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Abstract: The current methodologies used to evaluate environmental similarities 
do not allow the simultaneous analysis and categorization of the environments. 
The objective of this study was to verify the possibility of using the Bayesian 
network (BN) to detect similarities between environments for plant height, 
lodging, and grain yield in maize. Thirteen experimental varieties were grown 
in six environments to measure the traits plant height, lodging, and grain 
yield. The BN was constructed for each trait, using the Hill-Climbing algorithm. 
Results were compared with the simple part of the genotypes x environments 
interaction, clustering by the Lin’s method and by simple correlation between 
environments. The Lin’s method clustered environments with predominance of 
complex interaction for all traits. The BN is efficient to analyze environmental 
similarity for plant height and grain yield since it detected the highest correla-
tions. The BN revealed no connections among the environments that presented 
predominance of complex interaction. 
Keywords: Zea mays, prediction method, environmental correlation, genotype 
x environment interaction. 
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INTRODUCTION

The primary objective of breeding programs is to release new cultivars with 
optimal agronomic traits. To reach this goal, the evaluation of genotypes in several 
years and locations is necessary and helps estimate genotype x environment 
interaction. This interaction prevents the generalized recommendation of 
genotypes and demands the study of the genotype in specific environments. 
This process is expensive and requires financial and human resources, which 
makes the research onerous. The interaction can also be used to select similar 
environments with predominance of simple interaction (Garbuglio et al. 2007).

Cruz and Castoldi (1991) proposed a methodology that divides the interaction 
into simple and complex parts, based on the decomposition of the mean square 
of genotypes x environments interaction (GE). Despite being adequate to evaluate 
this type of experiment, this methodology does not allow the simultaneous 
analysis and categorization of the environments, once the result is given by pairs 
of environments. Another frequently used methodology is the Lin’s algorithm 
(Lin 1982), which groups the environments based on the absence of interaction. 

The Bayesian network (BN) is an approach that represents cause and effect 
relations. Its graphical structure allows the identification of assumptions between 
system variables that may be obscured when using other methodologies 
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(Borsuk et al. 2004). Currently, the BN has been studied to predict variables. Felipe et al. (2015) successfully analyzed 
the predictive capacity of the BN considering 31 traits, which revealed that the BN can be used even with a large number 
of traits, and allowed their joint analysis.  

The present study raises the hypothesis that the BN can be used to predict environments instead of variables, and 
has the potential to be used to evaluate similarity between environments with predominance of simple interaction, 
simultaneously. Therefore, the objective of this study was to verify the possibility of using the BN to detect similarity 
between environments for plant height, lodging, and grain yield in maize. 

MATERIAL AND METHODS

The experiments with the Bayesian network were carried out in two locations, Jaboticabal (lat 21º 14’ 33’’ S, long 
48º 17’ 10’’ W, and 565 m asl), SP, Brazil and Campo Alegre de Goiás (lat 17º 38’ 20’’ S, long 47º 46’ 55’’ W, and 884 
m asl), GO, Brazil. These locations were selected due to their diverse environmental conditions. The same experiment 
was carried out in five different seasons in Jaboticabal (Environment 1: first season of 2009/2010; 3: second season of 
2010; 4: first season of 2015/2016, under low nitrogen conditions; 5: first season of 2015/2016, under high nitrogen 
conditions; and 6: second season of 2016), and one season in Campos Alegre de Goiás (Environment 2: second season 
of 2010). Each season represented one environment to be included in the modeling approach.  

Information from 13 open-pollination synthetic varieties, obtained as described by Oliveira et al. (2016), was evaluated 
in each environment. All experiments were arranged in a complete randomized block design, with three replications. 
Each plot consisted of two 5 m-long rows, and the population was corrected to 60,000 plants ha-1. The management of 
the experiments followed the recommendations of Fornasieri Filho (2007).

The following traits were measured: plant height, determined by the distance in cm between the ground and the 
insertion of the flag leaf, in 10 random plants per plot; number of lodged plants per plot, determined by the breakage 
below the ear and maize root lodging; and grain yield per plot. After physiological maturity, the ears of both rows of the 
plot were hand-harvested; the grains were separated and weighed, and the grain moisture was determined. The grain 
yield of each plot was corrected to 13% of humidity and converted to kg ha-1. 

