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Abstract: Sudden failure of a mine tailing dam occurred in the municipality of 
Brumadinho, Minas Gerais, Brazil, on January 25, 2019. Approximately 12 million 
cubic meters of mine tailings discharged into the Paraopeba River, producing strong 
environmental and societal impacts, mainly due to a massive increase in turbidity 
(occasionally exceeding 50,000 Nephelometric Turbidity Units [NTU] (CPRM 2019). Remote 
sensing is a well-established tool for quantifying spatial patterns of turbidity. However, a 
few empirical models have been developed to map turbidity in rivers impacted by mine 
tailings. Thus, this study aimed to develop an empirical model capable of producing 
turbidity estimates based on images from the Sentinel-2 satellite, using the Paraopeba 
River as the study area. We found that river turbidity was most strongly correlated with 
the sensor’s near-infrared band (NIR) (band 8). Thus, we built an empirical single-band 
model using an exponential function with an (R2 of 0.91) to characterize the spatial-
temporal variation of turbidity based on satellite observations of NIR reflectance. 
Although the role of discharged tailings in the seasonal variation of turbidity is not well 
understood, the proposed model enabled the monitoring of turbidity variations in the 
Paraopeba River associated with seasonal resuspension or deposition of mine tailings. 
Our study shows the capability of single-band models to quantify seasonal variations in 
turbidity in rivers impacted by mine tailing pollution.

Key words: Mine tailings, Paraopeba river, Remote Sensing, Sentinel-2, turbidity, water 
quality. 

INTRODUCTION
Turbidity is an optical parameter that is used 
to characterize water clarity, which is an 
important aspect of water quality (Davies-
Colley & Smith 2001). This parameter is derived 
from measurements of the amount of stray 
light scattered as the incident light interacts 
with the material suspended in the water. 
Turbidity increases with the amount of material 
suspended in the water, consequently decreasing 
the intensity of scattered light (Davies-Colley & 
Smith 2001).

Anthropic increases in turbidity are known 
to negatively impact local aquatic ecology in 

various ways (e.g., Kirk 1985, Henley et al. 2000, 
Davies-Colley & Smith 2001, Bilotta & Brazier 
2008). The most critical impact of increased 
turbidity on aquatic ecology is related to the 
rate of attenuation of solar radiation with 
depth, which can greatly decrease the euphotic 
(illuminated zone of aquatic ecosystems) depth 
of a body of water (Henley et al. 2000). Such 
decreases in euphotic depth have been linked 
to significant declines in local food chains, 
beginning at the primary trophic level (Kirk 
1985, Henley et al. 2000, Bilotta & Brazier 2008). 
Moreover, the turbidity of drinking water should 
not exceed 5 NTU and would preferably remain 
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below 1 NTU (WHO 2017). This is because a high 
concentration of suspended solids in water 
results in a decrease in the potability of the 
water, rendering it unsuitable for consumption.

Turbidity varies broadly in response to the 
type, composition, size, and geometry of the 
suspended particles (Davies-Colley & Smith 
2001). Because of the mix of natural and 
anthropic conditions across river basins, the 
range of river turbidity reported in different rivers 
can vary by several orders of magnitude (e.g., 
Huang et al. 1992, Wass et al. 1997, Göransson et 
al. 2013, Kuhn et al. 2019). Among the anthropic 
agents that increase turbidity, mining activity is 
recognized as one of the most important factors 
affecting surface waters worldwide (e.g., Thomas 
et al. 2003, Petticrew et al. 2015, Rudorff et al. 
2018, Hamilton et al. 2020).

An example of the severe impacts of 
turbidity in a river caused by the influx of mine 
tailings occurred recently in the Brumadinho 
municipality, located in Minas Gerais State, 
southeastern Brazil. In January 2019, a mine 
tailings dam failed and released approximately 
12 million cubic meters of tailings. A large 
proportion of the released tailings reached the 
Paraopeba River, an important regional river, 
causing serious environmental and societal 
damages (Polignano & Lemos 2020, Santos et al. 
2021). The water supply to riverine communities 
that benefit from this water resource was 
directly affected (Polignano & Lemos 2020). 
Immediately after the dam failure, the water 
quality was monitored daily to assess the long-
term effects of mine tailings on the river. The 
most critical impact observed was turbidity, 
which reached values above 50,000 NTU, which 
is 10,000 times greater than the standard limit 
for drinking water (WHO 2017).

