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SORM DG – an 
efficient SORM based 
on differential geometry
Abstract

The first order reliability method (FORM) efficiently performs first order 
structural reliability analysis, but with limited accuracy. On the other hand, the 
traditional second order reliability method (SORM) was established to improve 
the results of FORM, but with a supplementary computational process. Proposed 
herein, is a new SORM, based on differential geometry making SORM more 
efficient without hindering accuracy. It can be used to perform the second order 
structural reliability analysis in engineering. A case in the geotechnical engineer-
ing field obtained from literature was solved aiming to demonstrate the ability of 
the analytical procedure via differential geometry. The advantages of the new-
ly proposed approach whereby the reliability method by differential geometry 
(SORM DG) over the traditional SORM are discussed. The results show that the 
SORM DG optimizes the outcomes from FORM and achieves the accuracy of the 
traditional SORM, more efficiently.
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1. Introduction

Many variables involved in engi-
neering designs are random, since their 
parameters have uncertainties. The pres-
ence of uncertainty is generally treated 
using an overall safety factor, according 
to the traditional approach of the permis-
sible stress method. This safety factor 
is selected based on past experience or 
practical overall rules and it does not 
reflect the uncertainty of the individual 
underpinning parameters nor its correla-
tion structure. These limitations can be 
overcome through reliability-based de-
signs, in which the safety of a structure is 
depicted by a reliability index rather than 
the safety factor. The reliability index is 
able to explain the uncertainties and the 
parametric correlations and provides a 

way to assess the failure probability of 
the structure and its components.

Due to its greater simplicity and ef-
ficiency, FORM, which performs a linear 
approximation by a hyperplane to the 
limit state surface (LSS), has been largely 
used in reliability analyses. However, the 
inherent linearization to FORM adds er-
rors in several cases and so SORM has 
been employed as an alternative (Zeng 
et al., 2016).

According to Chan and Low 
(2012), SORM is well established in 
the structural mechanics field, but its 
applications in geotechnical engineer-
ing problems in recent years suggest a 
relevant interest and, thus, there is much 
space for further research in this field 

with the main challenge being to calcu-
late the main curvatures of the LSS that 
involves a lot of mathematical complex-
ity and computational effort.

Brzakala and Pula (1996) and Bau-
er and Pula (2000) estimated the failure 
probability of foundations using SORM 
and a polynomial response surface meth-
od (RSM)-based SORM, respectively; 
Cho (2009) combined a response surface 
based on an artificial neural network 
and SORM to calculate the reliability 
of slopes; Lü and Low (2011), Lü et al. 
(2011) and Lü et al. (2012) employed 
several RSM and SORM calculations 
to examine tunnel supports; Chan and 
Low (2012) introduced SORM to a reli-
ability analysis of foundations employing 
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a practical procedure to estimate the 
main curvatures of LSS with reason-
able accuracy; Zeng and Jimenez (2014) 
and Zeng et al. (2015) applied a quasi-
Newton approximation-based SORM 
to assess the reliability of geotechnical 
problems, and Zeng et al. (2017) pre-
sented an extension of a quasi-Newton 
approximation-based SORM for reli-
ability analysis of the series systems 
for geotechnical engineering problems. 
However, the above-mentioned methods 
have to assess the main curvatures of LSS 
or build the response surface function.

The new approach, called SORM 

DG, which aims to improve the results 
of FORM more efficiently than the tra-
ditional SORM, with no prejudice to the 
accuracy of the results, can be considered 
a useful contribution to engineering. In 
order for SORM DG to perform the sec-
ond order structural reliability analysis, 
it is necessary that FORM provide the 
coordinates of the point of maximum 
local density of probability (design point) 
and that the main curvatures of LSS are 
calculated at this point, by differential 
geometry, and provided to SORM DG. 
Herein, then is presented an analytical 
procedure for the calculation of these 

curvatures in the multidimensional 
space (space Rn), where n is the number 
of random variables of the LSS function 
involved in the analysis.

For many engineering problems, 
the LSS function is computationally in-
tensive to be evaluated and the analytical 
derivatives do not exist (Du, 2005). In 
this case, the derivatives are calculated 
by the finite difference method. Due to 
this fact, for this study, all the partial 
derivatives required for solution of the 
assessments of the first and second order 
probabilities of failure were calculated by 
the finite difference method.

