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Optimization of 
shells modeled using 
NURBS subjected to a 
dynamic loading condition
Abstract

This study presents an optimization method for the thickness of shell elements 
subjected to dynamic loads. Structural analyses were carried out using the finite ele-
ment method. The analyzed domains were modeled using NURBS, and meshes were 
generated using a transformation of the parametric domain into the geometric domain 
via a geometric function. The shell element considered is a combination of a CST 
membrane element and a DKT plate element, forming an element with 15 degrees of 
freedom. The Newmark method with constant acceleration was applied to solve the 
equation of motion. The optimization approach was considered in two different ways: 
with uniform and variable thickness throughout the shell element. Due to the nonlin-
ear constraints of the problem, the Sequential Quadratic Programming (SQP) method 
was employed. SQP routines are available in MATLAB, in which this study was per-
formed. Useful examples were detailed in this study to demonstrate the applicability 
of the optimization method to real structures, such as the Igrejinha da Pampulha, a 
church located in Belo Horizonte, Brazil, whose modeling was performed.
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The evolution of computers over the 
past decades has allowed for the develop-
ment of new technologies in the field of 
structural engineering. In turn, this enabled 
the construction of more slender and eco-
nomical buildings. One of the main factors 
that influenced this change is the possibility 
of combining routines for solving optimiza-
tion problems with others in order to analyze 
and design structures. One example is the 
fact that not long ago, several abacuses were 
used in the process of designing a structure, 
whereas today it is very unlikely that a struc-
tural design office will not employ computer 
software for the same purpose.

Despite this evolution, the analysis and 
design of shells is still not a trivial task, with 
its study usually limited to specific courses 
or graduate classes. The objective of this 
study is to combine a few of the theories 
that aim to facilitate the modeling of shells 
(and, consequentially, plates) using thickness 
analyses and optimization processes. With 
this approach, it is possible to perform a pre-
analysis to provide a sketch of the thickness 
of the designed structure, which nonetheless 
does not make the design process unneces-
sary. The Non-Uniform Rational B-Splines 
(NURBS) representation was used to model 
the domains by projecting a plane mesh over 
a surface. The following studies support 
this methodology: Kiendl et al. (2009) also 
demonstrate shells modeled using NURBS, 
employing a Kirchhoff-Love shell element 
for a nonlinear isogeometric analysis, and 
present examples that show the applicabil-
ity of this modeling method to the integra-
tion of design and analysis. Breitenberger 

et al. (2015) present a nonlinear analysis 
of a computer-aided shell design modeled 
with NURBS via boundary representa-
tion, also using Kirchhoff-Love shells and 
isogeometric analysis. Lastly, Zhang et al. 
(2017) show an analysis of complex tubular 
shells modeled by isogeometric shell analysis 
using degenerated NURBS elements and 
the Mindlin-Reissner theory. To verify the 
efficiency of this method, they constructed 
a Computer-Aided Design (CAD) model of 
a car body and simulated its deformation.

For the analysis performed in this 
study, a combination of a membrane ele-
ment and a plate element was used to form 
a shell element. A dynamic analysis method 
was adopted due to the complexity of shells. 
In the optimization process, a deterministic 
method was applied to problems with non-
linear constraints. The studies below support 
this analysis technique: Falco et al. (2004a) 
present the development and application of 
a computational tool for geometry model-
ing, mesh generation, structural analysis (a 
Huang-Hinton element, based on a Mindlin-
Reissner shell, was used) and sensitivity 
analysis of plates and shells under dynamic 
loads. Falco et. al (2004b) used structural 
sizing and shape optimization procedures to 
obtain optimum designs for plates and shells 
under dynamics loads, and the Sequential 
Quadratic Programming algorithm was 
used in this process (this article is a continu-
ation of Falco et al. (2004a). Park and Dang 
(2010) present a structural optimization 
method based on Computer-Aided-Design 
and Computer-Aided-Engineering integra-
tion, using metamodeling techniques to 

