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Abstract

In short-term mine planning, mining scheduling is generally defined by designing 
dig-lines, allocated on benches. The mined ore will be sent to stockpiles, homogeni-
zation piles, or a concentration plant. The process to design dig-lines is usually done 
manually, whereby multiple simultaneous mining fronts are time-consuming and la-
bour-intensive. The manual design of dig-lines tends to produce high variability of the 
grades throughout certain periods. Due to the limited time to manually multiple test 
dig-line design alternatives in short term planning, it is impossible to ensure produc-
tion under stationary mean grades and variance. This article proposes an alternative to 
design short-term dig-lines, through an optimization process that joins and sequences 
the blocks in the block model over weeks or months, ensuring low variability of grades 
among periods. The methodology proposed generates multiple random paths starting 
at seed-points representing the locations and numbers of shovels previously selected 
by the mine planner. It tests multiple polygons representing a set of first dig-lines, 
comparing them with others, and keeping the dig-lines of low variability closer to a 
specific ore grade probability distribution, discarding the rest of the iterations. The 
process is repeated for the next dig-line. The block grades' probability distribution of 
all iterations is compared to a reference-grade histogram, and the iterations with the 
grade histogram more adherent are selected. Union-find and genetic algorithms were 
used to optimize the dig-lines aiming at the possible stationary grade distribution. The 
mean and variance of the reference model are 2.13% and 0.64%2, respectively.  The 
mean for the automated draw dig-lines is closer to these values than the ones manually 
drawn.  The method ensures more constant quality and quantity of ore production 
along a period planned, matching a target grade probability distribution. The method-
ology is illustrated using SiO2 values at a major iron ore mine.
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1. Introduction

Short-term mine planning aims to 
ensure the quality and quantity of ore 
according to the production scheduled 
by long-term planning (Hustrulid et 
al., 1995). In long-term mine planning, 
models are based on widely spaced drill-
ing, which is gradually filled in as the 
project advances. Models are usually 
updated on a yearly basis with infor-
mation acquired from new drill holes 
(Rossi and Deutsch, 2013). With high 
accuracy, precision and high cost, these 
data lead to the estimation of blocks 
with increasingly smaller dimensions. 
Therefore, short-term planning provides 
detailed procedures for executing the 

mine planning at the operational level 
and involves intensive planning, includ-
ing shift-by-shift schedules. Based on 
drill holes, the high-precision estimation 
may be insufficient for the resolution at 
small time scales (1 month for example), 
so the incorporation of short-term data 
is necessary. One of the most challenging 
aspects of updating short-term models is 
updating the geological model and esti-
mation domains using production data 
(Rossi and Deutsch, 2013) generating 
uncertainty on  domains limits.

Many developments have been 
presented in updating the block model 
for short-term planning using geostatis-

tical methods in the last decades.  Ore 
production costs have increased (Dimi-
trakopoulos, 2011) due to the declining 
quality and increased complexity of the 
mineral resource. Thus, it is necessary 
to improve the accuracy of block mod-
els. Also, the re-estimation of models is 
usually performed using geostatistical 
methods based on data provided by 
densified meshes, using samples obtained 
from channels and drilling dust (Araújo 
et al., 2018; Nelis and Morales, 2021). 
Consequently, a more agile and adaptive 
planning process is needed. These new 
data allow a local evaluation at a small 
block support, helping to select ore and 
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waste (Santibanez et al., 2020).
Short-term planning, in most cases, 

is carried out manually to generate “to 
be mined” ore polygons in volumes that 
satisfy the needs of the processing plant. In 
addition, the restrictive factors associated 
with the mining phase, such as opera-
tional, technological, and environmental 
factors, are considered. The decision about 
which blocks should be sent to the con-
centration plant or the blending/homog-
enization piles is made based on polygons 
known as dig-lines, obtained by manual 
design, largely dependent on the ability of 
the mine planning engineer. The manual 
design of each dig-line is limited and does 
not allow the exploration of different pos-
sibilities (Toledo et al., 2017). Also, the 
manual definition of the dig-lines has the 
limitation of considering only one variable 
at a time (usually). This limitation cannot 
achieve the technological characteristics 
demanded by the processing plant, if  
multiple variables must be considered 
simultaneously. Another aspect being ob-

