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Abstract: Characterization and development of hydrocarbon reservoirs depends on the 
classification of lithological patterns from well log data. In thin reservoir units, limited 
vertical data impedes the efficient classification of lithologies. We present a test case 
of petrofacies classification using machine learning models in a thin interval of finely 
laminated limestones using pseudo-well data created over outcrops (radiometric and 
unconfined compressive strength logs). We tested Gaussian naïve Bayes (GNB) and 
support vector machine (SVM) techniques to classify eight petrofacies types, divided into 
two groups. The objective was to observe the capacity of some well-known models to 
classify petrofacies with a high-frequency vertical variation of diagenetic heterogeneities 
in an extreme scenario within a thin sedimentary interval. The GNB was less effective 
(F1 score of 0.29), and the SVM achieved the best results in classifying the main facies 
patterns (F1 = 0.47). However, the GNB performed better when the analysis was focused 
on distinguishing the two main groups of petrofacies. The results demonstrate that 
high-frequency facies variations present a challenge to the automatic identification of 
lithofacies, mainly due to local variations in horizontal heterogeneities (on the mm- to 
cm-scale) created by depositional and diagenetic processes, which impact the flow in 
porous media. 

Key words: reservoir modeling, machine learning, petrofacies classification, thin reser-
voir unit, laminated limestones.

INTRODUCTION
Successful hydrocarbon extraction from conventional and unconventional reservoirs depends on 
constructing reliable 3D models describing various properties of the sedimentary successions (i.e. 
lithology, petrophysics, geomechanics, i.e) based on measurements from wells and seismic data 
(Bonnell & Hurich 2008, Heidsiek et al. 2020, Jones et al. 2008, Yu et al. 2008, Zhang et al. 2006). The 
distribution of properties in an industry-standard 3D model draws on data from wellbores (lithology 
succession, petrophysics, fluid types) with a spatial resolution of centimeters to meters, and seismic 
reflection data (2D and 3D volumes) with a spatial resolution of tens to hundreds of meters (Burchette 
2012, Grana et al. 2016, Ozkan et al. 2011, Raeesi et al. 2012, Worden et al. 2018). Heterogeneities formed 
by depositional and diagenetic processes present a challenge for reservoir modeling, especially 
for carbonate rocks (Burchette 2012, Worden et al. 2018). Populating a large 3D model using the 1D 
measurements from wellbores (cores and logging) is usually treated using geostatistical tools (Anna 
et al. 2009, Correia et al. 2016, Haese 2019, Ringrose et al. 2008). Reservoir modeling is improved by 
information from natural exposures (reservoir analogs), which helps in understanding the patterns 
formed by depositional processes and heterogeneities created by diagenesis (Adams et al. 2011, Enge 
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et al. 2007, Questiaux et al. 2009). Reservoir analogs can provide large amounts of data, including 
geometries, mechanical and petrophysical properties, and fracture system properties (Anna et al. 
2009, Bayer et al. 2015, Belayneh et al. 2006, Enge et al. 2007, Falivene et al. 2006, Heidsiek et al. 2020, 
Howell et al. 2014, Jones et al. 2008, Milad & Slatt 2019, Yan et al. 2020).

Static reservoir modeling depends on the power to predict intrinsic properties in regions far from 
the wellbore (Grana et al. 2016, Zhao et al. 2014), and well observations are not always sufficient to 
inform the predictions desired (Burchette 2012, Laubach et al. 2019), such as in thin reservoir units 
with great horizontal extensions. Furthermore, the manual labeling of properties of interest, either 
lithofacies (groups of rocks that share similar lithologic or physical characteristics), or petrofacies 
(groups of rocks that share similar petrographic or mineralogical characteristics) regarding variations 
found from site to site over the borehole data can also be ambiguous, expensive, and time-consuming 
(Edwards et al. 2017, Lineman et al. 1987). This challenge has led to the development of automated 
identification and classification computation tools that process well log observations (Hall 2016, 
Halotel et al. 2019, Merembayev et al. 2021, Silva et al. 2020) and core images (Chawshin et al. 2021, Lima 
et al. 2019, Thomas et al. 2011). These approaches allow fast and reliable identification/correlation 
of geological properties from well logs (Wu et al. 2018), to build sophisticated models (Ertekin & 
Sun 2019, Othman et al. 2021). Most of these new techniques are based on machine learning (ML) 
algorithms.

When modeling complex, thin reservoir units from noisy and limited data from few wells and 
limited well log records, more sophisticated classification algorithms such as neural networks are 
not applicable since they require large amounts of data for their training. In contrast, less complex 
algorithms are more robust when dealing with noisy or constrained training data. Even with fewer 
parameters or assumptions about the data, they tend to be less prone to overfitting, than more 
complex models. Thus, we chose GNB and SVM models, among the less sophisticated ML techniques, 
for the classification task (Bisho 2006, Murphy 2012). Another aspect we considered is the opportunity 
of comparing two algorithms with different approaches, one probabilistic (GNB) and the other 
discriminative (SVM), for the limited-data case studied.

