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Abstract− The present work aims at the application of differ-
ent optimization strategies in the electromagnetic analysis of the
Variable Reluctance Motor (VRM) through Finite Element (FE)
simulation. Two case studies are investigated: the first one aims
to optimize the geometry and electrical characteristics of windings
of a single-phase VRM 6/6, minimizing copper losses; the second
aims to optimize a restricted set of geometric parameters of a 4-
phase VRM 8/6, maximizing the flux linkage in the phase coils
per unit volume of magnetic core. In this way, by using the Finite
Element Method (FEM), the results from the Differential Evolution
(DE) and Particle Swarm Optimization (PSO) algorithms will be
compared and highlighted. Then, the magnetic flux densities of the
motors are analyzed before and after the optimization. The results
obtained show good efficiency of the algorithms, since the objective
functions were satisfied with respect to the reference models.

Index Terms− Differential Evolution, Finite Element Method, Optimization
Techniques, Particle Swarm Optimization, Variable Reluctance Motor.

I. INTRODUCTION

Variable reluctance machines can either act as a motor or generator, have variable speed, are low-
cost, and can provide high efficiency at the medium and high-speed range. This type of machine has
aroused the interest of several researchers in recent years, making it a strong competitor compared with
other electric machines on the market [1].

One of the most notable features of the Variable Reluctance Motor (VRM) is the abscense of coils in
the rotor, in addition to being more suitable to running at high-speed and high-temperature conditions.
This implies that all winding resistive losses occur in the stator. Often the stator can be cooled more
efficiently than the rotor, resulting in a smaller motor for a given power and size specification [2], [3].

With the technological development of digital systems and power electronic devices, the difficulties
inherent in the complexity of control began to be overcome, making VRM competitive when compared
with the other types of most commonly used machines. The construction of a VRM drive is not
straightforward since the power semiconductors have to be selected according to the motor ratings
[4]. Therefore, defining the motor ratings is an issue addressed to the design stage. In order to proper
control a VRM at low- and high-speed, the electric and magnetic parameters must be determined.

In this way, two problems arise:

• Knowledge of motor parameters;
• Identify suitable commutation angles.
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The Finite Element Method (FEM) has become popular, among other well-established techniques,
for numerically solving differential equations that arise in mathematical engineering and modeling.
It is a powerful method for multi-physics analysis, so optimizations will become more important by
relating overall performance and total manufacturing costs, thus, analyses of coupled problems are of
increasing interest. Hence, the first mentioned problem can be addressed to the Finite Element Analysis
(FEA). The second problem can be solved by developing look-up tables, which describe the relationship
between flux linkage and current excitation over rotor position.

The main contributions, justifications, advantages and impacts of this work are:

• Show the implementation of two different units: the first case is a virtual motor model, designed
by using an analytical project calculation method only for optimization purposes; the second case
is a prototype model designed, built and mounted in an induction motor housing for experimental
study.

• The prototype motor was presented as the second case in order to evaluate the possible perfor-
mance improvement through the geometric dimensions optimization for further feasibility study
concerning the prototyping of the enhanced model.

• Design and optimize variable reluctance motors, aiming to improve performance and efficiency,
due to the increasing demands of rational use of energy and greater competitiveness of industries;

• Use open source computational tools to simulate fine prototypes through FEA by exploring the
motor symmetry in order to reduce the computational time;

• Compare the results of designed electrical machines before and after optimization with real motors
data using the Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms;

• Assemble prototypes before the construction of a machine, leading to reduce manufacturing costs
and minimize environmental impacts on the production of motors applied to electric vehicles, for
example.

The solution for optimization problems aiming to improve a model consists in the use of smart
algorithms, such as the DE and the PSO algorithms. The DE algorithm is a powerful global optimizer
known for its reliable results and fast convergence [5], whereas the PSO technique was successful
applied in many single-objective optimization problems [6]. Therefore, the algorithms were chosen
for carrying out the single-objective optimization problems; the classic DE version was used for the
former. Among various multi-objective evolutionary algorithms, the Speed-constrained Multi-objective
PSO (SMPSO) was chosen to be applied into a bi-objective problem, rather than the very famous
Non-dominated Sorting Genetic Algorithm II (NSGA-II), for instance. These choices were led by the
great performance of the algorithms. In the work [7], the SMPSO has reached the best values for three
quality indicators in eigth (average) out of twelve problems, when compared with five state-of-the-art
multi-objective optimization algorithms (two genetic algorithms, a scatter search, a cellular genetic
algorithm and a bio-inspired PSO version).

The focus of this article is to investigate and compare optimization techniques for minimizing
and maximizing objective functions by using open source finite element solvers. In this context,
computational tools such as FEMM (Finite Element Method Magnetics) software are used to generate
magnetic flux density results and compute copper losses in the single-phase VRM 6/6, and ONELAB
(Open Numerical Engineering LABoratory) software to calculate the flux linkage and generate magnetic
flux densities in a 4-phase 8/6 VRM.
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II. RELUCTANCE MOTORS

Variable reluctance motors (VRMs) have a simple, low-cost and robust construction, mounted from
a compact rotor and stator with non-oriented grain steel laminations and concentrated windings at
stator poles. This work aims to perform studies of a single-phase variable reluctance motor 6/6 and
a four-phase 8/6 motor in order to verify operational aspects and, particularly, the efficiency of these
machines. In summary, some of its main characteristics are: high robustness, fault tolerance, high
starting conjugate, operating capacity as motor or generator and absence of coils or permanent magnets
in the rotor. Such characteristics make VRM a machine for aerospace applications, where robustness
and tolerance to faults are important, and electrical traction, where fault tolerance is imperative and the
ability to operate as a generator can be used for regenerative braking, for example [8], [9].

