.org/10.3168/jds.2018-14533
  • Bohlouli M, Yin T, Hammami H, Gengler N, König S. Climate sensitivity of milk production traits and milk fatty acids in genotyped Holstein dairy cows. J Dairy Sci. 2021;104(6):6847-60. http://dx.doi.org/10.3168/jds.2020-19411 PMid:33714579.
    » http://dx.doi.org/10.3168/jds.2020-19411
  • Bouwman AC, Bovenhuis H, Visker MH, van Arendonk JA. Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genet. 2011;12(1):43. http://dx.doi.org/10.1186/1471-2156-12-43 PMid:21569316.
    » http://dx.doi.org/10.1186/1471-2156-12-43
  • Bovenhuis H, Visker MHPW, Poulsen NA, Sehested J, van Valenberg HJF, van Arendonk JAM, Larsen LB, Buitenhuis AJ. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. J Dairy Sci. 2016;99(4):3113-23. http://dx.doi.org/10.3168/jds.2015-10462 PMid:26898284.
    » http://dx.doi.org/10.3168/jds.2015-10462
  • Bovenhuis H, Visker MHPW, van Valenberg HJF, Buitenhuis AJ, van Arendonk JAM. Effects of the DGAT1 polymorphism on test-day milk production traits throughout lactation. J Dairy Sci. 2015;98(9):6572-82. http://dx.doi.org/10.3168/jds.2015-9564 PMid:26142855.
    » http://dx.doi.org/10.3168/jds.2015-9564
  • Carmickle AT, Larson CC, Hernandez FS, Pereira JMV, Ferreira FC, Haimon MLJ, Jensen LM, Hansen PJ, Denicol AC. Physiological responses of Holstein calves and heifers carrying the SLICK1 allele to heat stress in California and Florida dairy farms. J Dairy Sci. 2022;105(11):9216-25. http://dx.doi.org/10.3168/jds.2022-22177 PMid:36114060.
    » http://dx.doi.org/10.3168/jds.2022-22177
  • Carroll D. Genome editing: past, present, and future. Yale J Biol Med. 2017;90(4):653-9. PMid:29259529.
  • Chang J, Peng S, Ciais P, Saunois M, Dangal SRS, Herrero M, Havlík P, Tian H, Bousquet P. Revisiting enteric methane emissions from domestic ruminants and their δ13CCH4 source signature. Nat Commun. 2019;10(1):3420. http://dx.doi.org/10.1038/s41467-019-11066-3 PMid:31366915.
    » http://dx.doi.org/10.1038/s41467-019-11066-3
  • Ciccarelli M, Giassetti MI, Miao D, Oatley MJ, Robbins C, Lopez-Biladeau B, Waqas MS, Tibary A, Whitelaw B, Lillico S, Park CH, Park KE, Telugu B, Fan Z, Liu Y, Regouski M, Polejaeva IA, Oatley JM. Donor-derived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males. Proc Natl Acad Sci USA. 2020;117(39):24195-204. http://dx.doi.org/10.1073/pnas.2010102117 PMid:32929012.
    » http://dx.doi.org/10.1073/pnas.2010102117
  • Clark LA, Thomson JM, Moore SS, Oba M. The effect of Ala293Val single nucleotide polymorphism in the stearoyl-CoA desaturase gene on conjugated linoleic acid concentration in milk fat of dairy cows. Can J Anim Sci. 2010;90(4):575-84. http://dx.doi.org/10.4141/cjas10053
    » http://dx.doi.org/10.4141/cjas10053
  • Contreras-Correa Z, Peña-Alvarado N, Torres-Ruiz W, Almodóvar-Rivera J, Domenech-Pérez K, Youngblood C, Pagán-Morales M, Mesonero-Morales A, Curbelo-Rodríguez J, Randel-Follin PF, Muñiz-Colón GC, Colón-González V, Jiménez-Arroyo AL, Jiménez-Arroyo GM, Sánchez-Rodríguez HL. Slick-haired Puerto Rican Holstein cows have larger sweat glands than their wild type-haired counterparts. J Dairy Sci. 2017;100:M202.
  • Cooke RF, Daigle CL, Moriel P, Smith SB, Tedeschi LO, Vendramini JMB. Cattle adapted to tropical and subtropical environments: social, nutritional, and carcass quality considerations. J Anim Sci. 2020;98(2):skaa014. http://dx.doi.org/10.1093/jas/skaa014 PMid:31955200.
    » http://dx.doi.org/10.1093/jas/skaa014
  • DeFries R, Rosenzweig C. Toward a whole-landscape approach for sustainable land use in the tropics. Proc Natl Acad Sci USA. 2010;107(46):19627-32. http://dx.doi.org/10.1073/pnas.1011163107 PMid:21081701.
    » http://dx.doi.org/10.1073/pnas.1011163107
  • Demeter RM, Schopen GC, Lansink AG, Meuwissen MP, van Arendonk JA. Effects of milk fat composition, DGAT1, and SCD1 on fertility traits in Dutch Holstein cattle. J Dairy Sci. 2009;92(11):5720-9. http://dx.doi.org/10.3168/jds.2009-2069 PMid:19841232.
