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Abstract: In tropical reservoirs, limnological factors are responsible for changes in 
plankton and vary at temporal and vertical scales. The aim of this study was to evaluate 
the effects of temporal and vertical variation of the water column on phytoplankton and 
zooplankton dynamics in two tropical reservoirs (mesotrophic and supereutrophic) in 
Northeastern Brazil. Monthly collections from three depths in the limnetic region of the 
reservoirs were performed to analyze the phytoplankton, zooplankton, and limnological 
variables. The temporal and vertical variation of the physical and chemical water 
variables, including their interactions, infl uenced the phytoplankton and zooplankton 
community. In the supereutrophic reservoir, decreased nitrogen and increased 
phosphorus and temperature contributed to the dominance of Microcystis panniformis
Komárek, Komárková-Legnerová, Sant’Anna, M.T.P.Azevedo & P.A.C.Senna. Conversely, 
Planktothrix agardhii (Gomont) Anagnostidis & Komárek was dominant under high 
nitrogen concentrations and low temperatures. In the mesotrophic reservoir, the desmids 
were dominant and showed a positive relationship with nitrogen. Copepoda Calanoida 
was dominant and correlated to phytoplankton in both reservoirs. The results showed 
that nitrogen forms directly infl uenced phytoplankton, and the importance of nitrogen 
for management strategies of tropical reservoirs, as well as demonstrated the ability 
of Calanoida to adapt to different trophic conditions and phytoplankton compositions. 

Key words: Calanoida, cyanobacteria, desmids, eutrophication, nitrogen.

INTRODUCTION

Climate change and eutrophication have caused 
strong changes in aquatic ecosystems. With the 
consequent increase in temperature, reduction 
of water levels, and nutrient enrichment (Van 
Zuiden et al. 2016), many shallow reservoirs 
around the world have gone from a clear state 
dominated by aquatic macrophytes to a turbid 
state dominated by cyanobacteria blooms (Dong 
et al. 2018). Although some studies have been 
conducted about this topic, the main factors 
infl uencing phytoplankton and cyanobacteria 

dynamics still need to be studied further 
(Jeppesen et al. 2010, Elliott 2012, Rigosi et al. 
2014). 

Increased temperature and nutrient 
concentrations are two factors responsible for 
increased cyanobacterial blooms (Lürling et al. 
2018). Long-term monitoring studies suggest that 
phosphorus (P) is the main nutrient responsible 
for cyanobacteria blooms in temperate and 
tropical regions (Downing et al. 2001, Anneville 
et al. 2005), however, according to Kosten et al. 
(2012), high temperatures are also important 
factors for algae growth. Nutrients play a 
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fundamental role in phytoplankton dynamics 
in oligotrophic lakes, while temperature is the 
most important factor in mesotrophic lakes, and 
synergism between temperature and nutrients 
influence phytoplankton in eutrophic lakes 
(Rigosi et al. 2014). 

 In addition to phosphorus (P), the 
availability of nitrogen (N) forms in the water 
favors the growth of cyanobacteria and 
eukaryotic algae (Chaffin et al. 2013, Davis et al. 
2015). Among cyanobacteria, non-diazotrophic 
filamentous species are favored under increasing 
nitrogen concentrations (Paerl & Otten 2016); 
and among eukaryotic algae, desmids are 
strongly influenced by a variety of nitrogen forms 
(Mataloni et al. 2015). Generally, most desmids 
are found in oligotrophic and mesotrophic 
environments adhered to macrophytes or 
as part of phytoplankton (Negro et al. 2003). 
However, some desmids species are adapted 
to increased nitrogen and phosphorus, such as 
Staurastrum leptocladum Nordstedt, which are 
found in eutrophic environments (González & 
Roldán 2019, Bortolini et al. 2019). Mataloni et al. 
(2015) verified that planktonic desmids showed 
a preference for minerotrophic water conditions 
in swamp pools.

Phytoplankton species show different 
morphophysiological strategies in response to 
environmental conditions, such as the presence 
of gaseous vesicles in cyanobacteria (Harke et 
al. 2016), or active displacement in the water 
column by phytoflagellates (Shikata et al. 2015). 
Along with composition and structure, the 
vertical distribution of phytoplankton in the 
water column can be regulated by environmental 
factors (Rao et al. 2018), such as availability 
of light and nutrients, mixing zone, dissolved 
oxygen and wind speed (Cao et al. 2006, Sevindik 
et al. 2017). 

Similarly,  the vertical composition 
and dynamics of zooplankton in the water 

column respond to changes in phytoplankton 
composition and water conditions (Hampton et 
al. 2014, Simoncelli et al. 2019), which has recently 
aroused the interest of researchers from around 
the world (Hansson & Hylander 2009, Vadadi-
Fülöp et al. 2012). Studies show that temperature 
and luminosity are the main factors influencing 
the vertical dynamics of zooplankton (Tiberti & 
Barbieri 2011, Simoncelli et al. 2019). However, the 
reason why zooplankton continues to migrate in 
the water column is multifactorial, what is not 
fully understood, and still needs to be further 
assessed, since these organisms are important 
in trophic networks.

Zooplankton is a fundamental part of the 
trophic chain, as it is a link between primary 
producers, i.e. phytoplankton, and secondary 
consumers such as planktivorous fish (Koel et 
al. 2019), and acts in energy transfer to higher 
trophic levels. The presence of planktivorous 
fish also affects the vertical distribution 
patterns of zooplankton, because zooplankton 
tends to migrate vertically in the water column 
to escape predators (Rhode et al. 2001, Tiberti 
& Iacobuzio 2013), which majorly impacts the 
trophic network. 