As water turbidity can be considered 
an optical property, this parameter can be 
correlated with the spectral reflectance 

retrieved from satellite imagery (e.g., Caballero 
et al. 2019, Pereira et al. 2018, Kuhn et al. 2019). 
Several studies have quantitatively assessed 
river turbidity using remote sensing techniques 
(e.g., Wass et al. 1997, Petus et al. 2010, Pereira 
et al. 2018, Kuhn et al. 2019). The estimation 
of turbidity by remote sensing is based 
on the empirical association between the 
spectral reflectance measured via satellite 
imaging and turbidity values measured in the 
field. This approach can facilitate water quality 
management because these methods, allow 
continuous measurement of large regions 
(Caballero et al. 2019). Moreover, the acquisition 
of satellite imagery for different time periods 
allows for the assessment of temporal changes 
in the turbidity of surficial water bodies, thereby 
providing a useful monitoring and management 
tool. Although remote sensing has proven to be 
useful for estimating turbidity, only a few studies 
have been devoted to quantifying the turbidity 
of rivers impacted by mine tailings using this 
tool (e.g., Rudorff et al. 2018). To fill this gap, 
this study aimed to develop a framework for 
monitoring the spatiotemporal variation of 
turbidity in rivers that have been impacted by 
mine tailing discharge, by producing a model to 
predict turbidity based on Sentinel-2 imagery, 
using the Paraopeba River as a case study.

MATERIALS AND METHODS
Study area characterization
The study area is located in south-central 
Minas Gerais, Brazil, which is the largest 
producer of iron ore in the country. Possessing 
a diverse geological makeup, the region has 
experienced mining activity since the Brazilian 
colonial period. The hydrographic basin of the 
Paraopeba River, one of the main tributaries 
of the São Francisco River, has a length of 
approximately 510 km, covers 13,643 km², and 
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includes 35 municipalities. The Paraopeba 
River’s source is located in the southern portion 
of the municipality of Cristiano Otoni, and its 
mouth is located in the Três Marias Reservoir in 
the municipality of Felixlândia.

On January 25, 2019, an abrupt failure of a 
mine tailing dam released 12 million cubic meters 
of mine tailings, most of which was discharged 
into the Paraopeba River. Immediately after 
the dam failure and discharge of the tailings, 
turbidity values increased to three or four orders 
of magnitude greater than those naturally 
observed in the river, with measurements in 
January exceeding 50,000 NTU (CPRM 2019).  
Owing to the abundant iron oxides in the mine 
tailings, the resulting turbidity plumes ranged 
in color from reddish to brownish (Teramoto et 
al. 2020).

To evaluate the impacts on turbidity 
associated with the entry of tailings into the 
Paraopeba River, natural turbidity variations 
must also be considered. Thus, we characterized 
the natural variability of the Paraopeba 

River turbidity, for the period preceding the 
rupture of the dam, using measured turbidity 
data for 2012 to 2018, collected by the Minas 
Gerais Water Management Institute (IGAM 2018) 
and the National Water Agency (ANA). Periodic 
monitoring information is available on the IGAM 
website.

Acquisition and processing of Sentinel-2 
images
Our analysis was carried out using imagery from 
Sentinel-2, a multispectral satellite from the 
Copernicus Programme (European Space Agency 
2022). The Sentinel-2 mission is composed of a 
constellation with two twin satellites (Sentinel-
2A and Sentinel-2B) that systematically acquires 
spectral imagery from the Earth’s surface. The set 
of Sentinel-2 bands, their central wavelengths, 
and spatial resolutions are listed in Table I.

We downloaded cloudless imagery to 
examine the spectral response of the Paraopeba 
River to spatiotemporal changes in turbidity. 
The Sentinel-2 satellite belongs to the Global 

Table I. List of bands, central wavelengths, and spatial resolution of Sentinel-2 imagery.