    » http://dx.doi.org/10.3168/jds.2009-2069
  • Deppenmeier U. The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol. 2002;71:223-83. http://dx.doi.org/10.1016/S0079-6603(02)71045-3
    » http://dx.doi.org/10.1016/S0079-6603(02)71045-3
  • Dikmen S, Alava E, Pontes E, Fear JM, Dikmen BY, Olson TA, Hansen PJ. Differences in thermoregulatory ability between slick-haired and wild-type lactating holstein cows in response to acute heat stress. J Dairy Sci. 2008;91(9):3395-402. http://dx.doi.org/10.3168/jds.2008-1072 PMid:18765598.
    » http://dx.doi.org/10.3168/jds.2008-1072
  • Dikmen S, Khan FA, Huson HJ, Sonstegard TS, Moss JI, Dahl GE, Hansen PJ. The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. J Dairy Sci. 2014;97(9):5508-20. http://dx.doi.org/10.3168/jds.2014-8087 PMid:24996281.
    » http://dx.doi.org/10.3168/jds.2014-8087
  • Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. http://dx.doi.org/10.1126/science.1258096
    » http://dx.doi.org/10.1126/science.1258096
  • Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229-36. http://dx.doi.org/10.1038/s41586-020-1978-5 PMid:32051598.
    » http://dx.doi.org/10.1038/s41586-020-1978-5
  • El-Nahas A. Variation in the Genetic Effects of ABCG2, Growth Hormone and Growth Hormone Receptor Gene Polymorphisms on Milk Production Traits in Egyptian Native, Holstein and Hybrid Cattle Populations. Pak Vet J. 2018;38(4):371-6. http://dx.doi.org/10.29261/pakvetj/2018.089
    » http://dx.doi.org/10.29261/pakvetj/2018.089
  • Ferry JG. Biochemistry of Methanogenesis. Crit Rev Biochem Mol Biol. 1992;27(6):473-503. http://dx.doi.org/10.3109/10409239209082570 PMid:1473352.
    » http://dx.doi.org/10.3109/10409239209082570
  • Ferry JG. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr Opin Biotechnol. 2011;22(3):351-7. http://dx.doi.org/10.1016/j.copbio.2011.04.011 PMid:21555213.
    » http://dx.doi.org/10.1016/j.copbio.2011.04.011
  • Flórez Murillo JM, Landaeta‐Hernández AJ, Kim E, Bostrom JR, Larson SA, Pérez O’Brien AM, Montero-Urdaneta MA, Garcia JF, Sonstegard TS. Three novel nonsense mutations of prolactin receptor found in heat‐tolerant Bos taurus breeds of the Caribbean Basin. Anim Genet. 2021;52(1):132-4. http://dx.doi.org/10.1111/age.13027 PMid:33259090.
    » http://dx.doi.org/10.1111/age.13027
  • Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397-405. http://dx.doi.org/10.1016/j.tibtech.2013.04.004 PMid:23664777.
    » http://dx.doi.org/10.1016/j.tibtech.2013.04.004
  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Rome: Food and Agriculture Organization of the United Nations; 2013.
  • Giassetti MI, Ciccarelli M, Oatley JM. Spermatogonial stem cell transplantation: insights and outlook for domestic animals. Annu Rev Anim Biosci. 2019;7(1):385-401. http://dx.doi.org/10.1146/annurev-animal-020518-115239 PMid:30762440.
    » http://dx.doi.org/10.1146/annurev-animal-020518-115239
  • Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002;12(2):222-31. http://dx.doi.org/10.1101/gr.224202 PMid:11827942.
    » http://dx.doi.org/10.1101/gr.224202
  • Hammond AC, Olson TA, Chase CC Jr, Bowers EJ, Randel RD, Murphy CN, Vogt DW, Tewolde A. Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus, and Hereford cattle in Florida. J Anim Sci. 1996;74(2):295-303. http://dx.doi.org/10.2527/1996.742295x PMid:8690664.
    » http://dx.doi.org/10.2527/1996.742295x
  • Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology. 2020;154:190-202. http://dx.doi.org/10.1016/j.theriogenology.2020.05.010 PMid:32622199.