We conducted a monitoring study that 
analyzed the factors that influence temporal 
and vertical variation of phytoplankton and 
zooplankton in two tropical reservoirs with 
different trophic states. The hypotheses tested 
were: (i) the composition and biomass of 
phytoplankton differ temporally and spatially 
in waters enriched with nitrogen or phosphorus, 
with the dominance of non-diazotrophic 
filamentous cyanobacteria under high nitrogen 
concentrations; (ii) the temporal and vertical 
dynamics of Copepoda Calanoida are negatively 
associated with Cyanobacteria and positively 
with Chlorophyta dominance in phytoplankton.
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MATERIALS AND METHODS
Study area
Tapacurá (8°02’31.9”S, 35°11’46.5”W) and Tabocas 
(8°14’58.3”S, 36°22’42.1”W) reservoirs are located 
in Pernambuco State, Northeastern, Brazil 
(Figure 1). The reservoirs are located in the “As” 
climate region, according to the Köppen climate 
classification (Alvares et al. 2013). The Tapacurá 
reservoir is supereutrophic and has a maximum 
depth of approximately 12 m (Diniz et al. 2019) and 
maximum accumulation capacity of 94,200,000 
m3, with the rainy season occurring from March 
to August, and dry season from September to 
February (APAC 2017). This reservoir has a history 
of perennial blooms of the cyanobacteria 
Raphidiopsis (previously Cylindrospermopsis) 
raciborskii (Woloszynska) Aguilera, Berrendero 
Gómez, Kastovsky, Echenique & Salerno 
(Aguilera et al. 2018), Microcystis aeruginosa 
(Kützing) Kützing, Microcystis panniformis 

Komárek, Komárková-Legnerová, Sant’Anna, 
M.T.P.Azevedo, & P.A.C.Senna and Planktothrix 
agardhii (Gomont) Anagnostidis & Komárek 
(Moura et al. 2018). 

Tabocas reservoir is mesotrophic with 
chlorophytes dominance (Diniz et al. 2019) and 
has dense banks of submerged macrophyte 
Egeria densa Planchon (in the present study). 
Its maximum depth is 4 m (Diniz et al. 2019), 
maximum accumulation capacity is 1,168,000 m3. 
The rainy season occurs from March to July, and 
the dry season occurs from August to February 
(APAC 2017). These ecosystems are primarily used 
for public supply and recreational activities.

Sampling and laboratory procedures
Water samples were collected during the 
rainy (July/2016 and March/2017) and dry 
(September/2016 and January/2017) seasons 
from both reservoirs at a single sampling station 
located in the limnetic region and at three depths 

Figure 1. Location of the Tapacurá (supereutrophic) and Tabocas (mesotrophic) reservoirs in the municipalities of 
São Lourenço da Mata and Belo Jardim in the State of Pernambuco, Northeast, Brazil.



ANAMARIA S. DINIZ et al. TEMPORAL AND VERTICAL DYNAMICS OF PLANKTON

An Acad Bras Cienc (2022) 94(2) e20200624 4 | 20 

using a van Dorn bottle: surface, euphotic zone 
limit (Zeu) and bottom. The Zeu was estimated by 
multiplying the value of the water transparency 
(m), determined with the Secchi disc, by factor 
2.7 (Esteves 2011) and the maximum depth (Zmax) 
(called bottom) was determined with a portable 
ecobatimeter (Hondex PS-7 model). The Zeu:Zmax 
ratio was used as the availability of light in the 
water column (Jensen et al. 1994).

The abiotic variables of water, temperature 
(ºC), dissolved oxygen (mg L-1), pH, dissolved 
total solids (mg L-1), and electrical conductivity 
(μS cm-1) were analyzed in situ with a 
multiparametric probe (model HANNA HI 9829). 
Water transparency (m) was measured by the 
disappearance of the Secchi disc and the 
luminous intensity (μmol photons m-2 s-1) was 
measured with a photometer (model LI-250A). 
Precipitation data (mm) was obtained from 
the National Meteorological Institute database 
(INMET 2017).

Samples were collected to determine 
nutrient concentrations from the three 
depths with a van Dorn bottle and stored 
in 300 mL plastic containers, transported 
under refrigeration, and frozen to -4°C in the 
laboratory until analysis. Total phosphorus 
(TP; µg L-1) and orthophosphate (P-PO4

3-; µg L-1) 
(Strickland & Parsons 1972), nitrite (N-NO2

-; µg 
L-1) and nitrate (N-NO3

-; µg L-1) (Mackereth et al. 
1978), and ammoniacal nitrogen (N-NH4

+; µg L-1) 
(Koroleff 1976) were analyzed. The dissolved 
inorganic nitrogen (DIN; µg L-1) concentrations 
were estimated by the sum of nitrate, nitrite, 
and ammoniacal nitrogen.