The BN is a graphical representation of a probability distribution over a set of variables (Felipe et al. 2015). The Directed 
Acyclic Graph (DAG) represents the BN using nodes connected by arrows, and is used as an output to the modeling 
approach. In this case, it is used to illustrate the association between environments. This graph characterizes a joint 
probability of the data, which brings scale benefits due to the factorization (Aliferis et al. 2010). In a set of variables {X1, 
X2,…, Xp} with joint distribution Pr(X1, X2,…, Xp) and a DAG D that is compatible with this joint distribution (Pearl 2000), 
the following factorization can be performed:

Pr (X1,X2,...,Xp) = 
p

Π
i=l

Pr(X1|Pai)

in which Pai are the parents of Xi in D. The BN analysis involves searching for a structure that is compatible with the joint 
distribution of the data. The selected structure has already been used as a prediction tool, as described by Felipe et al. 
(2015). In this study, the BN was only used in the context of environmental association.

For the present work, the Hill-Climbing algorithm (“search and score” approach) was used to construct the BN 
from the means of each plot. The model was adjusted using the package “bnlearn” of the R software (Scutari 2009). 
The environmental correlation was estimated, using the Pearson’s correlation, to quantify the relationship between 
environments associated by the BN. The magnitude of the correlations was analyzed according to the limits of interpretation 
of correlations proposed by Carvalho et al. (2004), where: r = 0.0 (no correlation); 0.0 < |r| < 0.30 (weak); 0.30 < |r| < 
0.60 (intermediate; 0.60 < |r| < 0.90 (strong); 0.90 < |r| < 1 (very strong) and |r|= 1 (perfect). After the network was 
“learned” from environment data, additional conventional methodologies were applied to validate the BN. Therefore, 
joint analysis was performed considering all the six environments, using the following model:

Yijk = m + B(Ajk) + G1 + Aj + GAij + Eijk ,

where Yijk is the phenotypic observation; m is the general mean; B(Ajk) is the effect of k block within the jth environment; 
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Gi is the effect of the ith genotype; Aj is the effect of the jth environment; GAij is the effect of the interaction between the 
ith genotype and the jth environment; and Eijk is the random error or residue. All effects, except for error, were considered 
as fixed. 

Environmental stratification was carried out using the conventional approach as proposed by Cruz and Castoldi (1991). 
This method can be used when the GE interaction is significant between the pair of environment, decomposing this 
interaction into two parts. The first part, denominated as simple interaction, is determined by the difference in variability 
between genotypes in the environments; and the second part, denominated as complex, is given by the absence of 
correlation between genotypes under environmental variation (Cruz et al. 2012). Moreover, this methodology allows 
estimating the Pearson’s and Spearman’s correlation. In this method, the lowest values of the percentage of simple 
interaction represent the most different environments. 

The division of the simple part of the mean squares of the interaction (MSGxE) was performed for plant height, 
lodging, and grain yield, using the following formula: 

S = (1 – r)    Q1 .Q2

where Q1 and Q2 were the mean squares of genotypes in environments 1 and 2, respectively; and r was the correlation 
between the genotypes means in both environments. The percentage of the simple interaction of MSGxE is expressed 
as follows:

%S = 100S
MSG×E

  ,

where  S = MSGxE – C, being C the complex interaction represented by    (1 – r)3 Q1Q2.

Another estimation method was proposed by Lin (1982), which considers the sum of squares for the interaction 
between genotypes and pairs of environments, and subsequently clusters of environments with non-significant interaction. 
Afterward, the method estimates the sum of squares between genotypes and groups of three environments each time, 
and uses the F test to evaluate the possibility of creating a new group. A sum of square of the pairs of environments 
was estimated, using the means, according to Cruz et al. (2012), by:

MSGxE = 1
2

 [d2
jj' – 1

t
 (Y.j – Y.j')

2]
where d2

jj' =  Σi(Yij – Yij')
2. The highest values represent the most similar environments. The Genes software (Cruz 2013) 

was used to analyze the algorithms of Cruz and Castoldi (1991) and Lin (1982).

RESULTS AND DISCUSSION

The experimental coefficient of variation (Table 1) was classified as intermediate for plant height and grain yield, and 
as very high for lodging, according to Fritsche-Neto et al. (2012). The coefficient of variation is an adequate method to 
evaluate the experimental precision and the estimated mean accuracy (Cargnelutti Filho and Storck 2007). Lodging usually 
presents high values of phenotypic coefficient of variation, as reported by Nzuve et al. (2014), due to the difference of 
influence of the environment in the plots for the trait. 

The joint analyses of variance revealed significant effects at 1% probability for environments, genotypes, and the 
GE for all traits (Table 1), indicating the presence of differences among environments, variability among genotypes, and 
different response of genotypes to environmental condition. Quantitative traits usually present genotypes x environments 
interaction (Fan et al. 2007), requiring the unfolding of the interaction into simple and complex interactions.