served is that even if the mean grade in the 
dig-lines matches the short-term mining 
planning target, the grades can fluctuate 
within the dig-lines, causing a reduction 
in the performance of the processing plant 
(Toledo et al., 2017). There are some solu-
tions in this area based on modern mixed 
integer programming (MIP). Smith (1998) 
studied the goal-programming MIP model 
to solve the short-term scheduling prob-
lem, aiming to maximize the ore produc-
tion while taking into account blending 
constraints. L’Heurex et al. (2013) used 
MIP to determine which blocks would be 
extracted and the order, and found that 
the movement of shovels could allow the 
production capacity of equipment to be 
met in the short-term.

The proposed solution based 
on union-find and genetic algorithms 
allows blocks from initial excava-
tion points located on exposed ore in 
benches, called production polygons. 
These blocks that together form dig-
lines can be destined to piles or the 

beneficiation plant. The objective is 
for the dig-line to imitate the grades 
of a reference distribution. The idea is 
to provide a sequence of blocks grade 
with maximum similarity among each 
dig-line for a production period.

Therefore, this article proposes 
a fast and straightforward solution to 
managing grade fluctuations during 
short-term mine planning using algo-
rithms to analyze the variability and 
sequence the blocks for multiple possible 
mineable polygons. The algorithm uses 
as a reference the global or local grade 
probability distribution function for the 
ore (Ribeiro et al., 2007; Toledo et al., 
2017). Thus, the distribution of block 
grades of each possible dig-line keeps 
the one most similar to the target his-
togram. Note that dig-line grades come 
from subsets of blocks extracted from 
the ore reference-grade block model 
histogram. The proposal can be used 
on either estimated or simulated block 
models for short-term mining planning.

2. Materials and methods

The union-find algorithm operates 
data structure of disjoint sets to main-
tain a collection of non-overlapping 
elements of a finite universe (Patwary 
et al., 2010). The algorithm is used to 
prevent elements of a 3D array from be-
ing selected by two or more subsets and 
ensures the adherence of the elements 
representing ore blocks.

The first applications of genetic 
algorithms were in the field of biology. 
In the 1950s and 1960s, several com-
puter scientists independently studied 
evolutionary systems and proposed that 
the theory of biological evolution could 
be used as an optimization tool for engi-
neering problems (Mitchell, 1998). John 
Holland introduced genetic algorithm in 
the 1960s, and Holland (1992) presented 
genetic algorithms as an abstraction of 
biological evolution. Even though most 
of these algorithms were created in the 
1970s, it was only 30 years later, that they 
were popularized and began to be consid-
ered a practical tool for everyone using a 
standard personal computer. When solv-
ing a problem with a genetic algorithm, 
instead of asking for a specific solution, 
the planner provides characteristics that 
the solution must have or rules that its 
solution must comply with to be accepted 
(Sheppard, 2017). Genetic algorithms are 
often considered to function optimizers, 

and there is a wide range of problems to 
which they can be applied (Whitey, 1994). 
Dendy and Schofield (1994), Alipour et 
al., (2020) used a genetic algorithm for 
scheduling open pit design.

In the short-term planning, the 
grades of exposed mineable blocks along 
benches are used. This short-term grade 
model is estimated using data from drill 
holes, trenches, channels, or blast hole 
dust. The selection of a block within a dig-
line depends on operational issues (such as 
availability of the block – exposed or not), 
equipment availability, and its geographi-
cal position.

With the estimated short-term 
model, the process of generation of the 
optimal dig-lines starts by defining a 
certain period usually a month. A target 
parameter which must be controlled in 
feeding the processing plant or in the 
final product is selected. This study aim 
is to keep the distribution of block grades 
in every mining advance as close as pos-
sible to the target grade distribution.