Both of these models (SVM mostly) are well-established ML approaches to lithofacies classification 
(for SVM, see Al-Anazi & Gates 2010, Alexsandro et al. 2017, Xie et al. 2018, Deng et al. 2019, Sarkar  & 
Majumdar 2020, Fadokun et al. 2020, Liu et al. 2020, Verma et al. 2021, Kumar et al. 2022, Gonzalez et 
al. 2023, for GNB, see Li & Anderson-Sprecher 2006, Horrocks et al. 2015, Babasafari et al. 2022, Nwaila  
et al. 2022, Nguyen et al. 2022). However, the literature presents very few studies with applications of 
these methods in the task of classifying petrofacies (López & Thomas 2009, Duarte et. al 2023, Silva 
et al 2020). The situation becomes particularly challenging when searching for research papers that 
apply SVM and/or GNB for petrofacies classification in data-limited settings, as no such studies were 
found in the literature.

This work studied the capacity of ML techniques to treat a specific scenario comprising a thin 
unit of laminated limestones with a high-frequency vertical variation of petrofacies resulting from 
depositional and diagenetic processes. It represents a critical case study involving a relatively thin 
and continuous interval of carbonate rocks used to verify the challenge faced in the petrofacies 
distribution due to the horizontal extension of the sampled interval. We tested the performance of 
GNB and SVM in the automated identification of petrofacies in a thin limestone interval. The main 



GALLILEU GENESIS et al.	 MACHINE LEARNING FOR CLASSIFYING PETROFACIES﻿﻿

An Acad Bras Cienc (2024) 96(1)  e20230041  3 | 24 

goal was to treat the petrofacies classification problem in an extreme scenario of scarce data, a 
condition in which these algorithms have not yet been tested. The choice of these two algorithms 
also aimed to compare the two completely different approaches, one probabilistic (GNB) and the 
other discriminative (SVM), which can provide insights into the performance of different modeling 
techniques in the context of the specific reservoir units and data constraints. 

The succession studied is the C6 unit, a stratigraphic interval of laminated limestones in the 
upper part of the Crato Formation of the Araripe Basin in northeastern Brazil (Fig. 1a-c). We used the 
petrofacies classification in previous works (Araujo et al. 2020, Ramos et al. 2020), which integrated 

Figure 1. C6 Interval of laminated limestone from the Crato Formation, Araripe Basin. a) View of the interval 
of limestones studied in a quarry, Nova Olinda region. b) A vertical strip (dotted red lines) used to define the 
acquisition of data and samples emulating a vertical well (pseudo-well) (yellow stick = 1 m). c) A plug showing the 
fine laminations that were classified in thirteen petrofacies. The greyish and yellowish colors indicate variations 
caused by depositional and diagenetic processes (Araujo et al. 2020).



GALLILEU GENESIS et al.	 MACHINE LEARNING FOR CLASSIFYING PETROFACIES﻿﻿

An Acad Bras Cienc (2024) 96(1)  e20230041  4 | 24 

lithological, depositional, and diagenetic characteristics. Petrofacies complement the lithofacies 
concept, which can integrate properties like porosity and permeability (Bhattacharya et al. 2005, Cao 
et al. 2020, 2021, Jardim et al. 2011, Kadkhodaie & Kadkhodaie-Ilkhchi 2018). This succession was chosen 
because it exemplifies two assessment challenges in reservoir modeling: a thin vertical interval and 
the high-frequency vertical variation of petrophysical properties of the fine laminations (mm-scale). 
This type of high-frequency variation in depositional and diagenetic properties strongly influences 
reservoir quality (over the mm- to cm-scale) (Mikes et al. 2006, Creusen et al. 2007, Likuan et al. 2021), 
and its integration through up-scaling techniques for reservoir characterization represents a major 
challenge (Mikes et al. 2006, Heidsiek et al. 2020). The study tests the performance of the ML models 
on the extreme case, with limited data, and demonstrates that the vertical variation of the petrofacies 
is hard to resolve, even in a unit with apparent good horizontal continuity of lithofacies.