A. The 6/6 VRM Design

In general, machine designs start from the desired output power for the system. In this way, this
principle will be used in the single-phase variable reluctance motor. Fig. 1 shows the dimensions that
must be calculated for a single-phase VRM design.

Fig. 1. Dimensions of the Single-Phase Variable Reluctance Motor.

Where Deix is the diameter of the central axis (mm); Dr is the rotor diameter (mm); Ds is the
stator diameter (mm); tr is the rotor pole width (mm); ts is the stator pole width (mm); βr is the rotor
polar arc (degrees); βs is the stator polar arc (degrees); hs is the height of the stator pole (mm); hr
is the height of the rotor pole (mm); Ys is the width of the stator yoke (mm); Yr is the width of the
rotor yoke (mm); g is the airgap length (mm). The output power is given by [10].

P =
TRV .k1.ω.π.Dr

4
. (1)
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Where TRV being the set by rotor volume; k1 is the constant of the relationship between the rotor
diameter and the length of a machine; ω is the conversion from revolutions per minute (rpm) to radians
per second.

Some works in the variable reluctance motor design literature [10]–[12] state that the ratio of rotor
diameter to stator external diameter should vary between 0.4 and 0.7. Furthermore, the minimum value
for the stator and rotor arc is given by (2).

min(βs, βr) =
4π

Ns.Nr
. (2)

Where Ns is the number of stator poles; Nr is the number of rotor poles. In Fig. 1, the stator yoke
(Ys) is shown, where it must support half of the flux that passes through the poles, which is given by
(3).

Ys = 1.1

[(
Dr

2
+ g

)
sin

(
βs

2

)]
. (3)

Where g is the air gap (mm), that is, the distance between the stator and the rotor plates. It is
observed that the value of the air gap must be close to 0.5% of the rotor diameter to minimize the
reluctance when aligned [10], [12].

The widths and heights of the stator and rotor poles, respectively, can be calculated by (4), (5), (6)
and (7).

ts = 2

[(
Dr

2
+ g

)
sin

(
βs

2

)]
. (4)

hs =

(
Ds−Dr

2

)
− g −Ys. (5)

tr = ts+ 2g. (6)

hr =
ts

2
. (7)

According to [13], the rotor yoke height, Yr , should be calculated by half the rotor pole width, tr.
It must insert an increase of 20% to 40%, in the case, 20% is used to keep the dimensions reduced.

Sizing the coils is done in two steps: first the number of turns of each coil is calculated and then
the coil conductor is determined. As shown by [11]:

NE =
2g

Ip

Bent

µ0
. (8)

ac =
Ip

Jc
√
q
. (9)

Where NE is the number of turns; Ip is the peak value of phase current (A); Bent is the magnetic
flux density in the airgap (T); ac is the conductor cross-sectional area (mm2); q is the number of phases;
Jc is the current density (A/mm2); µ0 is the vacuum magnetic permeability (4π.10−7 H/m).

At steady-state, Ip is related to the maximum allowable value reached after the current rise time
when the phase is fed by a converter. In addition, (9) defines the current density as the ratio of rms
value of the current over the conductor cross-sectional area.
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B. The 8/6 VRM Design

Based on the design procedure presented in the previous section and following the output power
principle, a 4-phase 8/6 VRM with a rated power of 2.2 kW was developed in [14]. The motor is
designed for insertion in a 100L model frame.

Fig. 2. Design of the 4-Phase 8/6 Variable Reluctance Motor.

Fig. 2 shows the 8/6 VRM model with the four phase windings, A-A′, B-B′, C-C ′ and D-D′, in
which each pair of coils are connected in series. The same dimensions defined for the 6/6 VRM are
also valid here.

III. OPTIMIZATION TECHNIQUES

After the design stage of a VRM, pole arc angles and the other dimensions should be optimized
through optimization techniques in order to satisfy some performance requirements. In this section, two
single-objective and one multi-objective optimization algorithms are presented: a differential evolution
algorithm, DE, a particle swarm optimization, PSO, and the PSO-based, SMPSO.

A. Differential Evolution

The differential evolution algorithm was developed for optimization problems [15]. The choice of
the DE algorithm is based on the following characteristics:

• It is a stochastic search algorithm, originated from natural selection;
• The algorithm seeks the global optimal solution by manipulating a population of solutions;
• It is effective for solving discontinuous objective function optimization problems, as it does not

require information about its derivatives;
• Input and output parameters are handled like real ordinary numbers with no extra processing;
• It presents a purely mathematical concept, based on vector operations, and for this reason it is

considered a structural approach.

Fig. 3 shows a flowchart of the differential evolution algorithm. The main idea of DE is to generate
new individuals, with emphasis on modified vectors or donors, by adding the weighted difference vector
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between two random individuals from the population to a third individual, whose operation is called
mutation [5].