The unfolding of the GE in the percentage of simple effect for pair of environments by the method proposed by Cruz 
and Castoldi (1991) showed that most of it were composed by simple interaction between the pairs of environments 
for all traits (Table 2). 

Synthetic varieties are composed of a high number of genotypes, leading to great variability within the population, 
as demonstrated by Semagn et al. (2014), who found significant genetic variability within open-pollination varieties. 
This variability implies high stability, defined as the ability to maintain performance throughout multiple environments 
(Mansfiel and Mumm 2014). In this case, the stability results in predominance of simple interaction, that is, the great 
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number of genotypes in the population confers the ability 
to predict the mean performance, regardless of the 
environmental effects. 

The environments clustering based on the Lin’s method 
(Lin 1982) formed one group for plant height and lodging, 
and four groups for grain yield (Table 3), as expected, due 
to the higher percentage of complex interaction between 
pairs of environments for plant height and lodging. For plant 
height, the group was formed with the environments 1, 3, 
4, 5 and 6. However, the decomposition of the genotypes 
x environments interactions indicated predominance of 
the complex interaction between pairs 1 x 4, 1 x 6, 3 x 4, 
3 x 6, 4 x 6 and 5 x 6 (Table 2), suggesting inconsistency 
between the results of the unfolding of the effect of the 
interaction and the results obtained with the Lin (1982)’s 
method. The same disparity was observed for lodging, where 
the pairs 2 x 6, 2 x 5, 3 x 6, 4 x 5, 4 x 6 and 5 x 6 presented 
predominance of complex interaction and were allocated 
in the same group. 

The groups formed for grain yield were 1-2-3-5, 2-6, 
4-5 and 3-4 (Table 3), and the pair 2-6 presented 70.62% 
of complex interaction. Cruz et al. (2012) also reported 
differences between the environment clustering using the Lin’s algorithm and the environment clustering using the 
method of Cruz and Castoldi (1991), where the interaction was predominantly simple  The authors also observed that 
this inconsistency was not a barrier since the interaction detected within the group was simple. However, the use of 
the simple interaction became a problem since the result is given for each pair of environment, making it difficult to 
stratify the environments.

The environments clustering by the Lin’s algorithm aims to allocate in the same group the environments that presented 
lack of interaction (Peluzio et al. 2012).  According to Mendonça et al. (2007), this is a less selective environment clustering 
method than the simple interaction, which leads to differences between the methods. 

Table 1. Summary of joint analyses of variance of plant height, lodging, and grain yield of 13 maize varieties in six environments

Trait
Mean squares

CV (%)
Environment (E) Genotype (G) G x E Error

Plant height 8582.065** 1639.735** 200.686** 114.810 5.42
Lodging 1794.664** 84.834** 39.204** 14.410 63.40
Grain yield 105758246.000** 9772840.000** 777180.000** 408180.000 12.16

** Significant at 1% by the F test. 

Table 2. Percentage of the simple interaction determined by the 
method of Cruz and Castoldi (1991) for plant height, lodging, and 
grain yield, in the competition experiments of maize varieties in 
six environments

Environment Plant height Lodging Grain yield
1 x 2 42.68 57.97 73.72
1 x 3 53.23 57.84 70.20
1 x 4 48.15 86.83 43.14
1 x 5 68.53 78.74 56.75
1 x 6 31.17 63.75 30.58
2 x 3 80.31 59.49 56.81
2 x 4 91.03 69.29 61.16
2 x 5 90.31 48.16 82.13
2 x 6 57.02 19.95 29.38
3 x 4 46.78 86.66 62.93
3 x 5 55.97 61.81 61.79
3 x 6 33.76 33.09 26.25
4 x 5 59.74 35.27 57.68
4 x 6 29.39 13.38 56.63
5 x 6 24.90 6.17 54.10
Mean 54.20 51.89 54.88

Table 3. Environments clustering for plant height, lodging, and grain yield, according to the Lin (1982)’s algorithm. Environments not 
clustered in the groups were not allocated by the method

Trait Environments MSe/r F-calculated Critical value of the F-distribution
Plant height 4,  5,  3,  6 and 1 40.62 1.06 1.44
Lodging 4 , 5, 6, 2 and 3 3.69 0.77 1.44

Grain yield

2, 3, 1 and 5 182804 1.34 1.49
2 and 6 184712 1.36 1.81
4 and 5 203789 1.50 1.81
3 and 4 242703 1.78 1.81

MSe/r = Mean Square of error/replications.
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An explanation for the inconsistencies is that the Lin’s 
algorithm estimates the sum of squares between genotypes 
and pair of environments to form the groups, while the lower 
value is used to form the initial group. The significance of 
the interaction between pairs of environments is tested 
considering the sum of square and the mean square of 
the GE interaction (Cruz et al. 2012). The division of the 
GE interaction proposed by Cruz and Castoldi (1991) 
decomposes the interaction component, without considering 
the significance, while Lin uses a variance ratio to cluster 
the environments. 