Sentinel-2 bands
Central

Wavelength (nm)
Spatial 

resolution (m)

Band 1 – Coastal aerosol 442.7 60

Band 2 - Blue 492.4 10

Band 3 - Green 559.8 10

Band 4 – Red 664.6 10

Band 5 – Vegetation red edge 704.1 20

Band 6 – Vegetation red edge 740.5 20

Band 7 – Vegetation red edge 782.8 20

Band 8 -NIR 832.8 10

Band 8A – Vegetation red edge 864.7 20

Band 9 – Water vapor 945.1 60

Band 10 – SWIR - Cirrus 1373.5 60

Band 11 - SWIR 1613.7 20

Band 12 - SWIR 2202.4 20



PEDRO L.B. CRIONI, ELIAS H. TERAMOTO & HUNG K. CHANG	 USE OF REMOTE SENSING FOR TURBIDITY MONITORING

An Acad Bras Cienc (2023) 95(1)  e20220177  4 | 14 

Monitoring Program for Environment and Security 
(GMES) and is administered by the European 
Community and European Space Agency (ESA). 
In this study, the analysis was performed using 
images from the 29SQA tile (Sentinel-2 mission 
grid system). The downloaded images at Level-
1C provide top-of-atmosphere (TOA) and 
reflectance atmosphere values after radiometric 
and geometric corrections are applied. Because 
the raw data are presented in the form of 
digital numbers (DN), the values must first be 
converted to physical units of reflectance by 
dividing by a rescaling    factor    known    as    
the quantification value, according to   Equation    
1. The quantification value (Qv) is presented 
in the metafiles accompanying the Sentinel-2 
imagery.

Reflectance = DN/Qv	 (1)

Subsequently, the original images 
containing TOA reflectance at Level 1C were 
corrected to the bottom-of-atmosphere (BOA) 
using the Sen2Cor (version 2.8) processor, 
developed by Telespazio VEGA Deutschland 
GmbH on behalf of ESA, and were used for 
image processing (Malenovský et al. 2012). The 
conversion of TOA at level 1C to BOA at level 
2A involved atmospheric, terrain, and cirrus 
corrections. Sen2Cor is based on a set of 24 
lookup tables (LUTs) that cover most terrestrial 
atmospheric conditions and recreate values 
to generate an image through atmospheric 
correction processing. We used Sen2Cor as a 
plugin integrated into the Sentinel Application 
Platform software (SNAP), which is freely 
distributed by the ESA.

In situ turbidity monitoring
The data for the nephelometric in situ turbidity 
of the Paraopeba River were measured daily 
at 49 stations, where 87 measurements 
were performed (Figure 1) using a manual 

turbidimeter at different times. These sample 
points were distributed downstream from the 
site of dam failure, along approximately 300 km 
of the watercourse between the dam and its 
entry into the Três Marias Reservoir.

Determination of an empirical model for 
turbidity estimates
Based on the results presented by Chen et 
al. (2007), Nechad et al. (2010), Dogliotti et al. 
(2015), Caballero et al. (2019), Rudorff et al. 
(2018), and Sakuno et al. (2018), we hypothesized 
that turbidity values could be obtained by using 
empirical models based on a single band. Hence, 
this study seeks to develop a representative 
empirical model. Reflectance values were 
extracted from Sentinel-2 images at the in situ 
turbidity measurement points and compared to 
the field-measured turbidity values.

Figure 1. Location of the study area and distribution 
of the 49 in situ turbidity monitoring stations; site of 
the dam failure, and three gauge stations.
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From the construction of a scatter plot of 
the turbidity values ​​versus the reflectance data 
of the Sentinel-2 bands 2 to 8A, non-linear 
regression analysis was performed to identify the 
band most capable of reproducing the turbidity 
variations in situ. To measure the accuracy of 
values predicted by non-linear regression, we 
evaluated the error, defined as the difference 
between the observed and estimated values 
of turbidity. The main statistical parameter to 
determine was the standard error regression 
(S) (Equation 2), which describes the average 
distance between the observed values from the 
fitted model:

	 (2)

where n denotes the number of samples, 
and Tobs and  Test represent the observed and 
estimated turbidity values, respectively.

Among the tested Sentinel-2 bands, those 
that offered the lowest S were evaluated, 
considering these as the most representative 
bands for use in obtaining turbidity estimates. 
Consequently, the equations derived from the 
regression analysis with the lowest S values 
were considered the most appropriate for 
estimating the turbidity of the Paraopeba River 
from Sentinel-2 images.