Fig. 3. Flowchart of DE algorithm.

The components of the new donor individual are mixed with the components of the randomly chosen
individual, to result in the so-called tentative vector, or experimental vector. The process of mixing pa-
rameters is called crossover by the evolutionary algorithm’s community. As third individual is randomly
chosen, this method refers to the classic DE version that uses uniform crossover (DE/rand/1/bin), where
the term “rand” indicates that the base vector is randomly chosen; the term “1” means that only one
vector difference is used to form the mutated population and the term “bin” indicates that uniform
crossover is employed during the formation of the trial population [5]. If the cost of the experimental
vector is less than the cost of the target vector, then the experimental vector will be the target vector of
the next generation. This last operation is called selection. The procedure is terminated through some
stopping criterion, that is, the maximum number of generations predefined by the user is reached [15].

B. Particle Swarm Optimization

The PSO is a search algorithm based on the simulation of the social behavior of birds in a flock,
having been successfully applied in single-objective optimization problems [6]. In the basic swarm
strategy for optimization, the population of potential solutions to the problem is called a swarm, whose
individuals, or particles, move within the search space. Changes in the position x⃗i(t) of each pi particle
in generation t are based on the tendency of individuals to imitate the success of others. The position
is updated according to (10),

x⃗i(t) = x⃗i(t− 1) + v⃗i(t), (10)

and according to the speed v⃗i(t) given by [7],

v⃗i(t) = wv⃗i(t− 1) + C1r1(x⃗pi
− x⃗i) + C2r2(x⃗gi − x⃗i). (11)

Where: x⃗pi
is the best single solution seen, x⃗gi is the position of the best particle in the entire swarm,
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referred to as the leader, w is the particle’s inertia coefficient, r1 and r2 are random values uniformly
distributed over the interval [0, 1], and C1 and C2 are learning factors.

C. Speed-constrained Multi-objective PSO

In order to handle multiple objectives and extend the PSO to multi-objective optimization, most
PSO-based approaches, generically called Multiple-Objective Particle Swarm Optimizers (MOPSOs),
mainly modify the selection process of the particles related to x⃗pi

and x⃗gi in the basic PSO algorithm.
Moreover, among different MOPSOs, the representative OMOPSO algorithm [6] is based on Pareto
dominance and the use of a crowding distance of the NSGA-II for leader selection. This approach
avoids choosing any non-dominated solution as a new leader, and with each generation the set of
leaders is updated with the best solutions.

In a performance analysis study [7], six representative MOPSO algorithms (including the OMOPSO)
were unable to solve some multi-modal problems satisfactorily, pointing out an issue related to the
velocity of the particles in these algorithms, which can become too high, resulting in erratic movements.
In this sense, the SMPSO algorithm was developed, based on OMOPSO, with the objective of preventing
such behavior through a velocity constriction mechanism. The particle’s velocity is controlled according
to a constriction coefficient instead of using upper and lower values parameter which limit the step
size of velocity. Besides, the velocity of the particles are calculated according to (11), and the resulting
velocity is then multiplied by the constriction factor [7], which is given by,

χ =
2

2− φ−
√

φ2 − 4φ
(12)

Where φ is closely related to learning factors C1 and C2. Therefore, the resulting value is constrained
by a mechanism that limits the speed through pre-defined upper and lower parameters. Moreover, in
SMPSO a polynomial mutation is applied to the 15% of the particles.

Fig. 4. Flowchart of SMPSO algorithm.

Fig. 4 shows the flowchart of the SMPSO algorithm. The swarm, including the position, velocity and
individual best of the particles, and the leaders archive are initialized. The main objective is to update
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the positions of the particles based on the calculated velocities and to apply the turbulence operator to
accelerate the convergence of the swarm. A set of leaders, in which the maximum size is fixed equal
to the size of the swarm, is updated after each iteration (generation). As the leaders archive become
full, the crowding distance of NSGA-II is used to filter out leader solutions [7].

IV. FINITE ELEMENT METHOD

The Finite Element Method (FEM) emerged during the 1950s for application in aeronautics, becoming
an efficient and flexible tool for problems of distribution of electric and magnetic fields [16]–[18]. In
addition, it obeys second-order partial differential equations, whose analytical modelling is difficult to
solve. Currently, FEM is often used in engineering, so a new project can be improved, designed and
optimized computationally, without the construction of numerous prototypes.

The following will be the Maxwell equations, interface conditions, boundary conditions and dis-
cretization.

A. Maxwell’s Equations

Taking together, the following Maxwell’s equations in R3, considering a quasi-static approximation,

∇× H⃗ = J⃗ (13)

∇ · B⃗ = 0 (14)

and the constitutive relation,

B⃗ = µH⃗ (15)

they form a mathematical representation of the magnetostatic problem. Where: H⃗ is the magnetic field
(A/m), J⃗ is the imposed current density (A/m2), B⃗ is the magnetic induction (T) and µ is the magnetic
permeability (H/m) [17]. When the magnetic induction is expressed in terms of the magnetic vector
potential (B⃗ = ∇ × A⃗), (13)-(15) leads to the magnetostatic formulation used to describe the VRM
models,

∇× (ν∇× A⃗) = J⃗ (16)

Where ν is the magnetic reluctivity. For considering material nonlinearities, ν is obtained through
the relation (15) by providing the nonlinear B-H curve from the magnetic material datasheet.