    » http://dx.doi.org/10.1016/j.theriogenology.2020.05.010
  • Henderson G, Cox F, Ganesh S, Jonker A, Young W, Abecia L, Angarita E, Aravena P, Nora Arenas G, Ariza C, Attwood GT, Mauricio Avila J, Avila-Stagno J, Bannink A, Barahona R, Batistotti M, Bertelsen MF, Brown-Kav A, Carvajal AM, Cersosimo L, Vieira Chaves A, Church J, Clipson N, Cobos-Peralta MA, Cookson AL, Cravero S, Cristobal Carballo O, Crosley K, Cruz G, Cerón Cucchi M, de la Barra R, De Menezes AB, Detmann E, Dieho K, Dijkstra J, dos Reis WLS, Dugan MER, Hadi Ebrahimi S, Eythórsdóttir E, Nde Fon F, Fraga M, Franco F, Friedeman C, Fukuma N, Gagić D, Gangnat I, Javier Grilli D, Guan LL, Heidarian Miri V, Hernandez-Sanabria E, Gomez AXI, Isah OA, Ishaq S, Jami E, Jelincic J, Kantanen J, Kelly WJ, Kim S-H, Klieve A, Kobayashi Y, Koike S, Kopecny J, Nygaard Kristensen T, Julie Krizsan S, LaChance H, Lachman M, Lamberson WR, Lambie S, Lassen J, Leahy SC, Lee S-S, Leiber F, Lewis E, Lin B, Lira R, Lund P, Macipe E, Mamuad LL, Cuquetto Mantovani H, Marcoppido GA, Márquez C, Martin C, Martinez G, Eugenia Martinez M, Lucía Mayorga O, McAllister TA, McSweeney C, Mestre L, Minnee E, Mitsumori M, Mizrahi I, Molina I, Muenger A, Muñoz C, Murovec B, Newbold J, Nsereko V, O’Donovan M, Okunade S, O’Neill B, Ospina S, Ouwerkerk D, Parra D, Pereira LGR, Pinares-Patiño C, Pope PB, Poulsen M, Rodehutscord M, Rodriguez T, Saito K, Sales F, Sauer C, Shingfield K, Shoji N, Simunek J, Stojanović-Radić Z, Stres B, Sun X, Swartz J, Liang Tan Z, Tapio I, Taxis TM, Tomkins N, Ungerfeld E, Valizadeh R, van Adrichem P, Van Hamme J, Van Hoven W, Waghorn G, John Wallace R, Wang M, Waters SM, Keogh K, Witzig M, Wright A-DG, Yamano H, Yan T, Yáñez-Ruiz DR, Yeoman CJ, Zambrano R, Zeitz J, Zhou M, Wei Zhou H, Xia Zou C, Zunino P, Janssen PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5(1):14567. http://dx.doi.org/10.1038/srep14567 PMid:26449758.
    » http://dx.doi.org/10.1038/srep14567
  • Hickey JM, Bruce C, Whitelaw A, Gorjanc G. Promotion of alleles by genome editing in livestock breeding programmes. J Anim Breed Genet. 2016;133(2):83-4. http://dx.doi.org/10.1111/jbg.12206 PMid:26995217.
    » http://dx.doi.org/10.1111/jbg.12206
  • Houaga I, Muigai AWT, Ng’ang’a FM, Ibeagha-Awemu EM, Kyallo M, Youssao IAK, Stomeo F. Milk fatty acid variability and association with polymorphisms in SCD1 and DGAT1 genes in White Fulani and Borgou cattle breeds. Mol Biol Rep. 2018;45(6):1849-62. http://dx.doi.org/10.1007/s11033-018-4331-4 PMid:30168097.
    » http://dx.doi.org/10.1007/s11033-018-4331-4
  • Jacobs AAA, Dijkstra J, Hendriks WH, van Baal J, van Vuuren AM. Comparison between stearoyl-CoA desaturase expression in milk somatic cells and in mammary tissue of lactating dairy cows. J Anim Physiol Anim Nutr. 2013;97(2):353-62. http://dx.doi.org/10.1111/j.1439-0396.2012.01278.x PMid:22369625.
    » http://dx.doi.org/10.1111/j.1439-0396.2012.01278.x
  • Jenko J, Gorjanc G, Cleveland MA, Varshney RK, Whitelaw CBA, Woolliams JA, Hickey JM. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genet Sel Evol. 2015;47(1):55. http://dx.doi.org/10.1186/s12711-015-0135-3 PMid:26133579.
    » http://dx.doi.org/10.1186/s12711-015-0135-3
  • Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci. 1995;73(8):2483-92. http://dx.doi.org/10.2527/1995.7382483x PMid:8567486.
    » http://dx.doi.org/10.2527/1995.7382483x
  • Jonas E, Koning D-J. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs. Front Genet. 2015;6:49. http://dx.doi.org/10.3389/fgene.2015.00049 PMid:25750652.
    » http://dx.doi.org/10.3389/fgene.2015.00049
  • Jones HD. Future of breeding by genome editing is in the hands of regulators. GM Crops Food. 2015;6(4):223-32. http://dx.doi.org/10.1080/21645698.2015.1134405 PMid:26930115.
    » http://dx.doi.org/10.1080/21645698.2015.1134405
  • Jones MGK, Fosu-Nyarko J, Iqbal S, Adeel M, Romero-Aldemita R, Arujanan M, Kasai M, Wei X, Prasetya B, Nugroho S, Mewett O, Mansoor S, Awan MJA, Ordonio RL, Rao SR, Poddar A, Hundleby P, Iamsupasit N, Khoo K. Enabling Trade in gene-edited produce in Asia and Australasia: the developing regulatory landscape and future perspectives. Plants. 2022;11(19):2538. http://dx.doi.org/10.3390/plants11192538
    » http://dx.doi.org/10.3390/plants11192538
  • Kęsek-Woźniak MM, Wojtas E, Zielak-Steciwko AE. Impact of SNPs in ACACA, SCD1, and DGAT1 genes on fatty acid profile in bovine milk with regard to lactation phases. Animals. 2020;10(6):997. http://dx.doi.org/10.3390/ani10060997 PMid:32521715.