2. Review of the traditional SORM

2.1 The first order reliability method (FORM)

2.2 Calculation of the Hessian matrix

The traditional SORM evaluates 
second order failure probability using 
the coordinates calculated by FORM 
of the design point (V*) approximating 
a hyperparaboloid to LSS at V* point. 
In addition, it also requires the calcu-
lation of the Hessian matrix at the V* 

point, so that the main curvatures of 
the hyperparaboloid approximated to 
LSS at the V* point, are considered as 
equal to the main curvatures of the LSS 
in that point.

In the following items of this Sec-
tion, the conventional methods used to 

solve FORM and the Hessian matrix 
are discussed. The reliability analysis of 
SORM, based on these methods, is also 
discussed, in addition to its efficiency. 
More details can be found in Madsen 
et al. (2006), Ditlevsen and Madsen 
(2007) and Melchers and Beck (2018). 

FORM and traditional SORM 
are considered very efficient methods to 
perform structural reliability analysis 
(Zhao and Ono, 1999). In FORM, the 
first order failure probability is obtained 

by transformation of original random 
variables (U) of the U space (original 
space) into reduced random variables 
V (standard normal and statistically 
independent variables) of the V space, 

being LSS represented in the U space as 
the G(U)=0 function, and in the V space 
as the g(V)=0 function. Otherwise, it is 
equivalent to solving the following con-
strained optimization problem:

Before calculating the second 
order failure probability, the variables 

V of the space V must be converted, 
by rotation, into the standard normal 

space Y performing an orthogonal 
transformation.

where ⎢⎢ . ⎢⎢ is the norm of a vector. Then, the first order reliability index βF may be calculated as

where Φ (.) is the cumulative probability function for the standardized normal distribution.

and the failure probability can be approximated by

V* = min ⎢⎢ V ⎢⎢ subject to g (V) = 0

Pf = Φ ( - βF )

NFEFORM= i (n+1)

βF = ⎢⎢ V* ⎢⎢

(1)

(2)

(3)

(4)

In order to solve Equation 1, FORM 
with the iHLRF – an improved HLRF 
(Hasofer and Lind, 1974; Rackwitz and 
Fiessler, 1978) algorithm is used herein – 
FORM (iHLRF), which according to Zeng 
et al. (2016) is the first order method more 
often used in solving engineering cases.

According to Zeng et al. (2016), 
to measure the computer efficiency, the 
number of deterministic evaluations of the 

function (NFE) of the LSS is used, needed in 
each analysis, due to the fact that the com-
puter effort required for other parts of the 
algorithm is frequently insignificant when 
compared with the NFE, specifically as nu-
merical methods are involved, such as finite 
differences. Hence, NFE may be used as an 
overall indicator of computer efficiency in 
real engineering problems, i.e. greater NFE 
implies less efficiency and vice versa.

In the case of FORM (iHLRF), 
when the coordinates of the gradient of 
the G(U)=0 function are calculated by 
the finite difference method, there are 
needed n+1 evaluations of the G(U)=0 
function, for each iteration (i) in the search 
algorithm (iHLRF) of the design point at 
the original space (U*), i.e. the number of 
deterministic evaluations of the function 
of LSS for FORM (iHLRF) is:
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Y = R V (5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

where, R is an orthogonal rotation ma-
trix, with dimension n x n, whose last 
column contains the coordinates of the 

unit normal vector α* (α* = - V*/βF) of 
the LSS, and can be obtained by an 
orthogonalization process, such as 

that of Gram-Schimidt. After rotat-
ing the coordinates, the matrix HR  
is obtained:

where H is the Hessian matrix, RT is an 
orthogonal rotation transposed matrix 
and ⎢⎢    g ( V*) ⎢⎢  is the norm of the 

gradient of the LSS at the design point 
(evaluated in the last iteration of the 
iHLRF algorithm). The eigenvalues of 

the matrix HR are the main curvatures 
kj (j=1, 2, . . ., n-1) of LSS.