B. Interface Conditions

The Interface Conditions (ICs) determine how the fields are transmitted between an interface, i.e.,
the ICs represent the coupling of fields between subdomains [17], [18]. Let Σ be the intersection of
the subdomains Ω1 and Ω2, n̂ is the normal unit vector to the surface pointing from Ω2 and Ω1, Fig.
5.
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Fig. 5. Surface Σ between the two continuous medium, Ω1 and Ω2.

The transmission conditions for the fields B⃗ and H⃗ are obtained from the magnetic Gauss law and
Ampère law, respectively,

n̂ · (B⃗2 − B⃗1)
∣∣
Σ
= 0 (17)

n̂× (H⃗2 − H⃗1)
∣∣
Σ
= J⃗ (18)

Where B⃗1 and H⃗1 are the vector fields located in the medium Ω1, both assumed to be pointed outward
to the surface Σ; B⃗2 and H⃗2 are the vector fields in the medium Ω2, both pointing inward to the surface.
Equation (17) implies that normal components of the magnetic induction must be continuous through
the interface, whereas (18) implies that tangential components of the magnetic field are discontinuous
if a current density is imposed on interface.

C. Boundary Conditions

Boundary conditions are constraints imposed on local fields on the boundary of a domain [18]. Let
ΓH and ΓE be the complementary parts of the boundary Γ of the domain Ω where homogeneous
boundary conditions are specified,

n̂× H⃗
∣∣
ΓH

= 0 (19)

n̂ · B⃗
∣∣
ΓE

= 0 (20)

These conditions can be applied, for instance, on the outer diameter of the VRM shown in Fig. 1,
for containing the magnetic field inside the motor.

D. Discretization

Using the weighted residual approach in (16), the partial differential equation is weighted by test
functions A⃗

′
over the domain Ω, as follows∫

Ω
∇× (ν∇× A⃗) · A⃗ ′

dΩ =

∫
Ω
J⃗ · A⃗ ′

dΩ (21)

By applying the vector identity u⃗ · (∇× v⃗) = ∇ · (v⃗× u⃗)+ v⃗ · ∇× u⃗ in (21), the following so-called
weak formulation are obtained,∫

ΓH

n̂× H⃗ · A⃗ ′
dΓH +

∫
Ω
(ν∇× A⃗) · ∇ × A⃗

′
dΩ =

∫
Ω
J⃗ · A⃗ ′

dΩ (22)

In general, the integral over ΓH is null due to the test function, thereby the integral is defined as a
Dirichlet constraint (19). The finite element method consists in approximating the solution A⃗ by A⃗h
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in a finite dimensional domain, in which the subscript h indicates the geometric entity length. For first
order triangular elements, A⃗h and the test functions are taken in a function space,

F 1(Ω) = span{w⃗1, w⃗2, . . . w⃗E} (23)

Where: the basis functions w⃗e, e = 1, . . . , E are associated with the E edges of the mesh over the
domain Ω. Therefore, A⃗ ≈ A⃗h are interpolated by,

A⃗h =

E∑
e=1

uew⃗e (24)

Where: ue are the degrees of freedom (or unknowns) associated with circulations of A⃗ along edges
of mesh. Inserting (24) in the weak form (22) and taking for A⃗

′
: w⃗e, e = 1, . . . , E, the Galerkin method

leads to a system of linear equations, for s = 1, . . . , E,

E∑
e=1

ue

∫
Ω
(ν∇× w⃗e) · ∇ × w⃗sdΩ =

∫
Ω
J⃗ · w⃗sdΩ (25)

or, [Aes][ue] = [fs] in matrix form. As both machines are composed of saturable materials, the matrix
A depends on the unknown field u, and the system of equations are solved iteratively by means of
Newton-Raphson method.

V. CASE STUDIES

The electrical characteristics, the dimensions before optimization, the objective functions and the
bounds of the geometric variables of the 6/6 and 8/6 VRMs will be presented. For the optimization
procedure in the first case study (6/6 VRM), the FEA is preceded by the analytical procedure, mentioned
in the Section II, provided that both electrical and geometric parameters are to be optimized (i.e.,
equations (1)-(9) must be satisfied). In constrast, for the second case (8/6 VRM), the optimizing
parameters are directly modified into FEA.

A. Minimization of Copper Losses in 6/6 VRM

The present case study aims to simulate through the FEMM software the copper losses of the windings
and generate the graphs of the magnetic flux density in the motor air gap. In addition, copper losses
were minimized via the DE algorithm. To improve the understanding of the methodology proposed in
this work, Fig. 6 shows the flowchart with all the stages of this case development. Table I presents the
electrical variables of the 6-pole single-phase motor, based on models from a manufacturer.

First, it is calculated from (1) the value of the inner diameter, and then it is possible to calculate the
other dimensions. A value greater than that calculated was adopted as a safety margin. Table II shows
the calculated dimensions for the motor.