    » http://dx.doi.org/10.3390/ani10060997
  • Kgwatalala PM, Ibeagha-Awemu EM, Hayes JF, Zhao X. Single nucleotide polymorphisms in the open reading frame of the stearoyl-CoA desaturase gene and resulting genetic variants in Canadian Holstein and Jersey cows. DNA Seq. 2007;18(5):357-62. http://dx.doi.org/10.1080/10425170701291921 PMid:17654011.
    » http://dx.doi.org/10.1080/10425170701291921
  • Kim H, Kim J-S. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15(5):321-34. http://dx.doi.org/10.1038/nrg3686 PMid:24690881.
    » http://dx.doi.org/10.1038/nrg3686
  • Lacorte GA, Machado MA, Martinez ML, Campos AL, Maciel RP, Verneque RS, Teodoro RL, Peixoto MG, Carvalho MR, Fonseca CG. DGAT1 K232A polymorphism in Brazilian cattle breeds. Genet Mol Res. 2006;5(3):475-82. PMid:17117362.
  • Lamas‐Toranzo I, Martínez‐Moro A, O’Callaghan E, Millán‐Blanca G, Sánchez JM, Lonergan P, Bermejo-Álvarez P. RS‐1 enhances CRISPR‐mediated targeted knock‐in in bovine embryos. Mol Reprod Dev. 2020;87(5):542-9. http://dx.doi.org/10.1002/mrd.23341 PMid:32227559.
    » http://dx.doi.org/10.1002/mrd.23341
  • Landaeta-Hernández A, Zambrano-Nava S, Hernández-Fonseca JP, Godoy R, Calles M, Iragorri JL, Añez L, Polanco M, Montero-Urdaneta M, Olson T. Variability of hair coat and skin traits as related to adaptation in Criollo Limonero cattle. Trop Anim Health Prod. 2011;43(3):657-63. http://dx.doi.org/10.1007/s11250-010-9749-1 PMid:21104126.
    » http://dx.doi.org/10.1007/s11250-010-9749-1
  • Landaeta-Hernández AJ, Zambrano-Nava S, Verde O, Pinto-Santini L, Montero-Urdaneta M, Hernández-Fonseca JP, Fuenmayor-Morales C, Sonstegard TS, Huson HJ, Olson TA. Heat stress response in slick vs normal-haired Criollo Limonero heifers in a tropical environment. Trop Anim Health Prod. 2021;53(4):445. http://dx.doi.org/10.1007/s11250-021-02856-3 PMid:34427775.
    » http://dx.doi.org/10.1007/s11250-021-02856-3
  • Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT. The genome sequence of the rumen methanogen methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One. 2010;5(1):e8926. http://dx.doi.org/10.1371/journal.pone.0008926 PMid:20126622.
    » http://dx.doi.org/10.1371/journal.pone.0008926
  • Lee H, Park WJ. Unsaturated fatty acids, desaturases, and human health. J Med Food. 2014;17(2):189-97. http://dx.doi.org/10.1089/jmf.2013.2917 PMid:24460221.
    » http://dx.doi.org/10.1089/jmf.2013.2917
  • Li G, Zhang X, Zhong C, Mo J, Quan R, Yang J, Liu D, Li Z, Yang H, Wu Z. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Sci Rep. 2017;7(1):8943. http://dx.doi.org/10.1038/s41598-017-09306-x PMid:28827551.
    » http://dx.doi.org/10.1038/s41598-017-09306-x
  • Li Y, Pan S, Zhang Y, Ren M, Feng M, Peng N, Chen L, Liang YX, She Q. Harnessing Type I and Type III CRISPR-Cas systems for genome editing. Nucleic Acids Res. 2016;44(4):e34. http://dx.doi.org/10.1093/nar/gkv1044 PMid:26467477.
    » http://dx.doi.org/10.1093/nar/gkv1044
  • Li Y, Peng N. Endogenous CRISPR-Cas system-based genome editing and antimicrobials: review and prospects. Front Microbiol. 2019;10:2471. http://dx.doi.org/10.3389/fmicb.2019.02471 PMid:31708910.
    » http://dx.doi.org/10.3389/fmicb.2019.02471
  • Littlejohn MD, Henty KM, Tiplady K, Johnson T, Harland C, Lopdell T, Sherlock RG, Li W, Lukefahr SD, Shanks BC, Garrick DJ, Snell RG, Spelman RJ, Davis SR. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nat Commun. 2014;5(1):5861. http://dx.doi.org/10.1038/ncomms6861 PMid:25519203.
    » http://dx.doi.org/10.1038/ncomms6861
  • Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W. Methodologies for Improving HDR Efficiency. Front Genet. 2019;9:691. http://dx.doi.org/10.3389/fgene.2018.00691 PMid:30687381.
    » http://dx.doi.org/10.3389/fgene.2018.00691
  • Liu Z, Ezernieks V, Wang J, Arachchillage NW, Garner JB, Wales WJ, Cocks BG, Rochfort S. Heat Stress in Dairy Cattle Alters Lipid Composition of Milk. Sci Rep. 2017;7(1):961. http://dx.doi.org/10.1038/s41598-017-01120-9 PMid:28424507.