In possession of the coordinates of 
V*, as well as the kj values, the appraisal 
of the second order failure probability of 
traditional SORM can be attained, for ex-

ample, according to Chan and Low (2012) 
and Zeng et al. (2016), by the average 
values provided by formulas, such as those 
proposed by Tvedt (1983), Breitung (1984), 

Hohenbichler and Rackwitz (1988), 
Köylüoǧlu and Nielsen (1994), Cai and 
Elishakoff (1994), Hong P3 (1999), Hong 
P4 (1999), Zhao and Ono (1999), namely:

PfT = A1 + A2 + A3

PfC = Φ (- βF) - φ (βF) (D1 + D2 + D3)
D

2.3 Appraisal of the second order failure probability

Tvedt (1983)

Breitung (1984)

Hohenbichler and Rackwitz (1988)

Cai and Elishakoff (1994)

T
ij

ij

( )
, i, j = 1,...,n −1

g ( *)
=

VR

RHR
H  

− −
−

( ) ( ) ( ) ( )( )  

1n1n 2/12/1

jFjFFFF2
1j1j

A 1 1 1
==

= + + +− − −

−
−

( ) ( )HR F F j
j=1

Pf = 1+  ( ) 
−

−
−

n 1

1 jj=1
D =

( )n 1 n 121
D = 3 +

2
 

j=1
−

− − −
−

( ) ( ) ( ) ( ) ( )( )  

1n1n 2/12/1

jFjFFFFF3
1j1j

A 1 1 Re 1 i
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Köylüoǧlu and Nielsen (1994)

Hong P3 (1999)

Hong P4 (1999)

Zhao and Ono (1999)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)PfZ0 = Φ (- βS)

The meanings of the symbols neces-
sary for understanding Equations 7 to 26 
are listed below:

βF = First order reliability index.
Φ (.) = Probability cumulative function 

for the standardized normal distribution.
ϕ (.) = Probability density function 

for the standardized normal distribution.
Re[.] = Real part.

i = √-1 = Imaginary unit.
n = Number of random variables of 

the LSS function involved in the analysis.
kj = Main curvatures of the LSS at 

the design point, with j=1, 2, . . ., n-1.
kj = Positive main curvatures 

of the LSS at the design point, with  
j=1, 2, . . ., m-1.

kj = Negative main curvatures 

of the LSS at the design point, with  
j= m, . . ., n-1.

Ks = The sum of the main curvatures.
R = The average main curvature 

radius.
βS = The empirical second-order 

reliability index.

In order for the failure probability 
value at the design point to be calculated 

by SORM, it is necessary that the condi-
tion βF k j > -1 be met.

+

-

− − − −
− − − − − − −− −

PfHP = C1P03

−
−

n 1

1

j=1

1
pxe =C

jF

−

∑
− F

−
jF λ−jFjF  

− − −

PfHP = C2P04

−

−
−

−

− −

R=
sK
1n −

−

−
−
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In practice, with regard to engineer-
ing problems, when the analytical solu-
tions for the partial derivatives are not 
available, the Hessian matrix is calculated 

by finite differences. Therefore, the num-
ber of additional analyses of the function 
of the LSS for calculation of all second 
order derivatives by finite differences is 

n(n+1). However, as the Hessian matrix is 
symmetrical, the number of deterministic 
evaluations of the LSS function for the 
traditional SORM is:

In this Section, the procedure is 
established, by differential geometry, to 
calculate the main curvatures of the LSS 
at the p point, in order to perform the esti-

mate of the second order failure probability. 
According to the proposed method, the 
estimate of the second order failure prob-
ability will be calculated, using the average 

of the results of the eight formulas shown by 
Equations 7, 11, 12, 13, 17, 18, 21 and 26 
and compared with the result calculated by 
traditional SORM, provided by literature.

To get a better understanding, in this 
Subsection, the main curvatures at the p 

point of a surface in R3 are calculated by 
differential geometry and in the Subsection 

3.2 the generalization of this process for the 
space Rn is performed.

The graph of an equation of the 
F(x,y,z)=0 form, where F is a differentiable 
function and its partial derivatives do not 
cancel each other, simultaneously, at any 
p point, such that F(p)=0, is an example 
of a regular surface in R3. It is verified 
that the graph of a differentiable function  
f: R2 → R is also an example of regular 
surface. More generally, a subset S of R3 
is named regular surface if, for each point 

p ∈ S, there is an open vicinity V ⊂ R3 of p, 
an open U ⊂ R2 and a bijection φ: U→V∩S, 
being φ of way φ(u,v)={x(u,v), y(u,v), 
z(u,v)}, with the properties described as 
follows (Rodrigues, 2001):

a) φ is Class C∞, i.e. φ has continu-
ous partial derivatives of all orders at the 
p point;

b) φ is a homeomorphism (i.e., its 
inverse is continuous); and

c) for any point q ∈ U the Jacobian 
matrix of φ has rank two. The referred 
matrix has rank two, which means that 
the image of the linear transformation 
obtained has dimension two, i.e. elimi-
nating a line, conveniently chosen, the 
resulting 2x2 matrix has a determinant 
different from zero. The Jacobian ma-
trix, in this case, has dimensions 3x2, 
represented by:

It could significantly enlarge the 
computational cost, especially when the 

LSS function has a high number of ran-
dom variables and is time-consuming to 

be evaluated, when using laborious meth-
ods such as the finite difference method.

2.4 Efficiency of the traditional SORM

3. Procedure to obtain the main curvatures by differential geometry (Ferreira, 2015) 

3.1 Surfaces in R3

3.1.1 Parameterization of a regular surface in R3

(27)

(28)

In these conditions, it is said that φ is a parameterization for S, as illustrated in Figure 1:

Figure 1
Parameterization of a regular surface. 

Source: Adapted from Carmo (2006)

NFE SORM = 
2
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A regular surface S ⊂ R3 is orientable, 
if and only if there is a differentiable field 

N: S → R3 of normal vectors in S, accord-
ing to Carmo (2006).

Being S an orientable surface, the 
Gauss application is the field of normal 
vectors N: S→S2, where S2 ⊂ R3 is the 
sphere of radius 1 and center at origin. 

N is a differentiable application and its 
derivative -DNp: TpS → TpS is an endo-
morphism (i.e. a linear transformation 
T:U→V, being U=V), where TpS is the 

space (plane) tangent to S surface at the 
p=φ(u,v) point. From the definition of 
derivative (rule of the chain), highlighted 
by Araújo (1998), one has to:

Being α:(a,b)→S a parameter-
ized curve by arch length. The normal 
curvature of α in α (s) is the compo-
nent of α'' (s) according to the nor-

mal to S at this point and is given by  
kn (α,s) = < α'' (s), N o α(s) (inner product 
between α'' (s) and N, with N applied in 
the point α(s)) and illustrated as Figure 

2. If the curve was not parameterized 
by arch length, the formula of the nor-
mal curvature, according to Rodrigues 
(2001), becomes:

Most of the literature on differen-
tial geometry shows the coefficients of 
the 1st and 2nd fundamental form to sim-

plify the calculation of the curvatures in 
a surface in R3 and also to obtain other 
information, such as a surface area. 

Herein, as the interest is the generaliza-
tion of the surface idea (hypersurface), 
such simplification using these coef-

where φu and φv are partial derivates of 
parameterization φ(u,v), i.e, they are tan-
gent vectors that generate the plane TpS. 

The vectors N and φu are or-
thogonal, as well as N and φv. Derivat-

ing the scale products <φu,N>=0 and 
<φv,N>=0, it was concluded that -DNp 
is an self-adjunct linear application of 
TpS in TpS. Thus, according to Araújo 
(1998), the eigenvalues k1(p) and k2 (p) 

of the linear operator (-DNp) are named 
main curvatures of S at the p point and 
the orthogonal directions defined in TpS 
by eigenvalues k1 (p) and k2  (p) are named 
main directions.

3.1.2 Curvatures of a surface in R3

3.1.3 Normal curvature 

3.2 Surfaces in Rn 

- Nu = - DN φ (u,v) (φu)

- Nv = - DN φ (u,v) (φv)

(29)

(30)

(31)kn ( ,t) =
1

< "(t), N  (t)>

Figure 2
Normal curvature at point p.

Figure 3
Normal curvatures 
when α is a normal section in point p.

According to Rodrigues (2001), 
the maximum and minimum values of 

the normal curvatures of the normal 
sections at p are the main curvatures 

of the surface in point p, as illustrated 
in Figure 3:
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ficients could not be done, due to the 
complexity of mathematical operations 
involved in calculating the curvatures 
when n>3, hence in Subsection 3.1 it 

was opted to use the linear operator 
-DNp (it also could be performed by the 
option for linear operator DNp, but this 
issue is explained in Section 4).

To simplify calculation of normal 
vector to surface, it is described as 
the graph of a differentiable function  
f: Rn-1→R.