The determination of the conductor cross-section is made by approximating the calculated area with
the existing conductors, so it is possible to notice that the most appropriate is the 12 AWG conductor
with an area of 3.31 mm2. Additionally, the steel sheets are M22 non-oriented grain silicon steel that
begin to saturate at approximately 1.85 T.
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Fig. 6. Flowchart of case study steps to minimize VRM copper losses.

TABLE I. ELECTRICAL CHARACTERISTICS OF THE SINGLE-PHASE VARIABLE RELUCTANCE MOTOR

Parameters Values Parameters Values
k1 1.44 η 0.80

TRV 16000 Nr 6
P 5,516.25 W Bsat 1.85 T

RPM 1760 rpm µ0 4π.10−7 H/m
Ns 6 Ip 31.34 A
V 220 V Jc 6.0 A/mm2

TABLE II. SINGLE-PHASE VARIABLE RELUCTANCE MOTOR DIMENSIONS BEFORE OPTIMIZATION

Parameters Values Parameters Values
βs 30 ◦ hs 31.20 mm
βr 30.72 ◦ hr 17.50 mm
Dr 134.60 mm ts 35.00 mm
Ds 236.04 mm tr 35.65 mm
L 193.20 mm ac 3.31 mm2

Ys 19.205 mm g 0.32 mm
Yr 21.40 mm NE 20 turns

Thus, the formulation of the objective function of the problem is a single objective function with the
intent to satisfy the adopted optimization criteria. In (26) it is possible to verify the objective function,
that is, minimization of copper losses.

f =
ρ0lmNs

ac
I2rms (26)

Where Irms is the rms current; ρ0 is the copper resistivity (1.72x10−8 Ω.m); lm is the conductor
average length. Therefore, the limits of the variables must be respected, as shown from (27) to (31).
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120 < Dr < 140 (27)

16 < Ys < 22 (28)

18 < Yr < 24 (29)

30 < Deix < 60 (30)

0.30 < g < 0.60 (31)

Thus, the VRM can be modeled, making it possible to simulate the project through the FEMM
software.

B. Maximization of Flux Linkage in 8/6 VRM

In this case study, the flux linkage of one of the phases of the 8/6 VRM will be calculated by the
software ONELAB through a magnetostatic analysis, under fixed values of excitation current. Unlike the
methodology presented in Fig. 6, specifically in the pre-processing stage, the geometric parameters will
be modified with the exception of βs, βr, Ds, L, ac, NE in order to keep the electrical characteristics
and dimensions equivalent to the housing. The shaft diameter will also be changed in order to verify
its effect on the magnetic flux calculation.

Aiming at maximizing the flux linkage per volumetric unit of magnetic material, the PSO algorithm
will be applied in the same instance of the simulation interface. The search for a greater value of flux
linkage leads to a greater capacity to produce torque for the same current density, since the volume
is minimized in order to reduce the amount of magnetic material needed to build the VRM. As the
magnetic flux and the core volume are two inversely proportional quantities for the same operating
point of the VRM, the multi-objective algorithm SMPSO based on the PSO strategy will be applied.
Through the Pareto front with non-dominated solutions, the optimal points can be chosen. Besides, the
flux linkage per volumetric unit can be defined as an objective function in order to be maximized by a
single-objective optimizer without caring to multiple functions trade-off. For comparative purposes, the
DE algorithm will be used to search the global optimum. Electrical specifications and motor dimensions
are shown in Table III and Table IV.

TABLE III. ELECTRICAL CHARACTERISTICS OF REFERENCE 8/6 VRM

Parameters Values Parameters Values
k1 - η -

TRV - Nr 6
P 2200 W Bsat 1.69 T

RPM 3500 rpm µ0 4π.10−7 H/m
Ns 8 Ip 10 A
V 220 V Jc 3.60 A/mm2

The stator and rotor parts are composed of E185 Aperam 0.50 mm non-oriented silicon steel sheets,
whose stacking factor is 97%, while the shaft is composed of 1020 carbon steel and has a Deix

dimension = 34.5 mm.
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TABLE IV. DIMENSIONS OF REFERENCE 8/6 VRM

Parameters Values Parameters Values
βs 22.5 ◦ hs 22.0 mm
βr 24.5 ◦ hr 15.0 mm
Dr 90.5 mm ts 17.8 mm
Ds 160.0 mm tr 18.3 mm
L 63.0 mm ac 2.08 mm2

Ys 12.45 mm g 0.30 mm
Yr 13.0 mm NE 55 turns

For the SMPSO algorithm, two objective functions that characterize the multi-objective optimization
problem were defined. The objective function f1 is related to maximizing the magnetic flux linked in
the coil,

f1 = max

(
2

∫
s

LNEAz

ab
ds

)
(32)

Where L is the stack length, Az is the axial component of the magnetic vector potential A⃗ and ab

is the cross-sectional area of the coil. The objective function f2 minimizes the magnetic volume of the
8/6 VRM,

f2 = min(V olstator + V olrotor + V olshaft) (33)

Where V olstator is the stator volume, V olrotor is the rotor volume and V olshaft is the shaft volume.
The search domain for the set of five upper and lower bounded geometric variables are defined,

80.5 < Dr < 100.5 (34)

7.45 < Ys < 20.45 (35)

10 < Yr < 18 (36)

24.5 < Deix < 34.5 (37)

0.30 < g < 0.60 (38)

For the DE algorithm, a single-objective function, f3, that characterize a single-objective optimization
problem, is related to maximizing the ratio of the magnetic flux linked in the coil over the magnetic
volume,

f3 = max

(
2
∫
s
LNEAz

ab ds

V olstator + V olrotor + V olshaft

)
(39)

The same bounds defined for SMPSO, (34)-(38), are also applied to DE algorithm.