Geological Setting and Pseudo-Wells Dataset
The geological data used in this study were collected from outcrops in two quarries in Nova Olinda, 
Araripe Basin, Ceará State, Brazil (Fig. 1). Three pseudo-wells were built over vertical exposures 
with lateral continuity of tens of meters (Araujo et al. 2020). The C6 interval studied is a succession 
consisting of finely laminated limestones, composed predominantly of micritic calcite (mudstones), 
with local occurrences of dolomite and silica (Araujo et al. 2020, Miranda et al. 2018). The C6 interval 
presents a regional distribution and is part of the first post-rift sequence of the basin (Assine et al. 2014, 
Neumann et al. 2003). These rocks were previously studied as an analog for tight fractured reservoirs 
(Miranda et al. 2018, Santos et al. 2015) and as an analog for lithofacies found in the Brazilian pre-salt 
fields (Barra Velha Formation) (Catto et al. 2016). The C6 interval contains centimetric- to metric-scale 
vertical calcite veins, shear fractures and centimetric vertical stylolites. Furthermore, metric-scale 
joints are related to late exhumation (Miranda et al. 2018). The laminations are 3–5 mm thick, and 
the variation in depositional conditions (climate, salinity, and sedimentation rates) resulted in a 
varying content of organic matter (OM) in the laminae (Fig. 1). Variation in the sedimentation rate also 
influenced matrix cementation during the early stages of diagenesis (Araujo et al. 2020, Heimhofer et 
al. 2010, Osés et al. 2017), resulting in cemented sets of laminations with early silica formation. Early 
silicified sets of laminae also contain higher contents of OM and pyrite. These levels present a grey-
greenish color (G2 group of laminations). The C6 succession also presents lamination sets with iron 
oxides, and a minor content of silica and OM, with a yellowish color (G1 group of laminations). The 
variation in porosity and mechanical strength between the two groups of laminations is expressive. 
The G1 group presents more dissolution features, higher porosity, and fewer deformational structures 
(Araujo et al. 2020).

The study used data from three vertical pseudo-wells created with high-resolution stratigraphic 
descriptions of the petrofacies from two quarries located one kilometer apart (Figs. 2a,b and 3) 
Araujo et al. (2020). The first and second pseudo-wells located in panel 1 (PW1 and PW2 – Idemar 
Quarry) are separated by 9.95 m, and the third pseudo-well was located in panel 2 (PW3 – William 
Quarry). Petrofacies can be defined by integrating the rock sample observations and well logs (Cao 
et al. 2021, Jardim et al. 2011). This approach considers the characterization of lithofacies (lithology, 
sin-depositional structures) and other physical aspects like diagenetic features (cementing and 
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concretions), petrophysics (porosity and permeability), and mechanical properties (Araujo et al. 
2020, Cao et al. 2021, Watney et al. 1998, Gómez 2020, Jardim et al. 2011). The main advantage of the 
petrofacies approach for sedimentary succession classification is that it can constrain the distribution 
of parameters directly related to fluid flow. The petrofacies classification provided by Araujo et al. 
(2020) for the C6 interval integrates sedimentological, diagenetic, and sin-depositional features. The 
authors defined thirteen (13) petrofacies in two main groups, seven in the beige-yellowish G1 group 
and five in the grayish G2 group, as shown in Table I.

Figure 3. Composite well 
logs with petrofacies, Total 
GR, U, Th, K and UCS data of 
the pseudo-well acquired 
in panel 2 (PW3 – William 
Quarry). Spacing for the 
acquisition of geophysical 
data was 20 cm.

Figure 2. Composite well logs with petrofacies, Total GR, U, Th, K and UCS data of the two pseudo-wells acquired in 
panel 1 (a) PW1 and b) PW2 – Idemar Quarry). Spacing for the acquisition of geophysical data was 15 cm.
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Table I. Description of the two petrofacies groups identified in the laminated limestone interval, with the main 
characteristics of depositional and diagenetic features (Araujo et al. 2020).

Petrofacies Group Depositional and Diagenetic Characteristics Petrofacies code

G1

Yellow Laminated Limestone YLL
Yellow Laminated Limestone with Loop beddings YLLLB

Yellow Laminated Limestone with Convolution YLLCV
Yellow Laminated Limestone with Dissolution YLLD

Yellow Laminated Limestone with Vug YLLVUG
Yellow Laminated Limestone with Concretion YLLCON

Yellow Laminated Limestone with Gypsum Vein YLLGP

G2

Gray Laminated Limestone GLL
 Gray Laminated Limestone with Loop Beddings GLLLB

Gray Laminated Limestone with Convolution GLLCV
Gray Laminated Limestone with Dissolution GLLD

Gray Laminated Limestone with Vugs GLLVUG
Gray Laminated Limestone with Concretion GLLCON

The succession shows a high-frequency alternation between the G1 and G2 petrofacies 
components. The G2 petrofacies dominate the basal part of the succession. Stratigraphic information 
was acquired with a vertical limit of 5 mm for the definition of the individual petrofacies, resulting 
in a high resolution stratigraphic description in the pseudo-wells (Araujo et al. 2020). The pseudo-
wells data also included: 1) - gamma ray logs acquired in situ using a portable gamma spectrometer. 
Measurements comprise the total gamma emissions and the potassium (K), thorium (Th), and uranium 
(U) contents (Araujo et al. 2020), and 2) - in situ unconfined compressive strength (UCS) measurements 
acquired with a portable sclerometer (Schmidt Hammer N type). The sampling spacing for the 
gamma and UCS tests was 15 cm for the two pseudo-wells in panel 1 and 20 cm for the pseudo-
well in panel 2 (Araujo et al. 2020). Figs. 2 and 3 show the composite well data with the gamma logs, 
which are related to the mineral composition of the strata, and the UCS data, which are related to 
its mechanical properties. Previous tests indicate that these logs could help to distinguish between 
the petrofacies because the gamma measurements are sensitive to variations in diagenetic features 
(primary and authigenic mineral content), and the UCS shows good relation to properties like density 
and cementation index.