3.2.1 Parameterization of the surface g(V)=0

3.2.2 Obtaining the vectors tangent to the surface g(V)=0 

3.2.3 Obtaining the normal vector to the surface g(V)=0 and its partial derivatives

3.2.4 Obtaining the main curvatures of the surface g(V)=0

4. SORM DG (Ferreira, 2015) 

A parameterization for the surface in this vicinity can be given by:

The vectors tangent, which correspond to partial derivatives of Equation 32, are calculated in point p according to:

The normal vector at point p is calculated by extending the equation shown in Carmo (2006) for this vector, i.e. 

Once performed the calculation of 
the normal vector and its partial deriva-
tives Nvj, they can be written as a linear 

combination of the vectors, φv1,..., φvn-1, 
of the tangent plane, obtaining the matrix 
(M) of the linear operator -DNp, whose ei-

genvalues are the main curvatures. Extend-
ing the equation shown by Araújo (1998) 
for the referred linear operator, it has:

SORM DG is proposed as an al-
ternative for performing a second order 
structural reliability analysis because 
it is more efficient than the traditional 

SORM, without affecting accuracy, as 
shown in Subsection 4.2. For this pur-
pose, it needs coordinates of V*, in addi-
tion to calculation of the Hessian matrix 

(H) and the coordinates of the normal 
vector (N*) of the LSS in the referred 
point. It is from the vector N*, calculated 
by Equation 36 in the point p=V*, which 

The partial derivatives of the normal vector are obtained by 

φ(p) (V1,V2,..,Vn-1)= [ V1,V2,…,Vn-1,f(V1,V2,…,Vn-1)]

(-DNp) ( φvj) = - Nvj,  j = 1, 2,..., n-1

- Nv1=( - N1,1)  φv1+...+ (- N1,n-1)  φvn-1

- Nvn-1=( - Nn-1,1)  φv1+...+ (- Nn-1, n-1)  φvn-1

(32)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(33)

The function f(V), with V=(V1,V2,…,Vn-1) 
∈ Rn-1, is obtained by explicitness for any vari-

able of the vector V of the function g(V)=0, 
where V=(V1, V2,…,Vn-1,Vn)∈ Rn. Considering, 

for example, the explicitness of the last vari-
able of g(V)=0; it has Vn=f(V1,V2,…,Vn-1 ).

𝛗𝛗
1
(p) = 1,0,…,0,fV 1

(p) = 1,0,…,0,
∂ f(p)

∂V 1 
V

thus:

V j (p)
( )

=
∂ p  

∂V j
, j = 1, 2,..., n−1 N

N

...

 𝛗𝛗 p = 0,…,1,…,0,fV i
p = 0,…,1,…,0,

  ∂ f p

∂V i  
; 1 < i < n − 1 V i

𝛗𝛗 (p) = 0,0,…,0,1,fVn− 1 (p) = 0,0,…,1,  ∂ f(p)

∂V n− 1 
V n− 1

 =  
(− fV 1 p ,− fV 2 p ,…

…

,− fV n− 1 p ,1)

(fV 1 p )2+ (fV 2 (p))2+ + (fV n− 1 p )2+ 1)
 (p)N

=M

−
−

−−

−

−−

−−

−−−
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the main curvatures of LSS, provided 
to SORM DG, are calculated via dif-
ferential geometry, as the procedure 
established in Subsection 3.2. In addi-
tion, the vector N* should be the same 
orientation of the vector α*, since it also 

is the unit normal vector of the LSS at 
the design point (V*). As the calculation 
methods are distinct, it is required to do 
this differentiation, as to orientation, for 
a correct use of the main curvatures in 
Equations 7 to 26, by the inner product 

among the referred vectors. If the inner 
product between N*and α* is negative, 
they will have different orientations and 
the use of linear operator -DNp must be 
kept, otherwise it must be replaced by 
linear operator DNp.