The mine planner must define the 
starting point or multiple starting points 
from where the mining will start in the 
proposed optimization analysis. From 
there, the algorithm starts a random path 
that respects the operational mining con-
straints as bench limits, selects adjacent 
blocks of ore, number and locates the 

starting point, production, and period. 
The first possible dig-line will be gener-
ated. A set of scenarios with the same 
starting point and the same number of 
blocks is generated, following different 
random paths, generating multiple pos-
sible dig-lines.

Among the generated scenarios, 
the one with a set of block grades 
closest to the reference distribution is 
selected. The remaining scenarios are 
discarded. The best scenario is obtained 
using a quantile-quantile comparison 
between the distribution of the grades 
in the blocks (global model) and the 
distribution of the grades that have been 
generated in each scenario (iteration) 
using a least squares technique. Thus, 
a set of blocks in the first dig-line is 
obtained. The population of ore blocks 
is updated by removing the blocks in-
cluded in this first dig-line. Next, a new 
set of dig-line alternatives is generated 
for the second advance. The dig-line 
grade distribution closest to the refer-
ence distribution is kept from this new 
set of alternatives. Figure 1 presents 
the proposed workflow to select each 
dig-line for short-term planning. An 
illustration case from an iron ore mine 
illustrates the workflow proposed con-
sidering two geological domains and 
two chemical species.
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Figure 1 - Workflow adopted: a)  short-term model one month, b) mining 
constraints (cut-off grades, contaminant limits.),  c) available ore blocks – reference histogram grade 

model, d) definition of the starting point for mining – a seed for the random path, e) iteration of N possible first dig-lines 
around the seed, f) the best dig-line is the one that has a histogram of grades that matches the reference-grade model histogram, 

g) iteration of N possible second dig-lines, h) the second dig-line is the one that best matches the reference-grade model histogram.

Figure 2 - Selection scheme of blocks for two shovels and seven blocks per each shovel.

2.1 Computational optimization
The optimization algorithm was 

implemented in Python 3 code, based on 
genetic algorithms, and tested on a block 
model estimated using ordinary kriging 
and a single variable to illustrate this case 
study. The algorithm can be expanded 
to work with geostatistical simulations 
with multiple variables. The algorithm is 
based on the following steps:

(i) An exposed portion is selected 
from the block model, corresponding to 
the upper two vertical benches. Mining 
constraints in the form of cut-off grades 

for the variables are applied in this ex-
ample, SiO2 should be less than or equal 
to 5%, while Fe should be greater than 
or equal to 56%, and the topographic 
limit of the bench.

(ii) Let Zc be a set of T distinct ele-
ments, and P1 denote a subset of Zc. Two 
sets P1 and P2 are disjoint if P1∩P2=∅. 
A disjoint-set data structure maintains 
a dynamic collection {P1,P2,…,PT} of 
disjoint sets that together cover the uni-
verse Zc(Patwary et al., 2010). Taking Zc 
as the reference ore block model forming 

the exposed outer shell, it is necessary to 
select the seed points where the optimiza-
tion process starts using the Union-find 
algorithm (Tarjan, 1975). The algorithm 
selects blocks sequentially while respect-
ing mining restrictions. Multiple mining 
alternatives are created, starting by min-
ing from seed points. Figure 2 presents 
a selection scheme of blocks mimicking 
what happens for a sequence staring at 
two seed points. This sequence increases 
in complexity depending on the number 
of seeds and the number of elements.

(iii) Each mining alternative cre-
ated in (ii) generated a subset of the 
ore block model that represents dig-

lines. Compared to the others, the best 
match with the targeted histogram of 
the reference ore block model is se-

lected. The algorithm works according 
to the following objective function or 
fitness equation:

where: n: number of iterations
k: number of classes

i: reference histogram grade ore 
block model (target)

j: dig-line histogram grade subset 
ore block model.

 Objective function = Min

n k

1 0

ni
k
 - j

k
2

ni
k
 + j

k

(1)
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Finally, the iteration chosen will be the 
one which is more similar to the reference 
histogram grade model. Thus, the process 
continues until the number of required 
blocks is selected.