Because of the high resolution used to describe the vertical profiles (mm-scale), the sampling 
of gamma and mechanical strength (15 to 20 cm spacings) resulted in these measurements being 
captured and integrated for only eight petrofacies. That result demonstrated the first challenges of 
capturing information for this type of succession (Araujo et al. 2020). Thus, the research considered 
the eight petrofacies which were integrated with the physical logs for ML-based processing: GLLCV, 
YLL, GLLVUG, GLL, YLLCON, YLLLB, YLLCV, and YLLGP. Fig. 4a-c shows the distribution of each petrofacies 
in the total vertical succession sampled. A substantial imbalance is observed in the dataset, as YLL 
(52.31%) and GLL (23.08%) are the most frequent facies.
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MATERIALS AND METHODS
Gaussian Naïve Bayes 
NB is one of the most traditional ML algorithms for classification purposes. The method is based on 
the Bayes’ Theorem and assumes that features are independent (Witten & Frank 2002).

The prediction of class​​ ̂   y ​​ with the NB algorithm is given by the maximum a posteriori probability 
(MAP) estimate: 

	​ ​ ̂  y ​ = argma ​x​ ​​(​​y​ k​​​)​​​​ ​[ln​[P​(​y​ k​​)​]​ + ​∑ 
i=1

​ 
m

  ​ln​(​​P​(​​X​ i​​​|​​y​ k​​)​​)​​​   ]​,   with     k = 1,2, … , K​	 (1)

Assuming that the features ​X​ follow a normal distribution, a particular case of NB—Gaussian 
naïve Bayes (GNB)—is used, in which the conditional probability ​P​(​​X​ i​​​|​​y​ k​​)​​ is given by:

	​ P​(​​X​ i​​ = x​|​​y​ k​​)​ = ​  1 _ 
​√ 
_

 2π ​σ​ k​ 
2​ ​
 ​ ​e​​ −​​​(x−​μ​ k​​)​​​ 

2​ _ 2​σ​ k​ 
2​  ​​​	 (2)

Figure 4. a) Distribution 
of the eight petrofacies 
from both groups G1 
(grey) and G2 (yellow) 
tested in the vertical 
space of the pseudo-
wells. b) Distribution 
of petrofacies in the 
vertical profiles of the 
three pseudo-wells. 
c) Distribution of 
petrofacies classes in 
the dataset.
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Support Vector Machine
SVM is a fundamentally discriminative classification model whose idealization is based on statistical 
learning frameworks (Cortes & Vapnik 1995, Vapnik & Chervonenkis 1971, Vapnik 1995).

For a binary classification problem with a linearly separable dataset, the SVM looks for the 
hyperplane (Eq. 3) that separates the classes with the maximum distance or margin (Eq. 4) with 
respect to a subset of training points called support vectors.

	​ ​W​​ T​ X + b = 0​	 (3)

	​ ρ = ​  2 _ ​|​​​|W|​​|​​ ​​	 (4)

The optimal hyperplane maximizes​​ ​|​​​|W|​​|​​​​, which can be found by solving the following equation:

	​ ​min​ ​(W,b)​​​ ​ 
1 _ 2 ​ ​W​​ T​ W + C​∑ 

i=1
​ 

m

  ​​ξ​ i​​ ​  s . t.    ​y​ i​​​(​W​​ T​ ​X​ i​​ + b)​ ≥ 1 − ​ξ​ i​​,     ​ξ​ i​​ ≥ 0​	 (5)

In this formula, the parameter ​C​ controls the magnitude of the margin and, consequently, the 
precision of the model. Furthermore, ​ξ​ indicates the number of support vectors that the model must 
use to construct the regression function. Figure 5 shows a cross-plot of the features obtained through 
the pseudo-wells. Most features indicate a reasonable separation between the wells. However, the 
separation of the features of PW3 from PW1 and PW2 is notable, indicating a spatial dependence 
of the measured features and, therefore, of the lateral variation of geological properties. This will 
impact upon the performance of the models depending on the training and testing configurations. 
Besides the features mentioned before—total gamma ray counts, separated K, U and Th counts, and 
UCS measurements—we also use the depth of each measurement. Normally, layered rocks exhibit 
good lateral continuity of some parameters, and this was also observed in the C6 interval. (Araujo 
et al. 2020) found three distinct mechanical zones in the C6 interval, which information was used to 
improve the occurrence probability of the petrofacies through the pseudo-well sections.

ML Training and Evaluation
We applied the algorithms to three different classification sets, as shown in Fig. 6. In each classification 
set, two pseudo-wells were used for training and the third was used for testing. k-fold cross-
validation was used to evaluate the model’s performance on the training data and then the model 
was applied to the test data. The SVM hyperparameters were tuned using sklearn GridSearchCV. The 
GNB represents a nonparametric model and, therefore, didn’t need a hyperparameter tuning scheme. 
We determined the model’s generalization capacity by comparing the accuracy, precision, recall, and 
F1-scores it obtained over the specified training data, and then the test data.