a) FORM provides the design point 
(V*), transforms the variables of vector U 
of the function G(U)=0, when required, 
into equivalent normal variables (see 
Ditlevsen, 1981) and eliminates the cor-
relations of these variables (see Kiureghian 
and Liu, 1986), transforming them into 
standard normal and statistically inde-
pendent variables;

b) In order to eliminate the effects 
of the correlation in variables of function 
g(V)=0, it must be done by the orthogonal 
transformation (see Appendix B, Section 
B.3 and B.4, of Melchers and Beck, 2018) 
of the vector U (which was reported in 
item “a”) into vector V, whose variables 
are standard normal and statistically 
independent. After the orthogonal trans-
formation, replacing the values of U in 

function G(U)=0, it becomes the function 
g(V)=0;

c) To obtain the function f(V), with 
V=(V1,V2,…,Vn-1) ∈ Rn-1, it can explicit any 
variables of the vector V of the function 
g(V)=0, where V=(V1,V2,…,Vn-1,Vn)∈ Rn. 
Considering, for example, the explicit-
ness of last variable of g(V)=0 it has 
Vn=f(V1,V2,…,Vn-1);

d) Generate in the vicinity of p=V*, 
from the function Vn=f(V1,V2,…,Vn-1), 
the parameterization according to the 
Equation 32;

e) Calculate the partial derivatives of 
the parameterization to obtain the vectors 
tangent to surface, at point p = V*, using 
the Equations 33, 34 and 35;

f) Obtain the normal vector to the 
surface (N*), at point p = V*, according to 

Equation 36;
g) Calculate the partial derivatives of 

the normal vector to the surface, at point 
p = V*, by Equation 37;

h) Obtain by Equation 40 the ei-
genvalues of the matrix (M) of the linear 
operator, considering that they are the 
main curvatures of the surface g(V)=0 at 
the point p= V*;

i) Perform the inner product between 
N* and α*, to assure that the orientation 
of N* is the same the α*, in order for the 
main curvatures of the surface, calculated 
in previous item, can be applied with cor-
rect orientation in the Equations 7 to 26;

j) Perform the second order struc-
tural reliability analysis by calculation 
of the average of the results provided by 
Equations 7, 11, 12, 13, 17, 18, 21 and 26.

Analyzing the algorithm shown in 
Subsection 4.1, it is noted that for item 
“e”, it is required to obtain the first order 
partial derivatives of f(V), while for item 

“g”, the second order partial derivatives 
of f(V), i.e, the Hessian matrix (H) must 
be calculated. As the values of the first 
order partial derivatives of f(V) were 

obtained with values of the second 
order partial derivatives of f(V) during 
the calculation of the Hessian matrix, 
it is said that 

The example, also proposed by Chan 
and Low (2012) and Zeng et al. (2016), 

envisages the bearing capacity of a shallow 
footing resting on a homogeneous silty sand; 

see Figure 4. The LSS function, due to the 
exceedance of its bearing capacity is given as

and qult is the vertical bearing resistance 
computed with the polynomial bearing 
capacity equation; and q is the vertical 

applied pressure (corrected to explain the 
eccentricity of the loads). Five random vari-
ables — cohesion, cꞌ; friction angle, φꞌ; unit 

weight, γ ; horizontal load, PH; and vertical 
load, PV — are considered, and they are all 
presumed to be normally distributed.

where N
q
= e (π  tan φꞌ  ) tan2[45o+(φꞌ/2)],  

N
c
 =(N

q
 -1) cot φꞌ, Nγ=2 (N

q
 -1) tan φꞌ are 

the conventional dimensionless  bearing 
resistance factors that depend (strongly 

non-linearly) on the soil ś friction angle 
and s

q
=1+(Bꞌ/Lꞌ) sin φꞌ, s

c
=(s

q
 N

q
 -1)/(N

q
 -1) 

and sγ=1-0.3 (Bꞌ/Lꞌ) are dimensionless 
factors that introduce corrections to 

explain the form of the footing (B and 
L are the width and length of the foot-
ing) and the eccentricity of the loads. 
Where Bꞌ=B-2 e

B
, Lꞌ=L and e

B
=h (PH /PV ). 

G(U) = q
ult

 - q = 0

q
ult

 = cꞌ N
c
 s

c
 i

c
 + γ D N

q
 s

q
 i

q
 + 0.5 γ Bꞌ Nγ sγ iγ

In the example below, the reliability 
analysis is performed by SORM DG of a 

geotechnical engineering case obtained 
from literature, aiming to show the ability 

of the analytical procedure by differential 
geometry established in Subsection 3.2.