reduce the time taken for solving the prob-
lem and to automatize the process. Alves 
and Vaz (2013) present the optimization of 
plates subject to random dynamic loading. 
Espath et al. (2011) demonstrates the shape 
optimization of shells (combining NURBS-
based surfaces, mathematical optimization, 
the finite element method in a structural 
analysis, and automatic differentiation) by 
applying varied techniques to modify the 
shell geometry while conserving the same 
parameterization without generating a new 
finite element mesh. Kang and Young (2016) 
present the topology optimization of shells 
using isogeometric analysis and trimmed 
NURBS surfaces to handle complex domains 
that cannot be analyzed with a conventional 
isogeometric analysis. Alvez and Vaz (2016) 
carry out a comparative analysis of the thick-
ness optimization of plates under dynamic 
loads in time domain and its equivalent 
optimization in frequency domain.

The objective of this article is to 
present a formulation of  the optimization 
problem of a shell structure under dynamic 
loads, using NURBS to create a real model 
of this structure. It also demonstrates the 
application of this process to real problems 
such as that of the Igrejinha da Pampulha (a 
church), located in Belo Horizonte, Brazil, in 
a hypothetical situation involving dynamic 
loads. As constraints of the optimization 
problem were considered to be the maxi-
mum displacements suffered by the shell 
and the minimum frequency for the modal 
analysis. Strength and buckling constraints 
are not considered, since this was not the 
focus of the problem.

2. NURBS and mesh creation

The surfaces (shells) analyzed in 
this study can be modeled with NURBS 

by using the geometric function  
F:[0,1]2 → Ω, as in Equation (1):

where R
ij
 (u,v) is the ij-th NURBS basis 

function, and P
ij
 is a control point in 

R3. This geometric function transforms 

the unitary square domain, called 
parametric domain, into the geometric 
domain Ω.

The NURBS basis functions are defined 
as in Equation (2):

where N
i,p
 and M

j,q
 are B-spline basis func-

tions of p and q degrees, respectively, and 
w

ij
 is the weight given to each basis func-

tion product.
The B-spline basis functions are defined 
recursively by using Equations (3) and (4):

F(u,v)= ∑ R
ij
 (u,v) P

ij
(1)

(2)

(3)

R
ij
 (u,v) = 

w
ij Ni,p (u) Mj,q (v)

∑
k ∑l

 w
kl Nk,p (u) Ml,q (v)

N
i,0 (u) = 1, if u

i
 ≤ u < u

i+1
0, otherwise

1. Introduction
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It is not recommended to use 
NURBS surfaces with non-injective 
geometric functions, since these func-
tions cause the parametric into geo-

metric domain transformation to gen-
erate elements with null areas, making 
the finite element analysis impossible. 
For more details about NURBS and 

data regarding the construction of the 
main surface geometries, see Piegl and 
Tiller (1996).

Mu (t) + Cu (t) + Ku(t) = P(t)

The dynamic analysis consists of 
solving Equation (5), called the equation 
of motion, where M is the mass matrix, C 

is the damping matrix, K is the stiffness 
matrix, P is the matrix of applied forces 
and u is the vector of nodal displacements. 

Rayleigh’s damping was employed, where 
the damping matrix C is a linear combina-
tion of the stiffness and mass matrices:

For the thickness optimization 
of the shell elements, the optimization 

problem represented by Equation (6) 
was considered:

The objective of this optimiza-
tion is to minimize the volume of the 
structure and, consequently, minimize 
its weight and value. The design vari-
ables are the thicknesses of element 
groups (they are combined into groups 
to facilitate the optimization process). 
The maximum displacement and the 

minimum frequency of the analysis are 
considered as constraints. In Equation 
(6), V is the volume, h is the vector of 
design variables that contains the thick-
nesses of all the elements (or group of 
elements), A is a vector that contains 
the areas of all the elements, uj is the 
absolute displacement (i.e. considering 

the three-dimensional components) or 
the vertical displacement, as explicit 
on the example, of the j-th node at time 
t calculated by Equation (5), u

max is the 
maximum allowable displacement, ω

min
 

is the minimum vibration frequency, 
ω

k
 is the k-th vibration mode, and lb 

and ub are the vectors that contain the 

To solve the equation of motion, 
Newmark’s method, with constant acceler-

ation, was used. Details about Newmark’s 
method can be found in Newmark (1959), 

while details about dynamic analysis can 
be found in Clough and Penzien (2003).

3. Dynamic analysis

4. Thickness optimization

(5)

(6)
s. t. =

u
j 
(h,t) u

max 
≤ 0

ω
min

 - ω
k 
(h) ≤ 0

lb ≤ h ≤ ub 

min V (h) = A h.

Figure 1 - The transformation of the parametric domain 
into the geometric domain. a) Parametric domain. b) Geometric domain.

(a) (b)

where U=[u0,u1,... ,un
] is a knot vector with 

non-decreasing numbers from zero to one. 
The repetition of a value in the knot vec-
tor reduces the derivative of the function 
in one degree at that point. However, the 

first and last knots are repeated p+1 times 
to ensure the partition of unity property.
The mesh of the shell can be gener-
ated through the image of the mesh of 
the parametric domain by using the F  

function, as shown in Figure 1. The mesh 
of the parametric domain can be easily 
created by dividing the edges into n by 
m parts, and each resulting rectangle is 
subdivided into eight triangles.

(4)N
i,0 (u) =

u-u
i

u
i+p 

-u
i

u
i+p+1 

-u
u

i+p+1 
-u

i+1
N

i,p-1 
(u) + N

i,p-1 
(u)
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(a) (b)

Figure 2 - a) Shell model simulating a bus stop shelter. b) Finite element model.

Table 1 - Data for the shell modeling of Example 1.

Knot vector U

Knot vector V [0;0;1;1]

Degree p 2

Degree q 1

Control points

Weights

The computational routines were 
developed in MATLAB and the solution 
to the optimization problem is obtained 
using the Matlab function fmincon. 
The sensitivity analysis is performed 
by the application of a finite difference 
method. For the analysis of the shell 
elements, a combination of a plate 
element and a membrane element was 
used, according to Clough and Johnson 
(1968). The Constant Strain Triangle 
(CST) membrane element and the Dis-
crete Kirchhoff Theory (DKT) plate 
element were selected, because they 
show good results when paired with a 
moderately large number of elements, 
and they have an explicit formulation 
with a low computation cost when 

used in the optimization problem. The 
stiffness and mass matrices of the CST 
element are easily found in introductory 
books on finite elements, such as Logan 
(2011), whereas the stiffness and mass 
matrices of the DKT element can be 
found in Bathe (1981) and Luo and Hut-
ton (2002), respectively. The dynamic 
analysis routines were validated by a 
comparison with the results obtained by 
ANSYS Workbench 18.2, with which 
the Shell 181 element was used.

The use of NURBS can reduce 
considerably the number of elements 
necessary to perform the analysis in 
comparison to the traditional way, due 
to its exact modeling of the analyzed 
domain, without affecting the results.

 Example 1 – Bus stop shelter: 
Consider the shell presented in Figure 
2a, which simulates a bus stop shel-
ter. The data required for its NURBS 
modeling is presented in Table 1. The 
entire shelter was made of steel, with a 
modulus of elasticity of 200GPa, Pois-
son’s ratio of 0.3 and mass density of 
7850kg/m3.  The bottom of the shelter 
was fixed, and an applied force F=1000 
sin(t) was employed, as shown in Figure 
2a. The force was, divided into 100 
steps of 0.1 second each. Damping 
was not used. Figure 2b illustrates the 
256-element finite element model that 
was generated from a parametric do-
main with 8×4 rectangles subdivided 
into eight triangles each.