RESULTS
Turbidity preceding failure of the mine tailing 
dam
Generally, turbidity exhibits seasonal and 
cyclical behavior according to the precipitation 
volume. Therefore, the data compiled for 
turbidity between 2012 and 2018 were grouped 
into rainy (between October and March) and dry 
periods (between April and September).

Figure 2 presents a box diagram comparing 
turbidity in the rainy and dry seasons; the 

average turbidity in the rainy season (88.13 
NTU) was significantly higher than that in the 
dry season (20.56 NTU). We also noted the 
presence of outliers, with values above 500 NTU, 
particularly during the rainy season. Only three 
samples showed turbidity values above 1,000 
NTU, revealing that extremely high turbidity was 
very unusual before mine tailing introgression 
into the Paraopeba River.

Turbidity monitoring after failure of the mine 
tailing dam
As shown in Figure 2, there is a noticeable 
difference between turbidity in the dry and 
wet seasons before the Brumadinho Dam 
failure, suggesting a direct association between 
the seasons and the river flow, with turbidity 
increasing as the flow increased. To evaluate 
the variation in turbidity after dam failure as a 
response to seasonal variations in river flow, we 
built hydrographs with data from three gauge 

Figure 2. Box diagram for turbidity values in the rainy 
(October to March) and dry (April to September) 
periods between 2012 and 2018. The turbidity 
values are presented on a logarithmic scale. The 
central line inside the box represents the median, 
and the upper and lower limits of the box represent 
the first and third quartiles values, respectively. 
The distinctiveness of turbidity during dry and wet 
seasons is controlled by the variation of the river flow.
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stations during 2019 (Figure 3), the locations 
of which are shown in Figure 1. As shown in 
Figure 3, the river flow at all gauge stations was 
higher between January and April, then strongly 
decreased after April, and abruptly increased 
at the end of September, with a discharge 
magnitude similar to that observed during 
February and March.

The monitoring results from January to 
December 2019 are presented as boxplot 
diagrams in Figure 4. Notably, the recorded 
values in the 2019 dry season were substantially 
higher than those observed in the dry periods 
before the dam failure (Figure 2).

In addition, the temporal variation in 
turbidity strongly matches the variation in river 
flow (Figure 3), showing evidence of the direct 
dependence of turbidity on river discharge. 
Similar to the river flow, the turbidity experienced 
a progressive increase in median values, peaking 

in March and decreasing in the subsequent 
months. The lowest recorded turbidity was 
observed in August and September, the driest 
periods of the year. During the beginning of 
the wet season in September, the median of 
turbidity values increased significantly, reaching 
values closer to those observed during February 
and March.

The movement of the turbidity plume was 
mediated by the advective movement within 
the Paraopeba River flux and reached the 
Retiro Baixo Reservoir, located nearly 270 km 
downstream of the dam failure site, two months 
later. Figure 5 shows the true color composition 
of the Retiro Baixo Reservoir during the three 
different periods as follows: The first image 
(Figure 5a), from January 22, 2019, three days 
before the rupture of Dam I, shows reduced 
values of water turbidity. Figure 5b shows the 
arrival of the turbidity plume at the Retiro 

Figure 3. Hydrographs from the three gauge stations observed during 2019 (locations are shown in Figure 1). The 
highest discharge values were recorded between January and April, falling afterward and then increasing at the 
end of September in response to the variation of rainfall.
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Baixo Reservoir on March 8, 2019, when the 
turbidity values increased significantly. Figure 
5c shows the turbidity on May 27, 2019, when the 
turbidity had attenuated to some degree.

Regression of reflectance values and spatial 
resolution
The measurement of in situ turbidity values 
and the recording of Sentinel-2 scenes were 
performed on the same days, allowing for 
direct comparison between the turbidity and 
reflectance values at the different sampling 
points.