VI. RESULTS AND DISCUSSION

Two case studies are investigated: the first one aims to optimize the geometry and electrical charac-
teristics of windings of a single-phase VRM 6/6, minimizing copper losses; the second aims to optimize
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a restricted set of geometric parameters of a 4-phase VRM 8/6, maximizing the flux linkage in the
phase coils per unit volume of magnetic core. In this way, by using the FEM, the results from DE and
PSO algorithms will be compared and highlighted. Then, the magnetic flux densities of the motors are
analyzed before and after the optimization.

A. Minimization of Copper Losses Using Finite Elements

The Differential Evolution algorithm was executed on MATLAB’s environment with the following
parameters: population size = 50, crossover probability = 0.8, rate of perturbation = 0.8, number of
iterations = 50. In addition, the classic DE version was chosen among four versions of DE, which
differ only in how new solutions are generated. The DE/rand/1/bin variation has proven to be slower,
but more robust than the two methods that relied on the best-so-far vector. The Table V shows the
obtained results from the optimized motor found after running the algorithm 10 times.

TABLE V. DIMENSIONS OF THE SINGLE-PHASE VRM AFTER DE OPTIMIZATION.

Parameters Values Parameters Values
βs 30 ◦ hs 27.30 mm
βr 30.74 ◦ hr 15.60 mm
Dr 120 mm ts 31.20 mm
Ds 210.50 mm tr 31.80 mm
L 174.24 mm ac 3.31 mm2

Ys 17.65 mm g 0.30 mm
Yr 23.25 mm NE 18 turns

The Particle Swarm Optimization algorithm was executed on MATLAB’s environment with the
following parameters: population size = 50, inertia weight = 1, inertia weight damping ratio = 0.99,
personal learning coefficient = 1.5 and global learning coefficient = 2.0. The Table VI shows the
obtained results from the optimized motor found after running the algorithm 10 times.

TABLE VI. DIMENSIONS OF THE SINGLE-PHASE VRM AFTER PSO OPTIMIZATION.

Parameters Values Parameters Values
βs 30 ◦ hs 25.50 mm
βr 30.74 ◦ hr 15.70 mm
Dr 120 mm ts 31.20 mm
Ds 210.46 mm tr 31.80 mm
L 172.40 mm ac 3.31 mm2

Ys 19.43 mm g 0.30 mm
Yr 22.06 mm NE 18 turns

Comparing the data between Table II, Table V and Table VI, the diameters, heights, widths, airgap,
stack length and number of turns were reduced in the optimum model. In contrast, the conductor cross-
sectional area and the polar arc of the stator were not modified. In the DE algorithm, there was an
increase in the polar arc of the rotor and rotor yoke, and a decrease in the stator yoke. In the PSO
algorithm, there was an increase in the polar arc of the rotor, and in the stator and rotor yoke.

The magnetic flux density at airgap in the original and optimized motors are shown in Fig. 7, Fig.
8 and Fig. 9 for two levels of excitation current, 31.34 A and 47.00 A.
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Fig. 7. Magnetic flux density at airgap before optimization.

Fig. 8. Magnetic flux density at airgap after DE optimization.

Fig. 9. Magnetic flux density at airgap after PSO optimization.
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At steady state regime, the magnetic flux densities at airgap under 31.34 A were reduced by using
DE and PSO algorithms, 1.06% and 0.53%, respectively. It is worth mentioning that the flux density
in the original motor was 1.88 T, while in the optimum ones using DE and PSO algorithms is 1.86 T
and 1.87 T, respectively. Hence, the flux density remained close to the saturation level of the material.

Table VII shows copper losses for the two excitation currents before and after optimization, through
the FEMM simulation and analytical calculation. The optimum motors produced by the optimizers have
the copper losses and the magnetic flux densities at airgap reduced at two levels of excitation current.
Therefore, the effectiveness of algorithms is presented.

TABLE VII. COPPER LOSSES BEFORE AND AFTER OPTIMIZATION.

Current (A) FEMM (W) Analytical (W) Difference (%)
Original

31.34 118.68 119.92 1.034
47.00 266.98 269.80 1.045

DE
31.34 96.33 94.75 1.668
47.00 216.70 213.15 1.665

PSO
31.34 95.32 94.75 0.602
47.00 214.42 213.15 0.596

Furthermore, all the differences between the simulation and analytical computations are less than
1.668% in both scenarios. Highlighting the losses in copper in the simulation after optimization, there
was a reduction of 18.83% and 19.68%, respectively for DE and PSO, in relation to the result presented
in Table VII at 31.34 A in FEMM. While, in the analytical calculation after optimization, there was a
reduction of 20.98% in both algorithms in relation to the result before optimization. We can conclude
that the use of the adopted method for the computational simulations in this case study is of utmost
importance for industry before the construction of the motor.