Phytoplankton analysis
Phytoplankton was quantified using samples 
collected at the three depths using a van Dorn 
bottle, and fixed with 1% acetic lugol. Taxa were 
identified using taxonomic bibliographies for 
each phytoplankton group, such as Prescott & 

Vinyard (1982), Komárek & Anagnostidis (1999, 
2005), Popovský & Pfiester (1990), Krammer & 
Lange-Bertalot (1991), John et al. (2002) and 
Komárek (2013), to the lowest taxonomic level 
possible. The phytoplankton density (ind mL-

1) was determined by counting organisms in 
sedimentation chambers using an inverted 
microscope (Zeiss, Axiovert) according to 
Utermöhl (1958), and the cell volume was 
calculated from geometric models according to 
the shape of the cells (Hillebrand et al. 1999). 
Phytoplankton species biomass was determined 
by multiplying the density by the mean algal 
volume of the species, and expressed in mg L-1, 
admitting that the volume of 1 mm3 is equivalent 
to 1 mg of fresh weight of phytoplankton (Wetzel 
& Likens 2000). The dominance was determined 
according to (Lobo & Leighton 1986). 

Zooplankton analysis
Fifty liters of water were collected from each 
reservoir at the three depths with a van Dorn 
bottle and filtered with a 68 μm mesh plankton 
net to collect zooplankton. The samples were 
fixed with 4% formaldehyde. The species were 
identified according to Koste (1978), Montú & 
Goeden (1986) and Elmoor-Loureiro (1997), to 
the lowest taxonomic level possible. To quantify 
the density of organisms (ind L-1), samples were 
concentrated and diluted to 100 mL with distilled 
water and three subsamples (2 mL) were counted 
in a Sedgwick-Rafter chamber. The biovolume 
of the taxa was calculated according to the 
geometric formulas of Ruttner-Kolisko (1977) for 
rotifers and Dumont et al. (1975) for cladocerans 
and copepods. Zooplankton biomass (μg PS 
m-3) was estimated using density and average 
biovolume of the taxa. Species dominance was 
calculated according to Lobo & Leighton (1986).
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Statistical analyses
PERMANOVA was performed to verify the 
differences in abiotic, phytoplankton, and 
zooplankton variables between reservoirs. ANOVA 
two-way was performed to verify the differences 
in abiotic, phytoplankton, and zooplankton 
variables between depths and months in each 
reservoir, and verify differences in the biomass 
of diazotrophic filamentous, non-diazotrophic 
filamentous, and colonial cyanobacteria 
between months and depths in each reservoir. 
The Tukey’s HSD test was performed when 
significant difference was observed between 
the variables. Variance analyses were preceded 
by the Kolmogorov-Smirnov normality test 
and Bartlett’s homoscedasticity test. The non-
parametric Kruskal-Wallis test (test H) was used 
for non-homoscedastic data.

Principal component analysis (PCA) 
was performed to evaluate the ordination 
of environmental abiotic factors (electrical 
conductivity, luminous intensity, dissolved 
oxygen, pH, total dissolved solids, water 
temperature, nitrate, nitrite, ammoniacal 
nitrogen, DIN, orthophosphate, total phosphorus, 
Zeu, and Zeu:Zmax) between reservoirs, based on a 
correlation matrix. Redundancy Analyses (RDA) 
were used to identify the relationships between 
phytoplankton and zooplankton with abiotic 
variables aforementioned, assuming that 
phytoplankton influence zooplankton and vice 
versa. RDA was applied based on the length of 
the first axis of the Detrended Correspondence 
Analysis (DCA). The dependent variables were 
log-transformed, and the explanatory variables 
were standardized by the “decostand” function. 
The explanatory variables were selected by 
the Forward procedure using the Ordistep 
function with 999 permutations (p < 0.05), 
and the collinearity of the variables through 
the variance of inflation factor (VIF < 20). For 
phytoplankton, species with biomass above 1% 

total biomass were considered, for zooplankton 
the biomasses of all species were considered. 
All statistical analyses were performed with the 
vegan package in the R program (R Development 
Core Team 2015) with a significance of p < 0.05.

RESULTS

The highest precipitation values were observed 
in March/2017 for both reservoirs, with the 
supereutrophic reaching 156.2 mm and the 
mesotrophic at 17.5 mm. In the mesotrophic 
reservoir, the highest water transparency 
was recorded in July/2016 compared to the 
supereutrophic reservoir, with high Secchi disc 
value (2.2 m). The pH ranged from 4.4 (acid) to 12.5 
(alkaline) between July/2016 and January/2017 
in the mesotrophic reservoir, while water 
pH remained alkaline in the supereutrophic 
reservoir, ranged from 7.8 to 12.6 (Table I). In 
addition to pH, other variables, such as water 
temperature, conductivity, total dissolved solids 
and nutrients (nitrite and nitrate) varied over 
time in both reservoirs (Table II). Ammoniacal 
nitrogen, dissolved inorganic nitrogen, and total 
phosphorus showed temporal variation in the 
mesotrophic reservoir only (Table II).

The physical and chemical water variables 
varied significantly between the reservoirs 
(PERMANOVA: F = 0.49 and p = 0.001) throughout 
the study period and between the depths 
(surface, Zeu, and bottom). The availability of 
luminous intensity and dissolved oxygen were 
higher at the water surface of the reservoirs. 
A hypoxia condition was detected at the 
maximum depth in the supereutrophic reservoir 
(Table I and II). The PCA explained 68.5% of 
the variation of environmental variables in 
the two first ordination axes (first axis: 43.66%, 
second axis: 24.84%) (Figure 2). Two groups 
with different patterns for the physical and 
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chemical water variables were observed 
between the reservoirs. The first group was 
the mesotrophic reservoir, characterized by 
high values of nitrogen (ammoniacal nitrogen 
(eigenvalue = 7.43), nitrite (eigenvalue = 6.80), 

nitrate (eigenvalue = 6.89), DIN (eigenvalue = 
7.35)), dissolved oxygen (eigenvalue = 1.04), 
luminous intensity (eigenvalue = 0.0009), and 
by variation in pH (eigenvalue = 0.42) and Zeu:Zmax 