    » http://dx.doi.org/10.1038/s41598-017-01120-9
  • Lu J, Boeren S, van Hooijdonk T, Vervoort J, Hettinga K. Effect of the DGAT1 K232A genotype of dairy cows on the milk metabolome and proteome. J Dairy Sci. 2015;98(5):3460-9. http://dx.doi.org/10.3168/jds.2014-8872 PMid:25771043.
    » http://dx.doi.org/10.3168/jds.2014-8872
  • Manteca X, Smith AJ. Effects of poor forage conditions on the behaviour of grazing ruminants. Trop Anim Health Prod. 1994;26(3):129-38. http://dx.doi.org/10.1007/BF02241068 PMid:7809984.
    » http://dx.doi.org/10.1007/BF02241068
  • Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33(5):538-42. http://dx.doi.org/10.1038/nbt.3190 PMid:25798939.
    » http://dx.doi.org/10.1038/nbt.3190
  • Mele M, Conte G, Castiglioni B, Chessa S, Macciotta NPP, Serra A, Buccioni A, Pagnacco G, Secchiari P. Stearoyl-coenzyme A desaturase gene polymorphism and milk fatty acid composition in Italian holsteins. J Dairy Sci. 2007;90(9):4458-65. http://dx.doi.org/10.3168/jds.2006-617 PMid:17699067.
    » http://dx.doi.org/10.3168/jds.2006-617
  • Miranda J, Freitas A. Raças e tipos de cruzamento para produção de leite. Juiz de Fora: Embrapa; 2009.
  • Mishra SR. Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: an updated review. Trop Anim Health Prod. 2021;53(3):400. http://dx.doi.org/10.1007/s11250-021-02790-4 PMid:34255188.
    » http://dx.doi.org/10.1007/s11250-021-02790-4
  • Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. Nat Plants. 2021;7(9):1166-87. http://dx.doi.org/10.1038/s41477-021-00991-1 PMid:34518669.
    » http://dx.doi.org/10.1038/s41477-021-00991-1
  • Morrell JM. Heat stress and bull fertility. Theriogenology. 2020;153:62-7. http://dx.doi.org/10.1016/j.theriogenology.2020.05.014 PMid:32442741.
    » http://dx.doi.org/10.1016/j.theriogenology.2020.05.014
  • Mueller ML, Van Eenennaam AL. Synergistic power of genomic selection, assisted reproductive technologies, and gene editing to drive genetic improvement of cattle. CABI Agric Biosci. 2022;3(1):13. http://dx.doi.org/10.1186/s43170-022-00080-z
    » http://dx.doi.org/10.1186/s43170-022-00080-z
  • Muñiz-Cruz J, Peña-Alvarado N, Torres-Ruiz W, Almodóvar-Rivera J, Domenech-Pérez K, Contreras-Correa Z, Muñiz-Colón GC, Cortés-Arocho AC, Santiago-Rodríguez JM, Ruiz-Ríos S, Soriano-Varela GA, Cortés-Viruet NN, Jiménez-Arroyo AL, Jiménez-Arroyo GM, Sánchez-Rodríguez HL. Sweat gland cross-sectional cut areas comparisons between slick and wild type-haired Holstein and Senepol cows in Puerto Rico. J Dairy Sci. 2018;101:T162.
  • Näslund J, Fikse WF, Pielberg GR, Lundén A. Frequency and Effect of the bovine Acyl-CoA:Diacylglycerol Acyltransferase 1 (DGAT1) K232A polymorphism in Swedish dairy cattle. J Dairy Sci. 2008;91(5):2127-34. http://dx.doi.org/10.3168/jds.2007-0330 PMid:18420644.
    » http://dx.doi.org/10.3168/jds.2007-0330
  • Nayak DD, Metcalf WW. Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans. Proc Natl Acad Sci USA. 2017;114(11):2976-81. http://dx.doi.org/10.1073/pnas.1618596114 PMid:28265068.
    » http://dx.doi.org/10.1073/pnas.1618596114
  • Ntambi J, Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res. 2004;43(2):91-104. http://dx.doi.org/10.1016/S0163-7827(03)00039-0 PMid:14654089.
    » http://dx.doi.org/10.1016/S0163-7827(03)00039-0
  • Olson TA, Lucena C, Chase CC Jr, Hammond AC. Evidence of a major gene influencing hair length and heat tolerance in Bos taurus cattle. J Anim Sci. 2003;81(1):80-90. http://dx.doi.org/10.2527/2003.81180x PMid:12597376.
    » http://dx.doi.org/10.2527/2003.81180x
  • Oosting SJ, Udo HMJ, Viets TC. Development of livestock production in the tropics: farm and farmers’ perspectives. Animal. 2014;8(8):1238-48. http://dx.doi.org/10.1017/S1751731114000548 PMid:24673769.
    » http://dx.doi.org/10.1017/S1751731114000548
  • Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533(7601):125-9. http://dx.doi.org/10.1038/nature17664 PMid:27120160.