Besides the asymmetry of the petrofacies distribution in the three pseudo-wells, another 
important aspect is the absence of some petrofacies types in the training dataset that appear in the 
test dataset, as shown in Fig. 7. This occurs due the complex vertical and horizontal distribution of 
the petrofacies, and demonstrates real conditions found in sedimentary successions. For example, 
petrofacies GLLVUG appears only in PW1, YLLLB which is found only in PW2, and YLLGP is present only 
in PW3.
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Figure 5. A cross-plot showing the relationships between all features (Depth, K, U, Th, Total GR and UCS) collected 
from the three pseudo-wells PW1, PW2 and PW3.

RESULTS
This section describes the results of training data cross-validation using all the features of the 
dataset, and the combination of features that yielded the best classification performance. We also 
present the results for the three classification scenarios involving the three wells (Fig. 6) using the 
GNB and SVM models.
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GNB Performance
We conducted an ANOVA to compare different combinations of features and the performance of the 
GNB model under 5-fold cross-validation. The results of this analysis are presented in Tables II and III.

The cross-validation results for the GNB model based on the Depth, K, and U features are shown 
in Fig. 8.

Figure 9 shows the means and standard deviations obtained by 5-fold cross-validation with the 
three training sets for both cases: using all features, and using the best configuration of features.

Figure 7. Petrofacies distribution in the training and test datasets for all classification sets (See Petrofacies codes 
in Table I).

Figure 6. 1st set: PW2 and PW3 used for training and PW1 used for model evaluation. 2nd set: PW1 and PW3 used 
for training and PW2 used for model evaluation. 3rd set: PW1 and PW2 used for training and PW3 used for model 
evaluation (See the color code for petrofacies in Figures 2 and 3).
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Table II. ANOVA performed on the features (Depth, K, U, 
Th, Total GR and UCS), sorted by decreasing p values.

Feature F-value p-value

Depth 7.027236 0.000012

K 3.833263 0.002801

U 3.035999 0.012030

Th 3.011069 0.012595

Total GR 2.949709 0.014104

UCS 1.291329 0.275910

Table III. Feature combinations and their respective mean accuracy, precision, recall, and F1 score in the cross-
validation of GNB classification.

Feature Blend Accuracy Precision Recall F1 Score

Depth, K, U 60.00 39.20 46.38 40.48

Depth, K, Total GR 58.46 36.78 47.11 38.02

Depth, K 60.00 38.37 43.87 37.71

Depth, K, U, Total GR 55.38 35.23 44.67 36.96

Depth, K, Th 56.92 33.06 43.78 34.35

Figure 8. 5-fold cross-validation for the GNB model 
based on the Depth, K, and U features.

Figure 9. Means and standard deviations of the cross-validation (k-fold = 5) for the GNB models with all features 
and best features in the training sets.
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Figure 10 shows the classifications obtained by each GNB model considering the test data, 
according to the configuration described in Fig. 7.

Figure 11 shows the confusion matrices used to analyze the performance of the three model 
configurations, for petrofacies classification.

SVM Performance 
We processed the SVM models using the same procedures for feature selection as used for the GNB 
models, and the five best mean results are shown in Table IV, sorted by F1 score.

 We used the results in Table IV to choose the best SVM model: the set processed with all features. 
The cross-validation results for this model are shown in Fig. 12.

The performance metrics for the SVM and best GNB processing on the test data across all training 
datasets are shown in Figure 13, and Figure 14 shows the confusion matrices for the SVM and best 
GNB models.

The facies classification results obtained with the models are shown in Figure 15, along with the 
actual petrofacies distribution: a) the original vertical petrofacies succession interpreted in the field; 
b) the “actual” classification used by this research, which presents a coarser vertical classification of 
the petrofacies succession due to the sampling spacing of the features; and c and d) the classification 
produced by the GNB and SVM models. The overall predominance of the petrofacies in the three 
wells reveals that the C6 Interval in the PW3 site is dominated by petrofacies of the G1 group, which 
presented a problem for the classification. The models were evaluated on their capacity to achieve 
classification against the actual distribution of the eight petrofacies in the two groups (G1 and G2), as 
well to classify the strata for the two groups in general (Fig. 15).

Table V shows the proportion of the petrofacies classified regarding their relationship to the two 
groups against the actual proportion present in the three wells, according to the results obtained by 
the best GNB and SVM models. 

Table V. Comparison of proportions of the classified petrofacies within groups G1 and G2 provided by the models 
for the three pseudo-wells against the actual proportions of each group.