(eigenvalue = 9.16). The second group was the 

Table II. Statistical values of ANOVA two-way of limnological variables and zooplankton biomass (μg PS m-3) and 
phytoplanktonic classes (mg L-1) between the depths (surface, Zeu and bottom) and the months studied (July, 
September, January and March) in the mesotrophic (Tabocas) and supereutrophic (Tapacurá) reservoirs. Numbers 
in bold represent significant values (p < 0.05). Zmax =  Maximum depth (m); Transparency = Water transparency (cm); 
Zeu = Depth of euphotic zone; Zeu:Zmax = Ratio between euphotic zone:maximum depth; WT = Water temperature (°C); 
EC = Electrical conductivity (µS cm-1); Luminous intensity (µmol photons m-2 s-1); TDS = Total dissolved solids (mg 
L-1); DO = Dissolved oxygen (mg L-1); NO2

- = Nitrite (µg L-1); NO3
- = Nitrate (µg L-1); NH4

+ = Ammoniacal nitrogen (µg L-1); 
DIN = Dissolved inorganic nitrogen (µg L-1); PO4

3- = Orthophosphate (µg L-1); TP = Total phosphorus (µg L-1).

Variables

Mesotrophic Reservoir Supereutrophic Reservoir

Depths Months Depths Months

Df F p Df F p Df F p Df F p

Zmax

Transparency
Zeu

Zeu:Zmax

WT

2 1.37 0.303

3
3
3
3
3

3.25
6.18
9.61
2.19
5.70

<0.05
<0.05
<0.05
<0.05
<0.05

2 0.75 0.501

3
3
3
3
3

0.13
7.18
1.64
2.69
12.06

0.93
<0.05
<0.05
<0.05
<0.05

EC 2 0.00 0.997 3 836.2 <0.05 2 0.02 0.983 3 193.9 <0.05

Luminous intensity 2 5.6 0.06 2 0.01 0.992 2 134.5 <0.05 3 0.09 0.965

TDS 2 0.00 0.998 3 842.9 <0.05 2 0.02 0.983 3 193.1 <0.05

pH 2 0.05 0.995 3 169.1 <0.05 2 0.20 0.824 3 43.84 <0.05

DO 2 0.28 0.763 3 4.43 <0.05 2 19.8 <0.05 3 0.13 0.939

NO2
- 2 0.00 0.998 3 9.43 <0.05 2 0.01 0.987 3 8.51 <0.05

NO3
- 2 0.01 0.99 3 9.46 <0.05 2 0.19 0.829 3 90.32 <0.05

NH4
+ 2 0.00 0.997 3 854.7 <0.05 2 0.75 0.501 3 2.07 0.287

DIN 2 0 1 3 185 <0.05 2 0.21 0.818 3 6.69 0.08

PO4
3- 2 0.91 0.437 3 2.26 0.174 2 1.46 0.283 3 4.44 0.218

TP 2 0.08 0.921 3 31.55 <0.05 2 1.60 0.255 3 4.85 0.183

Phytoplankton

Cyanophyceae 2 0.88 0.428 3 14.26 <0.05 2 4.11 <0.05 3 3.61 <0.05

Zygnematophyceae 2 2.18 0.135 3 43.13 <0.05

Bacillariophyceae 2 4.10 0.08 3 18.79 <0.05

Synurophyceae 2 0.28 0.757 3 1.55 0.229

Others 2 1.79 0.189 3 14.83 <0.05 2 0.29 0.750 3 21.72 <0.05

Zooplankton

Rotifera 2 89.06 <0.05 3 1466.19 <0.05 2 0.26 0.772 3 49.04 <0.05

Cladocera 2 2.44 0.109 3 537.13 <0.05 2 5.18 <0.05 3 58.22 <0.05

Calanoida 2 20.71 <0.05 3 187.14 <0.05 2 9.00 <0.05 3 35.36 <0.05

Cyclopoida 2 11.32 <0.05 3 1.96 0.580 2 2.09 0.351 3 20.85 <0.05

Nauplii 2 14.67 <0.05 3 24.23 <0.05 2 16.95 <0.05 3 3.25 0.354
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supereutrophic reservoir, characterized by high 
concentrations of orthophosphate (eigenvalue 
= 13.98), total phosphorus (eigenvalue = 11.26), 
total dissolved solids (eigenvalue = 12.38), high 
electrical conductivity (eigenvalue = 12.38), 
water temperature (eigenvalue = 6.61), and Zeu 
(eigenvalue = 4.29) (Figure 2).

 The biomass and composition of total 
phytoplankton (PERMANOVA: F = 34.29 and p 
= 0.001), besides the biomass of the classes 
(PERMANOVA: F = 25.00 and p = 0.001), were 
significantly different between the reservoirs. 
Zygnematophyceae represented 92% of the total 
average biomass in the mesotrophic reservoir 
(37.35 mg L-1) (Figure 3a), with Staurastrum 
tetracerum Ralfs ex Ralfs representing 59% 
of total average biomass (24.16 mg L-1), while 
Bacillariophyceae represented 3% of total 
average biomass with Thalassiosira sp. the 
most representative species (0.77 mg L-1). In the 
supereutrophic reservoir, Cyanophyceae was 
dominant (98%) (Figure 3b), with cyanobacteria 
M. panniformis and P. agardhii presenting the 

highest values of total average biomass of 46% 
(68.39 mg L-1) and 27% (39.65 mg L-1), respectively.