Non-linear regression analysis revealed 
that an exponential model provided the best 
fit of the spectral response data and 87 in 
situ measured values of turbidity. To identify 
the individual Sentinel-2 bands that offered 
the best estimation of turbidity, we evaluated 
the values of the fitted exponential R2 model 
for each band. We found that the red edge of 
the vegetation (band 7) and NIR band (band 8) 
provided the highest R2 values. We preferred to 
use band 8 because it has a spatial resolution 
of 10 m, which is more appropriate for the 

dimensions of the Paraopeba River, which has 
a width ranging between 25 and 70 m. Figure 6 
shows the scatterplot of turbidity values with 
the reflectance of band 8 with the exponential 
equation, with an R2 of 0.91. We used the resulting 
non-linear equation, to produce turbidity 
estimates from Band 8, as shown in Equation 3.

Turbidity = 3.535*e39.324*pw	 (3)

As shown in Figure 6, the deviation of the 
observations from the model curve is higher 
for turbidity above 300 NTU. Because the field-
measured turbidity encompasses three orders 
of magnitude, S (381.05 NTU) reflects the errors 
of the highest values. Thus, we computed S for 
distinct turbidity ranges to evaluate the effective 
representation of the produced model. Figure 
7 illustrates the comparison of S with distinct 
values of field-measured turbidity, showing that 
S increased as the turbidity increased.

Time-series of turbidity derived from the 
empirical model
To assess the consistency of the proposed 
empirical model, distribution maps of turbidity 

Figure 4. Variations in turbidity 
values between January and 
December 2019. The central line 
inside the box represents the 
median, and the upper and lower 
limits of the box represent the 
first and third quartiles values, 
respectively. The turbidity follows 
a seasonal variation, in which the 
highest values are observed during 
the rainy season in February 
and March, steadily decreasing 
afterward and then increasing at 
the end of September, strongly 
matching the variation of river 
flow shown in Figure 3.
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estimated from the application of Equation 3 to 
imagery retrieved from the Sentinel-2 satellite, 
were produced for the periods before and after 
the dam rupture (Figure 8).

The estimated turbidity distribution for 
January 22, 2019 (Figure 8a), three days before 
the dam failure, showed values below 100 NTU. 
Conversely, on March 8, 2019 (Figure 8b), 42 days 
after the dam failure, remarkably high values of 
turbidity were estimated, reaching above 500 
NTU and demonstrating the transport of a large 
amount of suspended material. The turbidity 
estimated on May 27, 2019 (Figure 8c), 122 days 
after the dam failure, showed a reduction in 
turbidity compared  to  that of March. I n 
September 2019, t h e  t u r b i d i t y  rea c h e d 

i ts  lowest  value at  the end of  the dry 
season (Figure 8d) because of the reduced 
river flow observed during this period.

DISCUSSION
The Paraopeba River is one of the main tributaries 
of the São Francisco River and an important 
source of water supply and irrigation for several 
municipalities in the central region of the state 
of Minas Gerais. The failure of the dam on the 
Paraopeba River resulted in environmental and 
social devastation; however, the true magnitude 
of long-term impacts resulting from the input of 
mining waste remains unclear. In this context, 
the importance of monitoring water quality is 

Figure 5. True color composition by 
red-green-blue for three different 
dates and representative periods: 
a) January 22, 2019, three days 
before the rupture of the mine 
tailing dam, when the turbidity 
values were relatively low; b) 
March 8, 2019, 42 days after the 
rupture of the mine tailing dam, 
when the turbidity plume reached 
the dam; and c) May 27, 2019, 122 
days after the rupture of the 
mine tailing dam, when a large 
proportion of the turbidity plume 
had dissipated. The turbidity 
plumes in (a) and (b) are easily 
recognized by regions of brownish 
color, reflecting the nature of the 
mine tailings, which are rich in 
iron-oxides.
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highlighted in the assessment of the long-term 
negative impacts of the introduction of mine 
tailings into the rivers.

The strong increase in turbidity values ​​
represents the main environmental impact 
associated with the tailing dam failure, making 
the river water unfit for human consumption. 
Consequently, the development of techniques 
for monitoring turbidity has high social and 
environmental relevance.

The results presented in this study indicate 
that, considering the local physical characteristics 
of the river system (i.e., width of the water body 
and nature of the suspended materials), the 
NIR band 8 of the Sentinel-2 satellite offers the 
best fit to the measured turbidity, allowing for 
the monitoring of turbidity variation over time 
at the regional scale.  Owing to the average 
temporal revisit-frequency solution of five 
days, Sentinel-2 allows for the construction of 
a detailed historical series. For this reason, the 
systematic monitoring of turbidity variations in 
the Paraopeba River can be conducted using 
remote sensing techniques.