4.1 Algorithm for application of SORM DG

4.2 Efficiency of the SORM DG

5.1 Example – Case of bearing capacity of a shallow footing

5. Results

(41)

(42)

(43)

because, as mentioned in item “c” 
of the Subsection 4.1, the function 
f(V) is obtained by the explicitness 

of one of the variables V of the func-
tion g(V)=0, thus showing one vari-
able less than the function g(V)=0. 

Therefore, replacing n-1 in the place 
of n in Equation 27 it is obtained the 
Equation 41.

NFE SORM DG = 
2
−



597

Emmanoel Guasti Ferreira et al.

REM, Int. Eng. J., Ouro Preto, 72(4), 589-600, oct. dec. | 2019

Similarly, i
q
={1-[PH /(PV+Bꞌ Lꞌ cꞌ cot φꞌ)]}m,  

i
c
 =i

q
 -[(1-i

q
)/N

c 
tan φꞌ] and iγ={1-[PH /

(PV+Bꞌ Lꞌ cꞌ cot φꞌ)]}m + 1 are dimension-
less correction factors  responsible for 

the inclination of the resultant load, 
where cꞌ is the cohesion of the soil  
and m=[2+(Bꞌ/Lꞌ)]/[1+(Bꞌ/ Lꞌ)]. Employ-
ing this approach, the bearing capacity 

failure would be theoretically exceeded 
when the vertical applied pressure, q, 
which can be computed as

q = PV / Bꞌ

L = [Cholesky factorization (Ω)] T

(44)

(45)

becomes higher than the value of q
ult
 computed employing the Equation 43.

As written on item “b” from Subsec-
tion 4.1, the orthogonal transformation ac-

complished from vector U= [cꞌ  φꞌ  γ  PH  PV], 
being the vector V obtained with standard 

normal and statistically independent vari-
ables, whose coordinates are:

The f(V) function, where V=(V1,V2,…
,Vn-1), as shown in the item “c” in Subsec-
tion 4.1, is obtained by explicitness of 
any variables of the vector V in g(V)=0 
function, where V=(V1,V2,…,Vn-1,Vn). Then, 
the f(V) function was obtained from the 
explicitness of the variable V3, as recom-
mended by item “c” of the Subsection 4.1,  

V3= f(V1,V2,V4,V5) = f(V). Therefore, f(V) is the 
new LSS function, now with one variable 
less, in the case of V3 variable. Thus, the reli-
ability analysis of this example, performed 
by SORM DG, from the f(V) function, 
is more efficient than that performed by 
traditional SORM and without affecting 
the accuracy, as shown in Table 4. In Table 

1, shown are the features (moments and 
probability distributions) of the random 
variables, in addition of the coordinates of 
the design point. Table 2 provides the main 
curvatures at the design point calculated by 
differential geometry, and in Table 3, the es-
timate of the second order failure probability 
at design point by SORM DG is presented.

Replacing these values, respec-
tively, in place of cꞌ, φꞌ, γ, PH, PV , in G(U)=0  

function (Equation 42), it becomes 
g(V)=0 function.

5.1.1 Obtaining the g(V) function

5.1.2 Obtaining the f(V) function

Figure 4
Description of the 

example of the shallow footing and 
of the deterministic parameters involved.

Source: Adapted from Zeng et al. (2016)

    cꞌ φꞌ γ PH PV

cꞌ (KPa)    1 - 0.5 0 0 0

 φꞌ (o) - 0.5 1 0.5 0 0

γ (KN/m3)    0 0.5 1 0 0

PH (KN/m)    0 0 0 1 0.5

PV (KN/m)    0 0 0 0.5 1

Lower Cholesky matrix (L)

Correlation matrix (Ω)

  1 0 0 0 0

- 0.5 0.866 0 0 0

   0 0.577 0.816 0 0

   0 0 0 1 0

   0 0 0  0.5 0.866

V =

cꞌ = 4.5 V1 + 15
 φꞌ = − 0.043633231299858 V1 + 0.075574973509759 V2 + 0.436332312998582

PH= 40 V4 + 400
PV= 40 V4 + 69.282032302755098 V5 + 800

 = 1.154700538379252 V2 + 1.632993161855452 V3 + 20γ



REM, Int. Eng. J., Ouro Preto, 72(4), 589-600, oct. dec. | 2019598

SORM DG – an efficient SORM based on differential geometry

Distribution Variable µi σi Ui* Viꞌ*= (Ui*- µi) / σi
V* = L-1 Vꞌ*

Normal cꞌ (KPa) 15 4.5 14.915 - 0.019 - 0.019

Normal φꞌ  (o) 25 5 18.490 - 1.302 - 1.514

Normal γ (KN/m3) 20 2 17.934 - 1.033 - 0.195

Normal PH (KN/m) 400 40 422.600    0.565     0.565

Normal PV (KN/m) 800 80 808.400     0.105 - 0.205 Table 1
Random variables and 
coordinates of the design point.