Group
1st set 2nd set 3rd set

Actual GNB SVM Actual GNB SVM Actual GNB SVM

G1 (Yellow) 43% 48% 38% 76% 67% 62% 96% 61% 52%

G2 (Gray) 57% 52% 62% 24% 33% 38% 4% 39% 48%

Table IV. Feature combinations and respective means of accuracy, precision, recall, and F1 score, from SVM 
processing.

Feature Blend Accuracy Precision Recall F1 Score
(Depth, K, U, Th, Total GR, UCS) 60.00 37.12 38.48 34.85
(Depth, K, U) 63.08 34.38 38.56 34.60
(Depth, K, Th, Total GR) 61.54 32.95 38.21 33.81
(Depth, K, U, Th) 60.00 33.56 36.87 32.74

(Depth, K, Th, Total GR, UCS) 60.00 34.97 35.29 32.70
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Figure 11. Confusion matrices of the GNB models for the three classification sets. Top: model that used all features. 
Bottom: model that used the best features. Petrofacies dictionary: 1-GLLCV, 2-YLL, 3-GLLVUG, 4-GLL, 5-YLLCON, 
6-YLLLB, 7-YLLCV, and 8-YLLGP.

Figure 10. Results of the GNB models with the three test sets, for all features and for the best configuration of 
features.
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Figure 12. Means and standard deviations of the 5-fold cross-validation obtained by SVM processing using all the 
features.

Figure 13. Performance metrics for the SVM and best GNB models processed with the three test sets.
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Figure 14. Confusion matrices for the best GNB model (top) and the SVM model (bottom). Petrofacies dictionary: 
1-GLLCV, 2-YLL, 3-GLLVUG, 4-GLL, 5-YLLCON, 6-YLLLB, 7-YLLCV, and 8-YLLGP.

Figure 15. Description of the pseudo-wells and the classifications by the models. a) Original distribution of the 
thirteen petrofacies in the vertical profiles of the pseudo-wells. b) Actual distribution of the eight petrofacies 
integrated with the physical parameters used for classification. c) GNB results, and d) SVM results. See the color 
code for all the petrofacies in Figures 2 and 3.
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DISCUSSION 
Figure 9 shows that the GNB model using the best features (best GNB) performed better on the first 
and third training dataset, which demonstrates the importance of feature selection in this case. For 
both models, the cross-validation results are similar across all training datasets. The positive impact 
of using the best features on the performance of the GNB model can be observed in the results 
obtained from the test data (Fig. 10). The classification accuracy on the first set increased by 8% while 
there was no improvement in the other metrics. In the second set, the accuracy improved by just over 
33% in the best GNB model, while the precision, recall, and F1 score more than doubled. The third 
classification set showed slight improvements in all metrics.

Furthermore, the best GNB model performed better on the test data than on the training data on 
the first and second classification sets, and lower performance on the third set. The training data used 
for the cross-validation between the first and second sets, PW1 and PW2, were from locations 9.95 m 
apart, and therefore there was better lateral continuity of geological characteristics between them. In 
the two other configurations, the data used for PW3 was 1.0 km distant from the data from PW1 and 
PW2 (Fig. 6), and the results showed that the lateral variation in the geological characteristics within 
the C6 interval made petrofacies identification more difficult, as expected. This also explains the high 
standard deviations obtained in the cross-validation of the training set. Moreover, the limited amount 
of data available also impacted the performance of the models with the training sets. The small data 
volume explains the improvements in the metrics, particularly accuracy, obtained from test data 
versus those obtained from cross-validation.

Analyzing the model performance showed that, in the first set, which was devised to determine 
the petrofacies distribution in PW1 based on data from PW2 and PW3, the training set was unbalanced 
because the petrofacies YLL has a frequency greater than the sum of all others. The test set comprised 
only four petrofacies, with the following frequencies: YLL (9), GLL (10), GLLCV (1), and GLLVUG (1) (Fig. 
7). The frequency of petrofacies GLL in the test data was twice that of the training data. However, 
as it has different geological characteristics from the G1 Group, the model was able to differentiate 
them, despite the differences in sampling and representation. With these characteristics, the model 
training tends to generate a bias for the YLL and GLL petrofacies, which can be seen in the confusion 
matrix in Fig. 11. Regarding the petrofacies GLLCV and GLLVUG, the latter occurs only in the test data, 
making its identification impossible, while the former occurs exactly once in both sets, which makes 
its identification probability very low. However, due to their limited occurrence in the test data, the 
failure in the classification of these petrofacies did not have a great impact on the evaluation metrics, 
especially on the accuracy (Figs. 7 and 10).