Importantly, the estimation of river turbidity 
by remote sensing shown here and in previous 
studies (e.g., Petus et al. 2010, Pereira et al. 
2018, Kuhn et al. 2019) does not have the same 

accuracy as measurements performed in the 
field. The estimation of turbidity using remote 
sensing has a distinct purpose compared to 
field measurements. While field measurement 
still represents the best method for the 
quantitative assessment of turbidity, it offers 
only single-point values. Alternatively, the 
approach sensing offers the possibility of more 
continuous monitoring of the river, allowing 
the identification of spatial and temporal trends 
throughout the entire stream. Another attractive 
advantage of turbidity monitoring using remote 
sensing is the relatively low cost of obtaining 
data and estimating values for the full course 
of the river.

Although remote sensing techniques have 
been demonstrated in previous studies on 
coastal regions (e.g., Nechad et al. 2010, Petus et 
al. 2010,  Dogliotti et al. 2015) and lakes (Sakuno 
et al. 2010), few studies have demonstrated 
the use of remote sensing to monitor turbidity 
in rivers. This study identified a model that 
allows for consistent turbidity estimates from 
Sentinel-2 imagery of the Paraopeba River. 
Importantly, owing to the specificity with respect 
to the type and characteristics of the suspended 
material, the empirical model relating turbidity 
to the spectral response of the satellite imagery 

Figure 6. Dispersion graph 
of the reflectance from one 
infrared band of Sentinel-2 
(band 8) and turbidity 
values (green points) with 
the exponential model (red 
line). The deviation of the 
observed values from the 
model curve increases as 
the turbidity increases.
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is site-specific. Similarly, the models developed 
for the other sites could not be used in our case.

Although there is a large diversity of models 
to produce reliable estimates of turbidity based 
on the spectral response of satellite imagery, 
some are based on a single-band model, 
which is a simplistic approach that correlates 
turbidity with the variation of reflectance at a 
particular wavelength (e.g., Dogliotti et al. 2015, 
Guo et al. 2017, Caballero et al. 2019). Despite its 
simplicity, our work demonstrates that in the 
case of river water impacted by mine tailings, 
the single-model approach produces reliable 
turbidity estimates. Importantly, the temporal 
evolution of turbidity estimated by our model 
(Figure 7) closely resembled that measured in 
the field (Figure 4), in which the highest values 
were observed in February and March, then 
decreased in consecutive months and reached 
the lowest values in September, at the end of 
the dry season. Thus, our model can produce 
a reliable time series of turbidity and can be 
used as a complementary tool to estimate the 

spatiotemporal behavior of this parameter. 
Despite the ability of our empirical model to 
produce consistent estimates of turbidity, this 
model is site-specific and serves to monitor 
the suspended material transported by the 
Paraopeba River, impacted by iron-rich tailings.

Regression analysis indicates that the 
exponential model best fits the turbidity data 
as a function of the spectral response of the 
analyzed band. This is justified by the fact that 
the turbidity presents variations of several orders 
of magnitude, whereas the reflectance varies 
linearly. Notably, the deviation of the observed 
turbidity from the fitted model increased as 
the turbidity increased (Figure 6), implying that 
the quantitative evaluation of extremely high 
turbidity is less reliable. The greater discrepancy 
associated with increasing turbidity might be a 
consequence of inaccuracies in the turbidimeter 
used in this turbidity range, or it may be that the 
spectral response saturates at higher turbidity 
levels. Because the turbidity encompasses 
values varying by several orders of magnitude, 

Figure 7. Computed values of S as function of field measured turbidity, showing that the error linearly increases as 
the turbidity increases. 



PEDRO L.B. CRIONI, ELIAS H. TERAMOTO & HUNG K. CHANG	 USE OF REMOTE SENSING FOR TURBIDITY MONITORING

An Acad Bras Cienc (2023) 95(1)  e20220177  11 | 14 

the obtained S (381.05 NTU) is essentially 
controlled by the elevated error measured 
at high values. The error was reduced when 
intervals with smaller values were considered. 
For example, if turbidity values of 50 NTU are 
considered, the computed error will be 5.26 NTU, 
demonstrating that the quantitative assessment 
of extremely high values of turbidity is limited.