[0; 0; 0;---; ; ; 1;1;1]4   2 2
1   1 1

(0;r;h); (0;r;h+r); (0;-r;h+r); (0;-r;h);  0;-r;     ; (0;-r;0); 
2
h( (

(L;-r;h+r); (L;-r;h);  L;-r;      ; (L;-r;0);( (2
h (L;r;h); (L;r;h+r); 

1; 1; 1;---; ; 1;1; 1;1;
 2 2
1   1 1   1

 2 2
; ; 1

Prior to the optimization process, a 
dynamic analysis was performed consid-
ering a thickness of 2cm, and the vertical 
displacement in one of the applied force 

nodes was obtained, comparing the author 
routines (i.e. those of this study) and the 
ANSYS results, as presented in Figure 
3. Based on the displacement obtained, 

a maximum vertical displacement equal 
to 0.02m was taken as the reference in 
the optimization process. Furthermore, 
the limiting thicknesses of 1cm and 4cm 

5. Results

minimum and maximum thicknesses of 
each element, respectively.

The solution to the optimization 
problem was obtained by using Se-

quential Quadratic Programming (SQP) 
(Horowitz, 1999).
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were adopted. The minimum frequency 
obtained in the dynamic analysis was 
1.36Hz, and it was employed as a limit; in 
addition, two examples were performed: 

with and without a self-weight. The 
minimum allowable thickness established 
in Section 4 was considered as the initial 
value in the optimization process with 

constant thickness, and the calculated 
optimum thickness was used as the initial 
value in the optimization process with 
variable thickness.

Figure 3 - Vertical displacement of the load application point.

Figure 4 - a) Optimum thicknesses – without self-weight. b) Optimum thicknesses – with self-weight.

In the optimization process with-
out the self-weight and with only one 
design variable (i.e. uniform thickness), 
the optimum thickness of 2.05cm was 
calculated, corresponding to a volume 
of 0.2446m3. When the thicknesses were 
allowed to vary in horizontal strips, the 

minimum thickness, maximum thick-
nesses and volume of 1.19cm, 2.36cm, 
and 0.2354cm3 were calculated, respec-
tively. The thickness results are shown 
in Figure 4a.

When the self-weight was applied, 
the optimum uniform thickness of 

3.03cm was calculated, corresponding to 
a volume of 0.3604. When allowing the 
thicknesses to vary, the minimum thick-
ness, maximum thickness and volume of 
1.44 cm, 2.95cm, and 0.2579cm3 were 
calculated, respectively. The thickness 
results are shown in Figure 4b.

Example 2 – Igrejinha da Pampulha: 
The “Igrejinha da Pampulha” (São Fran-
cisco de Assis Church), located in Belo 

Horizonte, in the state of Minas Gerais, 
Brazil, was designed by Oscar Niemeyer 
and inaugurated in 1943. The building 

distinguishes itself by the parabolic shells 
that comprise its architecture, as can be 
seen in Figure 5a.

Figure 5 - a) Igrejinha da Pampulha. b) Finite element model. 
Source: http://hojeemdia.com.br/horizontes/iphan-adia-obras-de-restauração-da-igrejinha-da-pampulha-1.42979

(a) (b)

(a) (b)
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The finite element model was created 
with the aim of constructing a format similar 
to the actual structure while not necessar-
ily possessing the exact dimensions, as this 

would require a deeper study of the geometry 
of the shell. There were 704 elements used in 
the model. It is worth pointing out the repeti-
tion of a few knots in the knot vector to create 

the discontinuity of the surface derivative, as 
presented in Table 2 and Figure 5b. Gomes 
Filho et. al. (2018) present a similar example, 
which employs only a static analysis.