Fig. 10, Fig. 11 and Fig. 12 show the density of the magnetic flux in the motor at 31.34 A before and
after the optimizations. Analyzing the results, it is noted that the algorithm with the best performance
was the PSO for 6-pole machine. It is worth noting that both algorithms are effective with the results
but the PSO algorithm stood out for the speed in convergence and showed better results. For electrical
machine designers, it is worth noting that algorithms are simple to implement and should be validated
using a computational tool with finite elements in addition to laboratory testing.
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Fig. 10. Magnetic flux density in motor at 31.34 A before optimization.

Fig. 11. Magnetic flux density in motor at 31.34 A after DE optimization.
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Fig. 12. Magnetic flux density in motor at 31.34 A after PSO optimization.

B. Maximizing the Flux Linkage through the ONELAB

The multi-objective SMPSO algorithm is executed on the interface of the ONELAB through a Python
module call, available in the software package, by using the following parameters: swarm size = 100,
leader size = 100, mutation probability = 0.1, mutation perturbation = 0.5, number of generations =
1000, r1 = r2 = [0, 1], C1 = C2 = [1.5, 2.5] and w = [0.1, 0.5]. The ranged parameters are randomly
selected by the algorithm during the optimization, whilst mutation probability and mutation perturbation
are not provided as control parameters, but presented herein only for information purpose.

Under the 10 A of constant rated current excitation and considering the phase at aligned position,
the optimized results related to the non-dominated solutions are plotted in the Pareto front, as shown
in Fig. 13.

Fig. 13. Pareto front obtained from the multi-objective optimization through SMPSO algorithm.

The flux linkage (objective function f1) tends to increase as the ferromagnetic volume (objective
function f2) increases. However, as from the solution which produces a magnetic volume of 0.82 L,
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indicated by the square marker at the center of figure, the rate of increase of the flux density by core
volume is lower. For denoting this rate at each solution of Pareto front, a color bar was placed at the
right side of the figure. The higher values indicate better exploitation of the magnetic flux density at
a lower cost of core material. Therefore, the solution related to the square marker is the choice for
the best optimized solution for carrying out post-processing simulations. Fig. 14 and Fig. 15 show the
magnetic flux density in the reference and the best optimized 8/6 VRM, respectively, by feeding only
one phase under 10 A.

Fig. 14. Magnetic flux density in the reference 8/6 VRM.

Fig. 15. Magnetic flux density in the 8/6 VRM optimized through SMPSO.
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In contrast, the single-objective DE algorithm is executed with classic DE version in the same manner
as SMPSO algorithm, but using two different sets of parameters in order to find which combination
is better suited to the given problem. The following set is defined: population size = 50, crossover
probability = 0.45, rate of perturbation = 0.25 and number of iterations = 50. The second set only
differs from the former in mutation and crossover operations: crossover probability = 0.9 and rate
of perturbation = [0.5, 1.0]. Besides, a technique called dither that improves convergence behavior
is applied to the latter. The rate of perturbation, F , is selected from the interval (0.5, 1.0) randomly
for each difference vector. Higher values of the crossover probability, CR, is more appropriate when
parameter dependence is encountered, which frequently occurs in real-world optimization problems.

At the same motor simulating conditions defined for carrying out the SMPSO optimization, the
convergence of the DE algorithm for the two sets of parameters is shown in Fig. 16.

Fig. 16. Convergence of the DE algorithm.

The convergence results were obtained from the runs that achieved the highest values for the function
f3, after running the algorithm 10 times. One notes that higher values of F and CR benefits the search
of global optimum for the given problem, as the dither method employs values for F bigger than
0.5. However, a solid conclusion cannot be drawn from convergence speed, since both curves do not
converge to each other. Moreover, the maximum values of the function f3 found for the first and second
parameter sets were 0.2761 and 0.2781, respectively, whereas the maximum value of the corresponding
rate (flux/volume) found by the multi-objective SMPSO algorithm was 0.2755.

Choosing the solution from DE run with dither technique, the magnetic flux density was calculated
in the optimized 8/6 VRM, as shown in Fig. 17.
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Fig. 17. Magnetic flux density in the 8/6 VRM optimized through DE (CR=0.9 with dither).

Table VIII and Table IX show the optimum variables (bounded and changed variables) according to
the best optimized motor through SMPSO and DE algorithms, respectively.

TABLE VIII. DIMENSIONS OF 8/6 VRM AFTER SMPSO OPTIMIZATION

Parameters Values (mm) Parameters Values (mm)
g 0.3 hs 18.05

Dr 100.5 hr 22.51
Ys 11.39 ts 19.72
Yr 11.66 tr 21.32

Deix 32.151 - -

TABLE IX. DIMENSIONS OF 8/6 VRM AFTER DE OPTIMIZATION

Parameters Values (mm) Parameters Values (mm)
g 0.3 hs 18.34

Dr 100.5 hr 27.76
Ys 11.12 ts 19.72
Yr 10.04 tr 21.32

Deix 24.86 - -

By simulating reference and optimized motors, the phase flux linkage and the flux density at a central
point on yoke stator at 10 A and 15 A were obtained. The data are presented in Table X. At 10 A, the
value of the flux linkage per unit volume (Fc/V mag) increased 10% and 11.3%, whereas at 15 A, the
factor increased 8.15% and 9.6% after SMPSO and DE optimization, respectively. The motor related
to DE solution achieved the lowest volume, V mag, and the biggest flux density value on yoke stator,
BYs , with an increase of 20% for the latter, when compared against the reference model.
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TABLE X. FLUX LINKAGE, MAGNETIC VOLUME AND FLUX DENSITY FOR THE THREE 8/6 VRM MODELS