Despite the absence of the same level of 
accuracy found in field measurements, the use 
of an approach based on the remote sensing 
can produce reliable and consistent estimates 
of turbidity. To demonstrate the practical 
application of our model, we built a time series 
of turbidity calculated by our empirical model 
(Figure 6), which followed a similar trend to that 
observed in the field measurements (Figure 4).

The actual extent of metal contamination 
of the Paraopeba River induced by mine tailing 
input remains controversial. Some studies have 
demonstrated the intense impact of dissolved 
metals in the river water (Santos Vergilio et al. 
2020, Thompson et al. 2020), whereas others 
have argued that the physical and chemical 
characteristics of the river cannot maintain 
high concentrations of metals in dissolved form 
(Teramoto et al. 2020). Teramoto et al. (2020) 
verified an increase in metals during the rainy 
season, which was related to an increase in 
suspended sediments. Consequently, the severe 
increase in the movement of the turbidity plume 
may represent the main mechanism controlling 
the metal transport in river water. This scenario 
is consistent with some studies that associate 
metal transport with turbidity (e.g., Swain & 
Sahoo 2017, Nasrabadi et al. 2016).

The behavior of mine tailings in the 
Paraopeba River may represent a seasonal 
phenomenon, in which resuspension is 
expected to occur along with an increase in river 
flow. However, during the dry season, because 
the river flow tends to decrease significantly, 

the transported mine tailings are expected to 
be deposited in the riverbed. Thus, our model 
serves as a valuable tool for the long-term 
monitoring of river turbidity and is a consistent 
method to assess water quality.

The most important contribution of our 
work is to demonstrate the capability of to 
accurately estimating turbidity based on single-
band models, with the NIR band identified as the 
most consistent band for predicting turbidity. 

Figure 8. Estimated turbidity distribution map for 206 
points distributed along the course of the Paraopeba 
River: a) January 22, 2019; b) March 8, 2019; c) May 
27, 2019; and d) September 19, 2019. The highest 
turbidity was observed during March 2019, declining 
in the following months, and reaching lower values in 
September 2019. This trend strongly matches with the 
general trend seen in the field measurements, shown 
in Figure 4.
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Our approach has the advantage of being able 
to estimate turbidity at a lower cost than in situ 
measurements and can be applied using freely 
distributed satellite images. Consequently, this 
approach could allow environmental agencies, 
academic institutions, and society in general, to 
monitor the long-term adverse effects of mining 
activities on surficial watercourses, which are 
important sources of water supplies in many 
regions of the world.

CONCLUSIONS
The relatively large impact of mine tailing dam 
failure on the water quality of the Paraopeba 
River remains a source of concern. Although the 
long-term dynamics of discharged mine tailings 
remain unknown, water quality monitoring is a 
crucial issue. Among the recognized negative 
effects of the introgression of mine tailings, 
an increase in turbidity is the most important. 
Because turbidity represents an optical 
property, it can be inferred from the spectral 
response of satellite imagery. As a strategy to 
monitor the seasonal variation of turbidity, 
we matched 87 measured turbidity values 
with spectral responses of Sentinel-2 satellite 
data and produced an exponential model that 
successfully predicted the spatial distribution 
of turbidity in surficial water bodies, using the 
spectral response of the NIR band 8 (λ = 865 
nm), with an R2 of 0.91. Thus, our work reinforces 
the ability of the remote sensing approach 
to monitor the properties of surficial water 
bodies, and the single-band approach allows 
the attainment of strongly representative 
models, despite the simplicity of the approach. 
However, models predicting turbidity from 
spectral responses are site-specific, and the 
model obtained in this study is not capable of 
producing consistent predictions for other sites 
with different compositions and characteristics 

of suspended materials. We found that the 
deviation of field data from model predictions 
increased as the turbidity increased, but closely 
matched the most common range of in situ 
measured turbidity. Importantly, our model 
allows for a low-cost and simple strategy for 
monitoring turbidity and evaluating the long-
term dynamics of discharged mine tailings over 
time along the course of the Paraopeba River.
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