In the BN, it is possible to observe the joint distribution 
and conditional dependence of a data set for prediction 
purposes. Thus, the information provided by the BN 
could be used to determine the predictive capacity of the 
environments, allowing environments clustering when this 
information is associated with those provided by simple or 
complex interaction between environments. 

The BN for plant height detected the most similar pair of 
environments, 2 x 4, with almost 91% of simple interaction, 
according to the method proposed by Cruz and Castoldi 
(1991), and classified this pair as the most important (Figure 
1). The representation of the DAG, besides the visualization 
of the relations between traits, allows the categorization of 
the parameters, since the most relevant environments are 
allocated in the upper part of the figure (Felipe et al. 2015).  

The correlations between the connected environments 
were classified as intermediate or strong (Figure 1). The BN 
also predicted the highest correlation between environments 
2 x 4 (r= 0.88), and showed no connection between the 
less correlated environments, 1 x 6 (r= 0.35). 

The complex interaction was predominant between 
pairs 1 x 2, 1 x 4, 1 x 6, 3 x 4, 3 x 6, 4 x 6 and 5 x 6 for plant 
height (Table 2), indicating that the environment 6 is the 
less similar, which was demonstrated by the DAG. The only 
discrepancy was the pair 1 x 4, which presented complex 
interaction of 51% and was connected by the BN. However, 
this could be explained by the lower magnitude of the complex interaction, which is almost close to 50%. 

Although the BN for lodging was not efficient in discriminating the pair with the highest percentage of simple interaction 
(pair 1 x 4), it was able to demonstrate the most correlated environments (pair 2 x 3 (r = 0.73)). The correlations were 
classified as weak, intermediate or strong, and a discrepancy was observed between environments 5 x 6, for this pair 
presented the lowest correlation (r = -0.20) and complex interaction of 93.83%. Complex interaction was also detected 
between pairs 2 x 5, 2 x 6, 3 x 6, 4 x 5, and 4 x 6 (Table 2). 

For grain yield, the pair with higher percentage of simple interaction in the DAG (Figure 3) was not identified (pair 2 
x 5). The environmental correlations were classified as intermediate and strong, and the BN did not identify the highest 
correlation (pair 2 x 5), probably due to the proximity of the correlation values of this pair with the correlation values 
of the pair 1 x 3, which was indicated by the BN. Discrepancies were not observed, and therefore the pairs 1 x 4, 1 x 6, 
2 x 6, and 3 x 6, which presented predominance of complex interaction, were not associated by the BN. 

Figure 1. Directed Acyclic Graph representation considering six 
environments for plant height.

Figure 2. Directed Acyclic Graph representation considering six 
environments for lodging.
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For plant height and lodging, environment 2 was 
considered as the most important in the DAG, while for 
grain yield, the same environment was considered as one 
of the least important. The similar results for plant height 
and lodging can be explained by the close association 
between these two traits (Shi et al. 2016). In the case of 
grain yield, despite the association with plant height and 
lodging, correlation is not always observed (Rafiq et al. 
2010, Nzuve et al. 2014).

Considering all traits, the BN was efficient in indicating, 
directly or indirectly, the pair of environments with higher 
percentage of simple interaction for plant height and 
grain yield, and not efficient in the case of lodging, which 
can be explained by the high experimental error of this 
trait (Table 1). High coefficient of variation indicates high 
environmental variability (Keshavarzi et al. 2015), which 
decreases the predictive power of the BN. Therefore, 
the BN was effective in identifying similarities between 
environments for plant height and grain yield, and consequently facilitated the joint analysis of the environments per 
se. The BN could be advantageous to plant breeders since it allows using a great number of environments and does not 
require parity analysis. 

CONCLUSIONS

The Bayesian network is efficient in connecting environments with predominance of simple interaction for traits with 
high experimental precision, while the Lin’s method allocated in the same group environments with complex interaction. 
Therefore, the Bayesian network is a practical method to analyze an environmental net and detect similarity, without the 
need for the pairwise analysis of the environments. In addition, this method has the potential to cluster environments; 
however, the results must be associated with information on the type of interaction predominating between environments. 

Figure 3. Directed Acyclic Graph representation considering six 
environments for grain yield.
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