Phytoplankton biomass varied throughout 
the months in the mesotrophic reservoir 
(Table II), with higher biomass recorded in 
July/2016, September/2016, and January/2017 
to Zygnematophyceae, Bacillariophyceae, 
and Cyanophyceae (Figure 3a). Significant 
differences in Zygnematophyceae biomass were 
observed between the depths in January/2017, 
with higher biomass in the bottom than on the 
surface (Tukey’s HSD, p = 0.02) and Zeu (Tukey’s 
HSD, p = 0.05). In the supereutrophic reservoir, 
Cyanophyceae and other phytoplankton 
classes varied both temporally and vertically 
(Table II), with higher cyanobacteria biomass 
(September/2016 and January/2017) (Figure 3b). 

In the mesotrophic reservoir, in addition to 
desmids, significant differences were observed 
in the biomass of diazotrophic filamentous 
(Kruskal-Wallis, H = 12.962 e p = 0.004) and 
non-diazotrophic (F = 13.152 and p <0.0001) 
cyanobacteria and colonial cyanobacteria 

Figure 2. Principal component 
analysis (PCA) of environmental 
variables between mesotrophic 
(Tabocas, grey) and supereutrophic 
reservoirs (Tapacurá, black). TDS 
= Total dissolved solids; EC = 
Electrical conductivity; WT = Water 
temperature; Zeu = Euphotic zone; 
Zeu:Zmax = Ratio between euphotic 
zone:maximum depth; DO = 
Dissolved oxygen; NO2

- = Nitrite; 
NO3

- = Nitrate; NH4
+ = Ammoniacal 

nitrogen; DIN = Dissolved inorganic 
nitrogen; PO4

3- = Orthophosphate; TP 
= Total phosphorus.
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(Kruskal-Wallis, H = 10.482 and p = 0.01) between 
months. Higher biomass was observed in 
July/2016 and January/2017 for non-diazotrophic 
filamentous cyanobacteria (Figure 4a), with 
dominance of the species Anagnostidinema 
(previously Geitlerinema) amphibium (C.Agardh 
ex Gomont) Strunecký, Bohunická, J.R.Johansen 
& J.Komárek (Strunecky et al. 2017). From 
diazotrophic and colonial cyanobacteria, R. 
raciborskii and Aphanocapsa elachista West & 
G.S.West were dominant, respectively.

In the supereutrophic reservoir, diazotrophic 
filamentous cyanobacteria differed between 
months (F = 6.814 and p = 0.002), as well as 
non-diazotrophic cyanobacteria (F = 58.810 
and p <0.0001), presenting higher biomass in 
March/2017 and September/2016, respectively 
(Figure 4b). Significant variation in the colonial 
cyanobacteria biomass was observed (F = 18.732 
and p <0.0001), with higher biomass recorded in 
January and March/2017 (Figure 4b). In July/2016, 
codominance was observed between the non-
diazotrophic colonial and filamentous species 
of cyanobacteria. In September/2016, the 
filamentous species P. agardhii was dominant, 
and in the other months, the colonial species 
M. panniformis was dominant (Figure 4b). 
No variation in cyanobacteria biomass was 
observed between depths. 

The RDA explained 78% (F = 2.91 and p = 
0.001) of the phytoplankton distribution in the 
mesotrophic and supereutrophic reservoirs, with 
the axes 1 and 2 representing 46% (p = 0.002) and 
32% (p = 0.001) of the distribution, respectively. 
The dissolved oxygen (p = 0.01), Zeu:Zmax (p = 
0.002), DIN (p = 0.02), and biomass of nauplii (p 
= 0.05) significantly influenced phytoplankton 
species in the mesotrophic reservoir, and in the 
supereutrophic reservoir, the RDA showed that 
non-diazotrophic filamentous cyanobacteria 
(P. agardhii and Planktothrix isothrix (Skuja) 
Komárek & Komárková) ,  diazotrophic 

filamentous cyanobacteria (R. raciborskii), and 
colonial cyanobacteria (M. panniformis and 
M. aeruginosa) were positively influenced by 
nitrogen (DIN), luminous intensity (p = 0.01), 
Zeu (p = 0.03), pH (p = 0.005), water temperature 
(p = 0.005), electrical conductivity (p = 0.005), 
total phosphorus (p = 0.003), PO4

3- (p = 0.005), 
total dissolved solids (p = 0.001), and biomass of 
Cyclopoida (p = 0.01) (Figure 5a).

The biomass and composition of total 
zooplankton (PERMANOVA: F = 11.31 and p = 0.001) 
and the biomass of the groups (PERMANOVA: F 
= 7.96 and p = 0.001) were significantly different 
between the reservoirs. The zooplankton 
groups showed variation in biomass between 
months and depths in both reservoirs (Table 
II). Copepoda Calanoida was dominant in the 
mesotrophic and supereutrophic reservoir, 
contributing to 67% (312.98 µg DW-3) and 59% 
(222.33 µg DW-3) of the total average biomass of 
zooplankton, respectively (Figure 6a, b). 