(iv) Figure 3 illustrates the process of 

selecting each dig-line of Z
c
, where q starting 

points represented number of seeds, dig-lines 
are represented by {P1,P2,…,PT} and the 
generated random iterations of subset model 
block (selected blocks) are represented by 
{S1,S2,…,Sn }. From dig-line P1, the best fit-

ness (iii) selected S3 as the optimal by tourna-
ment selection compared the histogram of 
Zc with the histograms of {S1,S2,…,Sn }, and 
then, from the random iterations along dig-
line P2, selected S2 as the best fitness, and so 
on, following the orange arrows.

Figure 3 - Sequence adopted to select the mining advance within each dig-line.

Figure 4 - a) Maps of reference grade model for for SiO2, 
b) maps of reference grade model for Fe, c) histogram and statistic for SiO2, d) histogram and statistic for Fe.

As a result, a selection of blocks 
within each dig-line that approaches 
the characteristics of the ore feeding 
of the processing plant or for the final 

product quality planned by the long-
term scheduling process. The entire 
process is repeated until all adjacent 
ore blocks are selected, obtaining suc-

cessive mining advances with grades 
that are the closest possible match to 
the reference histogram grade read at 
the ore block model.

3. Results

The proposed methodology was 
tested on two benches of an iron ore mine 
with block dimensions of 10 × 10 × 10 me-

ters. The monthly production considered 
is 842,400 t. The constraints are that Fe 
should exceed 56% and SiO2 should be 

lower than 5%. Note that the sequencing 
algorithm considers only the SiO2 variable 
due to its higher variance compared to the 

(a)

(b)

(c) (d)
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variable Fe. Finally, the mean and variance 
of the resulting dig-lines are compared, us-
ing the proposed algorithm against the ones 
obtained by manually design.

Figure 4a presents the block model 
of SiO2 with two benches at level 1280 
and 1270 m. Only blocks less than 5% are 

shown at the two benches; the black dots 
represent the seeds or starting points where 
the shovels are placed. The histogram and 
statistics for these blocks are shown below. 
These are the target histograms formed by 
the grade blocks of two benches, which are 
pursued by each dig-line. Figure 4b presents 

the blocks in the model with their represen-
tative Fe grades. The parameters used in the 
algorithm are listed in Table 1. Figures 4c 
and 4d present the histograms and statistics 
for the SiO2 and Fe models, respectively.

The parameters used to run the algo-
rithm are presented in Table 1.

Table 1 - Input parameters.

Figure 5 - Process of iterations and selection of the best dig-line: 
a) dig-line 1 with 20 iterations, b) dig-line 2 with 20 iterations, c) dig-line 3 with 20 iterations, d) dig-line 4 with 20 iterations.

Input data Values

Cut-off <= SiO2 5%

Cut-off >= Fe 56%

Number of blocks and tonnes per week 80 blocks and 210600 t

Number of iterations 20

Number of dig-line 4

Number of seeds 2

Coordinates for the starting points (x, y, z) (seeds) (–4615, 823, 1280), (–4337, 834, 1270)

Figure 5 presents the cumula-
tive histograms for multiple iterations 
(red), reference histogram the model 
grades (black), and the best cumulative 
histogram. The value of each iteration 
for the dig-line 1 obtained using Equa-

tion 1 is also shown. The lowest value 
refers to the most similar iteration to 
the reference histogram from model 
grades. Figure 5a shows the formation 
process of the first dig-line, showing less 
adherence due to the influence of the 

restricted area on the selected blocks, 
positions, and values of the seed points. 
The second and third dig-lines show 
better adherence because the search 
area is larger and the fourth dig-line is 
restricted to the rest of the area.

(a) (b)

(c) (d)
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Figure 6 shows the cumulative his-
tograms for the four selected dig-lines and 

the reference histogram grade model. Each 
curve depicts the grades from the blocks 

associated with each week. Below are the 
mining sequences adopted.