    » http://dx.doi.org/10.1038/nature17664
  • Park K-E, Kaucher AV, Powell A, Waqas MS, Sandmaier SES, Oatley MJ, Park CH, Tibary A, Donovan DM, Blomberg LA, Lillico SG, Whitelaw CB, Mileham A, Telugu BP, Oatley JM. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci Rep. 2017;7(1):40176. http://dx.doi.org/10.1038/srep40176 PMid:28071690.
    » http://dx.doi.org/10.1038/srep40176
  • Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab. 2009;297(1):E28-37. http://dx.doi.org/10.1152/ajpendo.90897.2008 PMid:19066317.
    » http://dx.doi.org/10.1152/ajpendo.90897.2008
  • Penev T, Naydenova N, Dimov D, Marinov I. Influence of heat stress and physiological indicators related to it on health lipid indices in milk of holstein-friesian cows. J Oleo Sci. 2021;70(6):745-55. http://dx.doi.org/10.5650/jos.ess20251 PMid:33967167.
    » http://dx.doi.org/10.5650/jos.ess20251
  • Porto-Neto LR, Bickhart DM, Landaeta-Hernandez AJ, Utsunomiya YT, Pagan M, Jimenez E, Hansen PJ, Dikmen S, Schroeder SG, Kim ES, Sun J, Crespo E, Amati N, Cole JB, Null DJ, Garcia JF, Reverter A, Barendse W, Sonstegard TS. Convergent evolution of slick coat in cattle through truncation mutations in the prolactin receptor. Front Genet. 2018;9:57. http://dx.doi.org/10.3389/fgene.2018.00057 PMid:29527221.
    » http://dx.doi.org/10.3389/fgene.2018.00057
  • Rahman MB, Schellander K, Luceño NL, Van Soom A. Heat stress responses in spermatozoa: mechanisms and consequences for cattle fertility. Theriogenology. 2018;113:102-12. http://dx.doi.org/10.1016/j.theriogenology.2018.02.012 PMid:29477908.
    » http://dx.doi.org/10.1016/j.theriogenology.2018.02.012
  • Rahmatalla SA, Müller U, Strucken EM, Reissmann M, Brockmann GA. The F279Y polymorphism of the GHR gene and its relation to milk production and somatic cell score in German Holstein dairy cattle. J Appl Genet. 2011;52(4):459-65. http://dx.doi.org/10.1007/s13353-011-0051-3 PMid:21660490.
    » http://dx.doi.org/10.1007/s13353-011-0051-3
  • Ramesha K, Rao A, Basavaraju M, Geetha G, Kataktalware M, Jeyakumar S. Genetic variability of bovine GHR, IGF-1 and IGFBP-3 genes in Indian cattle and buffalo. S Afr J Anim Sci. 2016;45(5):485. http://dx.doi.org/10.4314/sajas.v45i5.5
    » http://dx.doi.org/10.4314/sajas.v45i5.5
  • Reynolds CM, Roche HM. Conjugated linoleic acid and inflammatory cell signalling. Prostaglandins Leukot Essent Fatty Acids. 2010;82(4-6):199-204. http://dx.doi.org/10.1016/j.plefa.2010.02.021 PMid:20207526.
    » http://dx.doi.org/10.1016/j.plefa.2010.02.021
  • Ryu S-M, Hur JW, Kim K. Evolution of CRISPR towards accurate and efficient mammal genome engineering. BMB Rep. 2019;52(8):475-81. http://dx.doi.org/10.5483/BMBRep.2019.52.8.149 PMid:31234957.
    » http://dx.doi.org/10.5483/BMBRep.2019.52.8.149
  • Sada A, Suzuki A, Suzuki H, Saga Y. The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science. 2009;325(5946):1394-8. http://dx.doi.org/10.1126/science.1172645
    » http://dx.doi.org/10.1126/science.1172645
  • Sánchez-Rodríguez HL, Domenech-Pérez K. Light sensors assess solar radiation vs. shade exposure of slick- and wild-type Puerto Rican Holstein cows. J Agric Univ P R. 2021;105(1):39-48. http://dx.doi.org/10.46429/jaupr.v105i1.19634
    » http://dx.doi.org/10.46429/jaupr.v105i1.19634
  • Santos MM, Souza-Junior JBF, Dantas MRT, de Macedo Costa LL. An updated review on cattle thermoregulation: physiological responses, biophysical mechanisms, and heat stress alleviation pathways. Environ Sci Pollut Res Int. 2021;28(24):30471-85. http://dx.doi.org/10.1007/s11356-021-14077-0 PMid:33895955.
    » http://dx.doi.org/10.1007/s11356-021-14077-0
  • Schennink A, Heck JML, Bovenhuis H, Visker MHPW, van Valenberg HJF, van Arendonk JAM. Milk fatty acid unsaturation: genetic parameters and effects of Stearoyl-CoA Desaturase (SCD1) and Acyl CoA: Diacylglycerol Acyltransferase 1 (DGAT1). J Dairy Sci. 2008;91(5):2135-43. http://dx.doi.org/10.3168/jds.2007-0825 PMid:18420645.