The RDA explained 65.47% (F = 9.45 and p = 
0.007) of the relationship between zooplankton 
with abiotic variables and phytoplankton of the 
mesotrophic and supereutrophic reservoirs. 
The axis 1 represented 54.11% (p = 0.001) of the 
distribution of variables, while axis 2 represented 
11.36% (p = 0.03). Staurastrum tetracerum (p 
= 0.05), Staurastrum sp. (p = 0.03), Euastrum 
abruptum Nordstedt (p = 0.01), nitrate (p = 0.04), 
nitrite (p = 0.03), DIN (p = 0.02), and luminous 
intensity (p = 0.04) positively influenced 
Calanoida biomass in the mesotrophic 
reservoir, while in the supereutrophic reservoir 
Cyclopoida biomass was positively related to 
water temperature (p = 0.005), pH (p = 0.02), 
and the biomass of Pseudanabaena catenata 
Lauterborn (p = 0.02), A. amphibium (p = 0.02), 
and M. aeruginosa (p = 0.05) (Figure 5b).
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Figure 4. Biomass of 
diazotrophic and non-
diazotrophic filamentous 
and colonial cyanobacteria 
in the mesotrophic (Tabocas; 
a) and supereutrophic 
(Tapacurá; b) reservoirs 
between July/2016 and 
March/2017 at different 
depths. Sur = surface; Zeu 
= euphotic zone limit; Bot 
= bottom. Vertical lines 
represent the standard error 
of the mean (±SEM).

Figure 3. Phytoplankton 
biomass in the mesotrophic 
(Tabocas, a) and 
supereutrophic (Tapacurá, b) 
reservoirs between July/2016 
and March/2017 at different 
depths. Sur = surface; Zeu 
= euphotic zone limit; Bot 
= bottom. Vertical lines 
represent the standard error 
of the mean (±SEM).
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DISCUSSION

Our study showed that nutrients play an 
important role in structuring phytoplankton and 
zooplankton communities since nitrogen forms 
created two distinct scenarios in reservoirs: 
one with high phosphorus concentrations 
(supereutrophic) and another with high 
nitrogen concentrations (mesotrophic). Our first 
hypothesis was partially accepted since the 
phytoplankton biomass differed temporally and 
vertically only in the supereutrophic reservoir, 
while in the mesotrophic reservoir only the 
temporal variation caused significant changes 

in phytoplankton. Also, the dominance of non-
diazotrophic filamentous cyanobacteria was 
observed under high concentrations of nitrogen 
in mesotrophic (throughout the study period) and 
supereutrophic (July/2016 and September/2016) 
reservoir. Moreover, the zooplankton biomass 
differed between the reservoirs, which confirms 
our second hypothesis that cyanobacteria 
biomass negatively influence the Calanoida 
copepods, while the chlorophytes positively 
influence their biomass.

In  the  supereutrophic  reservo i r, 
cyanobacteria blooms were observed throughout 
the study period. In the past few decades, studies 

Figure 5. Redundancy Analysis (RDA) 
of phytoplankton (a) and zooplankton 
(b) in the mesotrophic (Tabocas, grey) 
and supereutrophic (Tapacurá, black) 
reservoirs. Geometric shapes represent 
months of study: triangles (July), circles 
(September), rhombuses (January) 
and squares (March). The filling of the 
shapes represents the depths: solid 
line (surface), traced line (Zeu) and all 
black (bottom). TDS = Total dissolved 
solids; EC = Electrical conductivity; WT 
= Water temperature; Zeu = Euphotic 
zone; Zeu:Zmax = Ratio between euphotic 
zone:maximum depth; DO = Dissolved 
oxygen; NO2

- = Nitrite; NO3
- = Nitrate; DIN 

= Dissolved inorganic nitrogen; PO4
3- = 

Orthophosphate; TP = Total phosphorus; 
Plankghii = Planktothrix agardhii; 
Plnkthrix = Planktothrix isothrix; Raphi 
= Raphidiopsis raciborskii; Micaerug 
= Microcystis aeruginosa; Micpann 
= Microcystis panniformis; Micprotis 
= Microcystis protocystis; Anag = 
Anagnostidinema amphibium; Stamsp = 
Sataurastrum sp.; Stamtet = Staurastrum 
tetracerum; Pseucate = Pseudanabaena 
catenata; Euastabm = Euastrum 
abruptum.
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conducted in reservoirs from Pernambuco, 
Northeastern Brazil, have detected perennial 
cyanobacteria blooms with monospecific 
dominance (Moura et al. 2018). Most studies 
indicate the dominance of Cylindrospermopsis, 
Microcystis, and Planktothrix in the blooms 
(Bouvy et al. 2000, Moura et al. 2018). There is 
strong evidence that temperature and nutrients 
are the main factors contributing to the frequent 
occurrences of cyanobacteria blooms in tropical 
reservoirs (Rigosi et al. 2014).

The codominance and substitution of 
non-diazotrophic filamentous cyanobacteria, 
mainly P. agardhii, by colonial cyanobacteria 
of the Microcystis genus was observed in the 
supereutrophic reservoir, showing a direct 
relationship with nitrogen availability and 
increased electrical conductivity and water 

temperature over the months. In colder 
conditions, P. agardhii can grow and remain in 
the environment for long periods (Mantzouki 
et al. 2016), besides growing under high 
phosphorus concentrations (Aguilera et al. 2019). 
In the supereutrophic reservoir, we observed 
the growth of P. agardhii when DIN, nitrate, and 
nitrite presented high availability, however, 
in low availability, the biomass of P. agardhii 
reduced. Other studies conducted in the 
Tapacurá reservoir have shown that, in addition 
to nitrogen and phosphorus concentrations, the 
mixing zone (Zmix), turbidity and Zmax contributed 
to the success and variation of cyanobacteria 
composition during seasonal changes (Dantas 
et al. 2012, Diniz et al. 2019).