Table 2
Main curvatures by differential geometry.

Table 3
Estimation the second 
order failure probability by 
SORM DG – Average of eight formulas.

Table 4
Computed reliability results.

i = 1, 2, ..., n; µi = Mean; σi = Standard deviation; Ui*= Coordinates of the vector U* at in original space;  

Viꞌ*= Coordinates of the vector Vꞌ* in reduced space; V* = Design point for correlated U.

kj

- 0.0886

- 0.0574

- 0.0039

   0.0090

SORM DG PfT PfB PfC PfK PfHR PfHP3 PfHP4 PfZO Average a

Pf (x10-2) b 5.93 5.70 5.86 5.71 5.91 5.87 5.88 5.86 5.84

β c 1.561 1.580 1.567 1.579 1.563 1.566 1.565 1.567 1.568

a NFE = Number of deterministic function evaluations, b Δ = Relative error in relation to Monte Carlo Simulation 

(MCS), computed based on results of Pf , c NFE needed by FORM, d NFE demanded for computing Hessian matrix, 
e Results given by Zeng et al. (2016), f Results (average of eight formulas), g Reliability index,h Failure probability.

a To assess the second order failure probability, the average of eight formulas (Equations 7, 11, 12, 13, 17, 18, 21 and 

26) based on the same information (i.e., βF and kj ) is used in this study, b Failure probability, c Reliability index.

All calculations for this example 
were performed using MATLAB soft-
ware (Lee, 2018), which are summa-
rized in Table 4. Analyzing this table, 
it is noted that the proposed method 
(SORM DG) was the one providing 

the failure probability value closest 
to the reference value, calculated by 
MCS, significantly improving the result 
provided by FORM, but with slightly 
higher accuracy (almost equivalent) 
than traditional SORM. In addition, 

it was more efficient than traditional 
SORM, which required an NFE=15 to 
calculate the Hessian matrix, while 
SORM DG needed an NFE=10 for this 
purpose. Analyzing the Equations 27 
and 41 concluded that:

Whenever the function g(V)=0 of 
the LSS shows at least one random vari-
able involved in the reliability analysis, 

which can be explicit, the SORM DG 
will calculate the failure probabil-
ity, at the design point, with higher  

efficiency then the traditional SORM, 
as indicated in Equation 46.

The example of geotechnical 
engineering shown herein, whose LSS 
function correlates variables and fea-
tures a high degree of non-linearity, 
was analyzed to test the proposed ap-
proach (SORM DG), which was able 
to perform the second order structural 
reliability analysis, optimizing the re-
sults calculated by FORM and with 
higher efficiency than the traditional 

SORM, without affecting accuracy. 
It demonstrates the contribution of 
analytical procedure via differential ge-
ometry for the calculation of the main 
curvatures at a p point, established for 
a hypersurface in Subsection 3.2.

FORM is very efficient, but lim-
ited in terms of accuracy. The MCS is 
very accurate, but suffers from a lack 
of efficiency, so whenever it is feasible 

to use FORM/SORM, there will be 
increased efficiency in relation to the 
MCS. In this sense, the FORM/SORM 
DG contributes to further increased 
efficiency in relation to MCS. For 
limit state surfaces with many random 
variables involved in the analysis, NFE 
is often relevant; thus a search for ef-
ficiency in structural reliability analysis 
is required.

6. Conclusions

NFESORMDG = NFESORM - n (46)

n = 5 variables NFE a β g Pf (x10-2) h Δ (%) b

FORM (iHLRF) 42 c 1.641 5.04 - 18.31

Traditional SORM 42c + 15 d = 57 e  1.569 e 5.83 e - 5.51 e

SORM DG  42c + 10 d = 52 1.568 f 5.84 f - 5.35 f

MCS  5x105 e 1.541 e  6.17 e reference 
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