    » http://dx.doi.org/10.3168/jds.2007-0825
  • Schubert MS, Thommandru B, Woodley J, Turk R, Yan S, Kurgan G, McNeill MS, Rettig GR. Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair. Sci Rep. 2021;11(1):19482. http://dx.doi.org/10.1038/s41598-021-98965-y PMid:34593942.
    » http://dx.doi.org/10.1038/s41598-021-98965-y
  • Shen R, Xie T. NANOS: a germline stem cell’s guardian angel. J Mol Cell Biol. 2010;2(2):76-7. http://dx.doi.org/10.1093/jmcb/mjp043 PMid:20008335.
    » http://dx.doi.org/10.1093/jmcb/mjp043
  • Shi W, Moon CD, Leahy SC, Kang D, Froula J, Kittelmann S, Fan C, Deutsch S, Gagic D, Seedorf H, Kelly WJ, Atua R, Sang C, Soni P, Li D, Pinares-Patiño CS, McEwan JC, Janssen PH, Chen F, Visel A, Wang Z, Attwood GT, Rubin EM. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res. 2014;24(9):1517-25. http://dx.doi.org/10.1101/gr.168245.113 PMid:24907284.
    » http://dx.doi.org/10.1101/gr.168245.113
  • Shima S, Warkentin E, Thauer RK, Ermler U. Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. J Biosci Bioeng. 2002;93(6):519-30. http://dx.doi.org/10.1016/S1389-1723(02)80232-8 PMid:16233244.
    » http://dx.doi.org/10.1016/S1389-1723(02)80232-8
  • Shyma KP, Gupta JP, Singh V. Breeding strategies for tick resistance in tropical cattle: a sustainable approach for tick control. J Parasit Dis. 2015;39(1):1-6. http://dx.doi.org/10.1007/s12639-013-0294-5 PMid:25698850.
    » http://dx.doi.org/10.1007/s12639-013-0294-5
  • Silva MO, Borges MS, Fernandes LG, Rodrigues NN, Watanabe YF, Joaquim DC, Oliveira CS, da Feuchard VLS, Dos Cyrillo JNSG, Mercadante MEZ, Monteiro FM. Effect of Nellore (Bos indicus) donor age on in‐vitro embryo production and pregnancy rate. Reprod Domest Anim. 2022;57(9):980-8. http://dx.doi.org/10.1111/rda.14164 PMid:35612981.
    » http://dx.doi.org/10.1111/rda.14164
  • Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun. 2016;7(1):10548. http://dx.doi.org/10.1038/ncomms10548 PMid:26817820.
    » http://dx.doi.org/10.1038/ncomms10548
  • Sprink T, Eriksson D, Schiemann J, Hartung F. Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep. 2016;35(7):1493-506. http://dx.doi.org/10.1007/s00299-016-1990-2 PMid:27142995.
    » http://dx.doi.org/10.1007/s00299-016-1990-2
  • Summer A, Lora I, Formaggioni P, Gottardo F. Impact of heat stress on milk and meat production. Anim Front. 2018;9(1):39-46. http://dx.doi.org/10.1093/af/vfy026 PMid:32002238.
    » http://dx.doi.org/10.1093/af/vfy026
  • Sun D, Jia J, Ma Y, Zhang Y, Wang Y, Yu Y, Zhang Y. Effects of DGAT1 and GHR on milk yield and milk composition in the Chinese dairy population. Anim Genet. 2009;40(6):997-1000. http://dx.doi.org/10.1111/j.1365-2052.2009.01945.x PMid:19781040.
    » http://dx.doi.org/10.1111/j.1365-2052.2009.01945.x
  • Svennersten-Sjaunja K, Olsson K. Endocrinology of milk production. Domest Anim Endocrinol. 2005;29(2):241-58. http://dx.doi.org/10.1016/j.domaniend.2005.03.006 PMid:15876512.
    » http://dx.doi.org/10.1016/j.domaniend.2005.03.006
  • Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45(1):247-71. http://dx.doi.org/10.1146/annurev-genet-110410-132435 PMid:21910633.
    » http://dx.doi.org/10.1146/annurev-genet-110410-132435
  • Syrstad O. Dairy cattle crossbreeding in the tropics: choice of crossbreeding strategy. Trop Anim Health Prod. 1996;28(3):223-9. http://dx.doi.org/10.1007/BF02240940 PMid:8888529.
    » http://dx.doi.org/10.1007/BF02240940
  • Syrstad O. Dairy cattle cross-breeding in the tropics: performance of secondary cross-bred populations. Livest Prod Sci. 1989;23(1-2):97-106. http://dx.doi.org/10.1016/0301-6226(89)90008-0
    » http://dx.doi.org/10.1016/0301-6226(89)90008-0
  • Tăbăran A, Balteanu VA, Gal E, Pusta D, Mihaiu R, Dan SD, Tăbăran AF, Mihaiu M. Influence of DGAT1 K232A Polymorphism on Milk Fat Percentage and Fatty Acid Profiles in Romanian Holstein Cattle. Anim Biotechnol. 2015;26(2):105-11. http://dx.doi.org/10.1080/10495398.2014.933740 PMid:25380462.