The Zeu and Zeu:Zmax showed a positive 
relationship between diazotrophic and 

Figure 6. Zooplankton biomass 
in the mesotrophic (Tabocas, a) 
and supereutrophic (Tapacurá, 
b) reservoirs between 
July/2016 and March/2017 at 
different depths. Sur = surface; 
Zeu = euphotic zone limit; Bot = 
bottom. Vertical lines represent 
the standard error of the mean 
(±SEM).
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non-diazotrophic filamentous cyanobacteria, 
and an inverse relationship with colonial 
cyanobacteria in the supereutrophic reservoir, 
similar to that observed in other studies 
conducted in Southeastern and Northeastern 
Brazil (Bortolini et al. 2016, Costa et al. 2016). 
Dantas et al. (2012) showed that colonial 
cyanobacteria were favored by high phosphorus 
concentrations during the rainy season, 
coinciding with smaller Zeu and lower biomass of 
filamentous cyanobacteria, which were favored 
by greater light penetration in the water column 
(Zeu:Zmax) in the Jucazinho hypereutrophic 
reservoir, located in Pernambuco State, Brazil.

The increase in temperature and nutrients 
favored cyanobacteria blooms by M. aeruginosa 
and M. panniformis. Paerl & Otten (2013) and Shan 
et al. (2019) report the dominance of Microcystis 
in shallow lakes with high temperatures since the 
temperature can interact synergistically with the 
high phosphorus values and favor Microcystis 
spp. blooms. The formation of large Microcystis 
colonies, associated with turbid waters, is a 
factor that inhibits the growth of filamentous 
cyanobacteria, as it limits light and competition 
for nutrients (Paerl et al. 2016, Shan et al. 2019). 
These factors explain why the Microcystis 
biomass was higher in months with higher 
temperatures and phosphorus availability, 
followed by lower nitrogen concentrations. 
Studies point out that phytoplankton growth 
is only limited by phosphorus (Schindler et al. 
2008, Spears et al. 2012). However, our results 
showed that nitrogen availability is an important 
factor in the competitive relationship between 
filamentous and colonial non-diazotrophic 
cyanobacteria species and plays an important 
role in cyanobacteria blooms under limited 
conditions.

The second scenario observed, with high 
nitrogen values (mainly ammoniacal nitrogen 
and DIN), pH variation, and dense banks of E. 

densa verified in the mesotrophic reservoir, 
favored the dominance of desmids. In freshwater 
environments with low nutrient values and 
the presence of macrophytes, desmids have 
high diversity and biomass (Borics et al. 2003, 
Ngearnpat & Peerapornpisal 2007). The temporal 
variation, and possibly death and decomposition 
of macrophytes, were responsible for the 
variation in the physical and chemical water 
characteristics throughout the study, which 
changed the phytoplankton community.

Macrophytes are responsible for the 
maintenance and functioning of lakes and 
reservoirs since they accumulate various forms 
of nutrients available in the environment 
throughout their lifecycles (Kissoon et al. 2013). 
However, the death and decomposition of 
macrophytes release high loads of ammoniacal 
nitrogen back into the environment, which may 
favor specific phytoplankton groups (Bellisario 
et al. 2012). High concentrations of ammoniacal 
nitrogen in the environment through macrophyte 
senescence, especially in very shallow lakes, 
can be toxic to aquatic organisms (Farnsworth-
Lee & Baker 2000). The results of the present 
study showed that typically planktonic desmids, 
such as S. tetracerum and Staurastrum sp., 
were dominant with high concentrations of 
ammoniacal nitrogen caused by the death of 
the dense E. densa banks.

 Although desmid contributed to 
more than 90% of total average biomass in 
the mesotrophic reservoir, non-diazotrophic 
cyanobacteria and other algae such as 
diatoms and synurophytes were important in 
the phytoplankton biomass throughout the 
study period. Phytoplankton composition in 
mesotrophic reservoirs is usually made up of 
green algae, diatoms, and flagellates, which are 
sensitive to changes in nutrient concentrations 
and physical variables caused by seasonal 
variations (Oliveira et al. 2020). In the present 
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study, diatoms presented higher biomass under 
conditions of high water transparency and Zeu, 
and low nutrient concentrations, similar to what 
Hu et al. (2016) observed in a tropical reservoir, 
where diatoms were influenced by improved 
water quality.

 In addition to nitrogen, the pH variation 
(from acid to alkaline) caused changes in the 
structure of the phytoplankton community in the 
mesotrophic reservoir. Desmids are commonly 
found in several environments with low pH 
(Lenzenweger 2000), however, more recent 
studies have detected these algae in waters with 
pH ranging from neutral to alkaline (Ngearnpat 
& Peerapornpisal 2007, Mataloni et al. 2015). 
This allows us to infer that desmids have a wide 
range of adaptations to trophic conditions in 
an environment. Therefore, the presence of E. 
densa and high pH may explain the dominance 
of desmids in the mesotrophic reservoir.

In the supereutrophic reservoir, the high pH 
(8-12) was positively related to cyanobacteria. 
Such relationship was also observed by 
Fernandes et al. (2009), who emphasized the 
advantage of cyanobacteria in assimilating 
bicarbonate within the medium, making 
them more competitive than other algae. The 
conversion of bicarbonate into carbon dioxide 
by the carbonic anhydrase enzyme occurs 
within the cell through carbon concentration 
mechanisms, and the release of OH - into the 
medium, which results in increased pH (Ataeian 
et al. 2019). Furthermore, even under ideal 
nutrient conditions, high pH is an indispensable 
requirement for cyanobacterial growth (Unrein 
et al. 2010, Visser et al. 2016).