Knot vector U

Knot vector V [0;0;1;1]

Degree p 2

Degree q 2

Control points
(0;0;0); (1.5;0;3); (2.5;0;4); (4.5;0;4); (5.5;0;3); (6.5;0;4); (8.5;0;4); (9.5;0;3); (10.5;0;5); 

(13.5;0;8); (16.5;0;5); (17.5;0;3); (18.5;0;4); (20.5;0;4); (21.5;0;3); (23;0;0); (0;8;0); 
(1.5;8;3); (2.5;8;4); (4.5;8;4); (5.5;8;3); (6.5;8;4); (8.5;8;4); (9.5;8;3); (10.5;8;5); 

(13.5;8;8); (16.5;8;5); (17.5;8;3); (18.5;8;4); (20.5;8;4); (21.5;8;3); (23;8;0);

Weights Unitary weights

Table 2 - Data for the creation of the shell that simulates the Igrejinha da Pampulha.

[0; 0; 0;---; ; ; ; ; ; ; ; ; ; 1;1;1]1   2   3   4  5   6   7   8   9 10
11 11 11 11 11 11 11 11 11 11

The shells were made of concrete 
with an f

ck
 of 25MPa, modulus of elastic-

ity of 23.8GPa, Poisson ratio of 0.2 and 
specific mass of 2500kg/m3. The bottom 
ends of the shell were fixed, while the rest 
of the structure remained free to deform. 

In addition to the self-weight of the struc-
ture, a dynamic load was distributed over 
the entire shell in the horizontal direction 
(i.e. the direction where the perpendicular 
projection of the area of the shell is not 
null) with intensity, following Figure 6a. 

The load was, divided into 50 steps of 
0.2 second each. The horizontal loading 
condition sought to simulate a strong 
and short wind gust over the structure. 
For this example, a damping matrix  
C =0.05M + 0.05K was also used.

Figure 6 - a) The horizontal load applied to the model. 
b) Absolute displacement obtained at the central node of the highest point of the shell.

To obtain the limiting values for 
displacement, a uniform thickness of 20cm 
was first adopted. A dynamic analysis 
was then performed, and the absolute 
displacement for the central node of the 
highest point of the shell was acquired. The 
displacement over time is shown in Figure 
6b, where the maximum value was slightly 
short of 0.1m (0.09862m, to be exact). 
Therefore, the maximum displacement 
restriction was considered to be 0.1m. A 
frequency-related limit was not used.

For the optimization process, 10cm 

and 25cm were taken as the minimum and 
maximum allowable thicknesses, respec-
tively. In the problem involving uniform 
thickness, this minimum thickness was 
employed as the initial value, whereas for 
the problem involving variable thickness, 
the optimum uniform thickness calculated 
in the previous process was used as the 
initial value. Furthermore, to reduce the 
number of design variables, the thickness 
variation was considered to be the combi-
nation of four parallel horizontal strips of 
the elements, i.e. there was one different 

thickness variation variable for every four 
strips (which differs from the previous 
example where each horizontal strip was 
one different design variable). 

The optimum uniform thickness 
calculated was to be 23.17cm, which 
represents a volume of 60.3177m3. When 
the thickness of parallel strips was al-
lowed to vary, the resulting minimum and 
maximum thicknesses were imposed as 
constraints and the minimum volume was 
47.3094m3. The thicknesses calculated are 
illustrated in Figure 7.

Figure 7 - Thicknesses calculated in the optimization process – groups based on number of elements.

(a) (b)
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A different approach can be taken, 
for aesthetic reasons, by defining the thick-
nesses to allow each “curve” to have its own 

thickness. This way, there are only four 
design variables being considered and the 
minimum volume calculated is 56.9057m3. 

The resulting thicknesses were, from left 
to right, 25.00cm, 24.20cm, 20.87cm and 
18.87cm, as shown in Figure 8.

Figure 8 - Thicknesses calculated in the optimization process – groups based on geometry and aesthetic aspect.

6. Discussion

7. Conclusions
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