In the second test set for classification in PW2, the spatial distribution of the pseudo-wells had 
the same characteristics used in the first configuration (Fig. 6). The arrangement of classes in the 
training and testing data was also very similar to the first configuration (Fig. 7). The frequency of the 
YLL class in both datasets is much higher than that of the other classes, which creates the same bias 
previously described. However, the GLL and YLLCV petrofacies were more frequent in the training data 
than in the test data. This tended to improve the model learning for these classes, thereby improving 
their performance in the subsequent classification task. These results explain why the model had 
better performance with the second training set, and why the improvement in the metric scores due 
to the use of the best features was more significant in this case (Fig. 10).
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The third testing scenario proved more challenging: the training pseudo-wells (PW1 and PW2) 
show more lateral correlation due to their proximity, and they show significant geological lateral 
differences from the target pseudo-well (PW3), as expected, due to the distance between them. The 
training dataset (Fig. 7) was dominated by the YLL (20) and GLL (15) petrofacies. The other classes each 
occurred once, except for YLLCON petrofacies, which occurred three times. The test set was dominated 
by petrofacies YLL (14), while petrofacies GLL was absent and the other petrofacies presented a very 
low frequency in the PW3 set. Petrofacies YLLGP was absent from the training data. This scenario led 
to a higher bias effect due to the differences between the training and test sets. Thus, it is expected 
that the model tended to emphasize the occurrence of petrofacies YLL and GLL, which explains the 
overall inferior performance for petrofacies classification compared to the previous model tests. The 
processing showed a slight improvement in classification with the use of the best features.

Figure 11 shows that, for all classification configurations, the model that used all features 
was able to identify only the most frequent classes (YLL and GLL), resulting in a strongly biased 
classification. Using only of the best features, this bias was reduced and the model could correctly 
classify the YLLCON petrofacies, which illustrates the improvement in model performance for this 
feature selection (Fig. 11).

Table IV demonstrated that the best performance of the SVM model was obtained using all 
features. A comparison with Table III reveals similar results between the SVM and the best GNB. The 
SVM cross-validation results are also similar to those for the best GNB (Fig. 9). As was done in the 
cross-validation task, the amount of data used for training in each fold was indeed less than used 
in the sets shown in Fig. 7, and a comparison of these results reveals that using less data results in 
more similar performances of the SVM and GNB models. The reverse is also true, as shown by the 
performance of the SVM and the best GNB models through the classification sets (Fig. 13). When the 
amount of data available for training was larger than the amount available for cross-validation, the 
SVM model outperformed the GNB model running through the first two classification sets, especially 
regarding the precision, recall, and F1 score metrics. Through the third training set, both models 
had very similar performances, with a slight advantage for the best GNB in terms of accuracy. These 
results are linked to the characteristics of the features used to build the models and their variations, 
which are controlled by the geological properties, as discussed above. As this application deals with 
unbalanced labels, the most suitable metric for evaluating models is the F1 score. The SVM model 
obtained an average F1 score of 0.47, while the best GNB was 0.29.

Figure 14 shows that, in general, the SVM model presented better results than the best GNB 
model for the first two classification sets. Especially considering the data imbalance, the model was 
able to correctly classify the occurrences of the two petrofacies with the lower frequencies: GLLCV 
(1) in the first classification set, and the YLLCV (7) in the second. Furthermore, the model showed 
better performance in determining the most frequent petrofacies, classifying 7 out of 9 YLL (Group 1) 
petrofacies and 9 out of 11 GLL (Group 2) petrofacies in the first classification set, and 9 out of 11 and 5 
out of 5, respectively, in the second. The third classification set was challenging for the models due to 
the distance between the pseudo-wells and the consequent lateral variation of geological properties, 
and because occurrence and proportion of petrofacies in PW3. Thus, the greater bias observed in the 
GNB model may have improved its performance, which could explain its better performance in the 
classification of petrofacies in the third set used.
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Previous classifications of C6 interval laminated limestones considered a small number of 
lithofacies, or microfacies. Neumann et al. (1999) divided the C6 interval into 5 microfacies: 1 – parallel 
and wavy-parallel laminations with loop beddings, 2 – parallel laminations with peloids, 3 – parallel 
and wavy-parallel laminations with micro-slumps, 4 – parallel and wavy-parallel lamination, and 
5 – parallel and wavy-parallel laminations with ostracods. Catto et al. (2016) considered mineralogy, 
microscopic textures, and influence of microorganisms and suggested four microfacies types: 1 
– planar laminated, 2 – crustiform, 3 – nodular, and 4 – rhythmic (interbedded sub-millimetric to 
millimetric lenses of micritic calcite, organic matter, and clay minerals). Osés et al. (2017) analyzed the 
preservation characteristics of microfossils in the laminated limestones of C6 interval and pointed 
to the influence of sedimentation rate on the alteration of organic matter as a key factor to the 
early diagenesis of the laminated limestones. They proposed two dominant microfacies: 1 – BL 
beige limestones and 2 – GL grey limestones. These authors suggested that GL differs from BL due 
to its pyrite, argilominerals, and OM contents. They also observed that GL microfacies present more 
structures like convoluted laminations, wavy laminations, and micro-faults. The classification of 
petrofacies adopted by the present research (Araujo et al. 2020) was built on the integration of the 
sedimentological aspects with chemical properties, diagenetic features and mechanical parameters 
(UCS) and aimed to provide information for reservoir characterization (dissolution zones, cemented 
zones). The differences observed between PW1/PW2 and PW3 are related to the variation in depositional 
conditions and diagenetic processes (local and regional effects), including the sedimentation rates 
and composition of sediments across the depositional system (content of clay minerals and OM). 
The sedimentation rate influenced the eo-diagenesis and the compaction of the deposits (Osés et 
al. 2017). For example, the petrofacies classification (Araujo et al. 2020) considered the occurrence 
of laminations bearing horizontal gypsum veins in the PW3, which were probably created by natural 
hydraulic fracturing linked to the proximity of fault zones—a localized diagenetic aspect (Araujo et 
al. 2020, Celestino et al. 2020). Based on studies of the C6 interval discussed herein, one can argue 
that regarding only the mineralogical composition of the succession the C6 interval can be divided 
into roughly two main lithofacies types. Thus, the criteria used here to improve the interpretation 
of reservoir characteristics was much more sophisticated and improve the characterization, but 
prove much more challenging for the automatic classification process. The research proved that the 
limited data used were sufficient to help the models recognize the main differences between the two 
general lithofacies (Fig. 15) recognized by previous works. Interestingly, for the third set processed, 
both algorithms confused the petrofacies YLLCON (concretions) and YLLCV (convoluted laminations) 
from the G1 group with the GLL petrofacies of the G2 group (Fig. 15). These petrofacies are linked to 
the increase in the mechanical strength of the strata due to early silica cementation (Figs. 2 and 
3). The basal section of PW3 presented higher values of UCS, which is linked to G2 petrofacies in 
PW1 and PW2. As the SVM used the USC feature — unlike GNB — the SVM possibly tended to choose 
the “generic” GLL petrofacies because it had a higher frequency than the G2 group in general. This 
correlation between the mineralogical composition and the variation in the mechanical strength 
hindered the classification for part of the PW3 succession, which explains why this model performed 
worst on the third classification set. 