Parameters Values at 10 A Values at 15 A
Reference

Fc (Vs) 0.2065 0.2257
Vmag (L) 0.8251 0.8251

Fc/Vmag (Vs/L) 0.2503 0.2735
BYs (T) 1.198 1.3110

SMPSO
Fc (Vs) 0.2267 0.2474

Vmag (L) 0.8228 0.8228
Fc/Vmag (Vs/L) 0.2755 0.2958

BYs (T) 1.434 1.519

DE
Fc (Vs) 0.2253 0.2428

Vmag (L) 0.8101 0.8101
Fc/Vmag (Vs/L) 0.2786 0.2997

BYs (T) 1.461 1.571

Comparing the data from Table IV, VIII and IX, there was a 17% decrease in the stator pole height,
hs, and a 10.8% increase in the stator pole width, ts. As the stator region experiments higher flux
densities than rotor, the increase in flux linkage, Fc, seems to be more sensitive to increases in the
bore diameter and the pole widths.

In order to validate the statement that the increase in flux linkage implies an increase in torque
production capability, the rotor was rotated by one stroke (60 mechanical degrees) as the static torque
was calculated through ONELAB. The results are shown in Fig. 18.

Fig. 18. Static torque obtained from de reference and optimized motors.

It could be observed in the torque waveforms that, both optimized motors produced equivalent torque
values at two levels of current excitation for any rotor position. In addition, the peak torque achieved by
the optimized models was 11.6% higher under 10 A, and 12.2% higher under 15 A than the reference
motor. Thus, by changing only the VRM geometry dimensions it is possible to improve the torque
production capability for the basic same volume of magnetic material.
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The optimization problem was successfully solved by both DE and SMPSO algorithms. The increase
in flux linkage and decrease in magnetic volume were achieved, simultaneously, by selecting: lower
values for the stator and rotor yoke widths, and air gap length; higher values for the rotor diameter.
However, the shaft diameter has had no impact in the optimization.

For this type of problem, defining higher values of F and CR (higher than 0.5) with the use of
dither technique, the DE showed a better convergence through the search of global optimum after
50 generations for a population size = 50. Whereas, using standard parameters in the SMPSO, with
a swarm size = 100, the algorithm showed, not only good results through a Pareto front, but found
a close global optimum correlated to DE algorithm result, after 1000 generations. Since SMPSO is
intended for constructing a Pareto front with the best possible non-dominated solutions, it is ideal for
a designer who wants to make a trade-off between multiple functions, giving priority to performance
at a minimal increase in cost material, for instance. Furthermore, the algorithms were useful to solve
the problem, being capable to find reliable results at a reasonable speed.

VII. CONCLUSIONS

The DE and PSO algorithms were applied in two case studies: a single-phase 6/6 VRM, aiming
the minimizing of copper losses; a 4-phase 8/6 VRM, aiming both the maximizing of the phase flux
linkage and the minimizing of magnetic core volume. The classic DE (DE/rand/1/bin) version was
chosen among the four variations due to its robustness. The single and 4-phase motors were modelled
and simulated through the FE software FEMM and ONELAB, respectively.

In the first case study, after optimization procedures, most geometric parameters had a decrease in
their values. The minimization of copper losses was satisfied by selecting higher values for the polar arc
of the rotor and rotor yoke. Consequently, the DE and PSO algorithms were able to produce optimum
motors achieving copper losses reduction of about 24% and a magnetic flux density reduction of 1% in
the airgap at 31.34 A through FEMM. Moreover, comparing the copper losses obtained from simulation
and analytical method, the computed differences for two current levels are lower than 1.7%. Therefore,
the PSO algorithm was more effective. At the higher current excitation, the copper losses were also
smaller.

In second case study, both algorithms were applied to the optimization problem. The SMPSO
algorithm found a Pareto front with non-dominated solutions, where the increase in core volume
implied the increase in flux linkage. The DE algorithm found a global optimum, correlated to the
factor flux/volume, for two sets of parameters, in which the second set yielded better convergence.
Moreover, the best optimized solution according to the factor flux/volume, found by SMPSO, aproached
the global optimum found by DE. Both algorithms produced motors with bigger rotor poles, having
a 17% decrease in the stator pole heights and a 10.8% increase in the stator pole widths. However,
examining the factor flux/volume, it increased by 10% and 11.3% at 10 A, and 8.15% and 9.6% at
15 A through SMPSO and DE techniques, respectively, while the core volume was reduced from the
latter. These changing in geometric parameters reflected in a higher torque production capability for
both levels of current excitation. Therefore, for solving this type of optimization problems, designers
should feel free to choose among both algorithms, paying attention to F and CR parameters.
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