    » http://dx.doi.org/10.1080/10495398.2014.933740
  • Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 1998;17(18):5497-508. http://dx.doi.org/10.1093/emboj/17.18.5497 PMid:9736627.
    » http://dx.doi.org/10.1093/emboj/17.18.5497
  • Tani C. EU agriculture ministers move closer to consensus on gene editing of crops. Sci Bussiness; 20 sep 2022.
  • U.S. Food and Drug Administration. FDA makes low-risk determination for marketing of products from genome-edited beef cattle after safety review. Silver Spring: FDA; 2022.
  • UF/IFA Range Cattle Research and Education. The SLICK gene in Holstein cattle improves thermotolerance - Colleen Larson [Internet]. YouTube; 2022 [cited 2022 Oct 25]. Available from: https://www.youtube.com/watch?v=MHLjgl3gEGM
    » https://www.youtube.com/watch?v=MHLjgl3gEGM
  • United NationsDepartment of Economic and Social Affairs Population Division. World population prospects 2022: summary of results. UN DESA/POP/2022/TR/NO 3 2022. New York; 2022.
  • van Eenennaam AL, Silva FF, Trott JF, Zilberman D. Genetic engineering of livestock: the opportunity cost of regulatory delay. Annu Rev Anim Biosci. 2021;9(1):453-78. http://dx.doi.org/10.1146/annurev-animal-061220-023052 PMid:33186503.
    » http://dx.doi.org/10.1146/annurev-animal-061220-023052
  • Vieira LR, Freitas NC, Justen F, Miranda VDJ, Garcia BDO, Nepomuceno AL, Fuganti-Pagliarini R, Felipe M, Molinari H, Velini E, Pinto E, Dagli M, Andrade G, Fernandes P, Mertz-Henning L, Kobayashi A. Regulatory framework of genome editing in Brazil and worldwide. In: Molinari HBC, Vieira LR, Silva NV, Prado GS, Lopes JF Fo, editors. CRISPR technology in plant genome editing: biotechnology applied to agriculture. Brasilia: Embrapa; 2021. p. 169-95.
  • Viitala S, Szyda J, Blott S, Schulman N, Lidauer M, Mäki-Tanila A, Georges M, Vilkki J. The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in finnish ayrshire dairy cattle. Genetics. 2006;173(4):2151-64. http://dx.doi.org/10.1534/genetics.105.046730 PMid:16751675.
    » http://dx.doi.org/10.1534/genetics.105.046730
  • Weindl I, Popp A, Bodirsky BL, Rolinski S, Lotze-Campen H, Biewald A, Humpenöder F, Dietrich JP, Stevanović M. Livestock and human use of land: productivity trends and dietary choices as drivers of future land and carbon dynamics. Global Planet Change. 2017;159:1-10. http://dx.doi.org/10.1016/j.gloplacha.2017.10.002
    » http://dx.doi.org/10.1016/j.gloplacha.2017.10.002
  • Whelan AI, Lema MA. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food. 2015;6(4):253-65. http://dx.doi.org/10.1080/21645698.2015.1114698 PMid:26552666.
    » http://dx.doi.org/10.1080/21645698.2015.1114698
  • Winter A, Krämer W, Werner FAO, Kollers S, Kata S, Durstewitz G, Buitkamp J, Womack JE, Thaller G, Fries R. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc Natl Acad Sci USA. 2002;99(14):9300-5. http://dx.doi.org/10.1073/pnas.142293799 PMid:12077321.
    » http://dx.doi.org/10.1073/pnas.142293799
  • Wulandari AS, Rahayu H, Volkandari S, Herlina N, Anwar S, Irnidayanti Y. Genetic polymorphism of SCD1 gene of Holstein-Friesian cows in Indonesia. J Ilmu Ternak Vet. 2019;24(2):56. http://dx.doi.org/10.14334/jitv.v24i2.1905
    » http://dx.doi.org/10.14334/jitv.v24i2.1905
  • Zhao D, Zhu X, Zhou H, Sun N, Wang T, Bi C, Zhang X. CRISPR-based metabolic pathway engineering. Metab Eng. 2021;63:148-59. http://dx.doi.org/10.1016/j.ymben.2020.10.004 PMid:33152516.
    » http://dx.doi.org/10.1016/j.ymben.2020.10.004
  • Zhu Y. Advances in CRISPR/Cas9. BioMed Res Int. 2022;2022:9978571. http://dx.doi.org/10.1155/2022/9978571 PMid:36193328.
    » http://dx.doi.org/10.1155/2022/9978571

Publication Dates

  • Publication in this collection
    13 Feb 2023
  • Date of issue
    2022

History

  • Received
    28 Oct 2022
  • Accepted
    23 Jan 2023
Colégio Brasileiro de Reprodução Animal Coronel José dias Bicalho, 1224, CEP: , 31275-050, Belo Horizonte, MG - Brasil, Tel.: 55-31-3491 7122 - Belo Horizonte - MG - Brazil
E-mail: animreprod.journal@gmail.com