 Mean Mean dig-line/ 
Mean global Variance Standard 

deviation
Standard 

deviation relative Max. value Min. value Number 
of blocks

Global 2.13 1.00 0.64 0.802 1.00 4.93 0.72 320

Week 1 2.44 1.14 0.79 0.886 1.10 4.67 1.23 80

Week 2 2.20 1.03 0.54 0.735 0.92 4.50 1.14 80

Week 3 2.13 1.00 0.56 0.750 0.94 4.92 0.99 80

Week 4 1.74 0.82 0.46 0.677 0.84 3.17 0.72 80

 Mean Mean dig-line/ 
Mean global Variance Standard 

deviation
Standard 

deviation relative Max. value Min. value Number 
of blocks

Global 67.31 1.00 0.60 0.775 1.00 68.66 65.62 320

Week 1 67.24 0.99 0.58 0.762 0.98 68.21 65.63 80

Week 2 67.28 1.00 0.62 0.787 1.02 68.46 65.68 80

Week 3 67.27 1.00 0.50 0.707 0.91 68.38 65.62 80

Week 4 67.44 1.00 0.69 0.830 1.07 68.66 65.84 80

Figure 7 represent the histograms for 
the grades of each dig-line selection were 

plotted against the target grade histogram 
previously stipulated. QQ-plots were 

generated between them and the reference 
month for SiO2 values.

Table 2 - Statistics summary for reference model and each dig-line generated (SiO2%).

Table 3 - Statistics summary for the reference model and each dig-line (Fe%).

Table 2 presents the global statistics 
for the results, which are similar for the 
dig-lines corresponding to weeks 2 and 
3 and less similar for weeks 1 and 4. 

The algorithm looks for the possible best 
combination considering the available 
blocks. If the available blocks do not 
provide grades close to the target model, 

the solution will not be a perfect match 
but will be the best possible one. Table 
3 presents statistics for the same models 
for Fe values.

Figure 6 - a) Comparative cumulative histograms, b) map of dig-lines, c) mining sequence.

(a) (b)

(c)
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Figure 7 - QQ-plots of dig-lines, where the reference histogram 
grade model is on the X-axis and the histograms for dig-lines 1, 2, 3, and 4 are on the Y-axis.

3.1 Comparing the dig-lines generate by the algorithm versus manually drawn
Figure 8 presents the block model for SiO2 overlayed by the manually designed dig-lines.

Figure 8 - Dig-lines 1, 2,3 and 4 manually drawn on the SiO2 block model.
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Table 4 presents the global statistics for dig-lines corresponding to weeks 1, 2, 3 and 4.

Table 4 - Statistics summary for the reference model and for each dig-line done manually (SiO2%).

Figure 9 compares the mean of the 
dig-lines designed by the algorithm, the 

mean of the dig-lines manually drawn, 
and the global average. Greater adherence 

to the global mean is observed in the dig-
lines designed by the algorithm.

Figure 10 compares the vari-
ance of the excavation lines designed 
by the algorithm, the variance of 

the dig-lines manually drawn, and 
the global average variance. Greater 
adherence to the global variance is 

observed in the dig-lines designed by 
the algorithm.

The time and effort used in the 
two cases are drastically different. 
Thus, the design of dig- lines with the 

algorithm is simple. As a prototype, 
it can be improved and implemented 
with more specifications, such as 

multiple chemical variables and at-
tempt to make them maximum pos- 
sible stationary.

Figure 9 - compare the mean of the dig-lines designed by the 
algorithm, mean of the manually designed dig-lines, and the global mean.

Figure 10 - comparison between the variances of the dig-lines designed by the 
algorithm, the variances of the manually designed dig-lines, and the global variance.

 Mean Mean dig-line/ 
Mean global Variance Standard 

deviation
Standard 

deviation relative Max. value Min. value Number 
of blocks

Global 2.13 1.00 0.64 0.802 1.00 4.93 0.72 320

Week 1 2.19 1.02 0.60 0.800 0.99 4.67 0.99 82

Week 2 2.48 1.16 0.91 0.954 1.14 4.93 1.14 78

Week 3 2.23 1.04 0.33 0.574 0.72 3.39 1.37 76

Week 4 1.65 0.77 0.38 0.616 0.77 2.94 0.72 84
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4. Discussion

5. Conclusion
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