An analysis of the efficiency of the models in the classification of the two groups of petrofacies 
was also considered because, in terms of reservoir modeling, a coarse scale of parameterization can 
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also be considered, as proposed in previous literature about these deposits. The models showed 
similar performances in interpreting the original proportions of groups G1 and G2 (Table V) for the 
first set in terms of percentage changes (12% for the G1 group and 9% for G2), with the best GNB model 
tending to overestimate the G1 group and underestimate G2, and the SVM presenting opposite results. 
Through the second set used, the best GNB model underestimated G1 by 12% and overestimated G2 
by 38%, while the SVM reached a similar pattern with 18% and 58%, respectively. For the third set 
analyzed, the proportions of each group were extremely unbalanced, with 96% for G1 and 4% for G2. In 
this case, the best GNB model found a proportion of 61% and 39% for G1 and G2, and the SVM model 
found 52% and 48%, respectively. Consequently, the SVM model presented the lower performance.

The cross-validation and classification sets produced generally similar results, and also better 
achievements in terms of scoring metrics (especially in the case of the SVM model), when compared 
with other studies. Dunham et al. (2020) conducted an experiment on classifying 9 lithofacies in a 
scarce-data scenario (439 points with a sampling interval of 150cm), comparing GNB and SVM trained 
with semi-supervised approaches. The study demonstrated that the best accuracy results in cross-
validation (5-fold) were 49.21% (GNB) and 50.41% (SVM), which are below the results presented in 
the present work. The results obtained by Silva et al. (2020) show that GNB had an accuracy slightly 
higher than 80%. However, the amount of available data (1,477 samples), the number of facies to be 
predicted (3), the application of previous preprocessing (SMOTE technique), and the method (using 
only cross-validation, without employing a blind test in a real well) used can affect a more accurate 
and unbiased diagnosis of model performance and make this experiment much less challenging than 
the present work. The same arguments can be extended to the work conducted by López & Thomas 
(2009). 

CONCLUSIONS
We used ML models (GNB and SVM) to automatically classify petrofacies in three pseudo-wells in a 
thin laminated limestone unit (~20m thickness) with kilometers of lateral continuity, considering a 
reservoir cell scale (1 km between wells) and a limited number of logs (radiometry and mechanical 
strength). Both models successfully classified eight petrofacies for the wells PW1 and PW2 separated 
by 9.95 m. But, the classification for the third pseudo-well PW3, located 1 km away, was less effective. 
However, despite the challenges faced, the models presented relative success in defining the 
proportions of the two general lithological groups. 

The results show that the selection of features used to build the GNB model was fundamental 
for maximizing its performance, whereas the SVM model performed best when using all available 
features. Thus, for the individual classification of petrofacies, the SVM model showed the best overall 
performance in the three configuration sets proposed. However, the GNB model performed better 
when analyzing the classification capacity for the two general groups of petrofacies (G1 and G2).

The study showed the main problems treating the classification of fine vertical variations in thin 
vertical intervals using the chosen ML models. It can help future understanding of how the increasing 
complexity of facies description can affect classification using ML in extreme scenarios such as the 
one treated here.
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