Zooplankton varied temporally and 
vertically in the supereutrophic and mesotrophic 
reservoirs. The temporal and vertical variation in 
the zooplankton composition and biomass was 
influenced by temperature, dissolved oxygen 
concentrations and food availability (Domis 

et al. 2013, Silva et al. 2018), with zooplankton 
being more abundant in the water column 
with a higher concentration of algae (Keppeler 
& Hardy 2004). In the present study, higher 
zooplankton biomass was observed in Zeu, where 
higher phytoplankton biomass was recorded. 
Besides, the vertical migration of zooplankton 
is different for each group, which is related to 
the mechanisms of feeding, physiology, and 
adaptation to the variation of abiotic factors, 
such as temperature (Ermolaeva et al. 2019) 
and defense mechanisms against predation 
(Picapedra et al. 2015).

Calanoida was predominant during the 
study and at different depths and showed a 
direct relationship with the phytoplankton 
composit ion in both reservoirs .  The 
predominance of Calanoida in tropical eutrophic 
reservoirs with perennial cyanobacteria blooms 
has recently been recorded (De-Carli et al. 2018, 
Diniz et al. 2019). Although cyanobacteria are 
considered nutritionally poor and difficult for 
zooplankton to ingest due to their large size and 
toxin production (Kruk et al. 2016), Calanoida 
copepods can consume these organisms (Colina 
et al. 2016, Diniz et al. 2019). In an experiment, 
Leitão et al. (2018) observed that the calanoid 
copepod Notodiaptomus iheringi (Wright S., 
1935) reduced the biomass of Cryptomonas 
sp. and did not affect Microcystis sp., because 
calanoids select eukaryotic algae, which 
reduces competition with cyanobacteria and 
facilitates flowering, especially for Microcystis. 
The selective capacity of calanoids is based on 
mechanical and chemical perception, as they 
can detect, ingest or reject prey based on size, 
motility, and nutritional value (Henriksen et al. 
2007, Tiselius et al. 2013).

In the mesotrophic reservoir, desmids 
positively influenced calanoids. Green algae 
contain a high level of alpha-linolenic fatty 
acids (ALA) (Taipale et al. 2013), and, therefore, 
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are a nutritious food source for zooplankton. 
Moreover, a positive relationship was observed 
between Cyclopoida and cyanobacteria in 
the supereutrophic reservoir, which can be 
explained by food selectivity. Gebrehiwot 
et al. (2019) observed that the cyclopoid 
copepod Thermocyclops decipiens (Kiefer, 1929) 
preferred to consume diatoms rather than 
the cyanobacteria R. raciborskii. Such food 
selectivity for smaller sized prey with greater 
nutritional value favors the coexistence and 
dominance of cyanobacteria (Hong et al. 2013, 
Rangel et al. 2016).

Unlike Calanoida, rotifers showed low 
biomass in the supereutrophic reservoir when 
compared to the mesotrophic reservoir. Rotifers 
can directly ingest small-sized cyanobacteria 
in low biomass (Geng & Xie 2008). However, 
cyanobacteria blooms dominated by Microcystis 
result in reduced rotifer biomass, as seen in 
other studies (Soares et al. 2010, Ji et al. 2017). 
Decreased rotifer biomass can be explained 
by the predominance of Microcystis in the 
supereutrophic reservoir, while increased rotifers 
in the mesotrophic reservoir was influenced by 
the greater availability of palatable algae, such 
as desmids and euglenophytes. In general, 
green algae are considered food sources with 
high nutritional value and are easily ingested 
by zooplankton (Fragoso et al. 2009), providing a 
greater diversity of zooplankton species (Colina 
et al. 2016). 

Our study showed that the effects of 
temporal variation on the composition and 
structure of phytoplankton and zooplankton 
communities in the mesotrophic and eutrophic 
reservoirs were associated with environmental 
factors, mainly ammoniacal nitrogen, DIN 
and water temperature. The vertical variation 
only changed the zooplankton community, 
since they respond ecologically to abiotic and 
biotic factors, in this case, phytoplankton. 

Planktothrix agardhii, M. panniformis, and M. 
aeruginosa showed different strategic behaviors 
in response to environmental variations and 
nutrient availability, mainly from available 
nitrogen forms. Under mesotrophic conditions, 
excessive availability of ammoniacal nitrogen in 
the water, possibly resulting from the death and 
decomposition of the submerged macrophyte 
E. densa, favored the dominance of desmids 
(especially S. tetracerum) in an environment 
considered toxic to most aquatic organisms.

Copepoda Calanoida showed a direct 
relationship with greater availability of palatable 
algae (Zygnematophyceae) in the mesotrophic 
reservoir, contrary to what was observed in the 
supereutrophic reservoir, where phytoplankton 
algae did not influence the zooplankton groups. 
Finally, this study supports the need to better 
understand trophic relationships on a temporal 
scale through variation in nitrogen forms that 
act directly on the phytoplankton community 
in tropical reservoirs, regardless of the trophic 
state. We emphasize the importance of nitrogen 
in management strategies for tropical reservoirs, 
as well as the adaptability of Copepoda 
Calanoida to different trophic conditions and 
phytoplankton compositions.
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