Open-access Ataxias cerebelares hereditárias: do martelo ao gen

Hereditary cerebellar ataxias from neurological hammer to genetics

Resumos

As heredoataxias constituem grupo complexo de doenças neurodegenerativas hereditárias, para o qual várias formas de classificação clínica e patológica foram propostas com sucesso variável. O desenvolvimento das técnicas de biologia molecular trouxe informações importantes que têm permitido caracterizar geneticamente as ataxias cerebelares hereditárias. O reconhecimento das doenças causadas por expansões de trinucleotídeos abre novo capítulo para a pesquisa sobre outros mecanismos de doenças, como na ataxia de Friedreich e nas várias formas de ataxia cerebelar autossômica dominante(SCAl a SCA7), das quais a doença de Machado-Joseph / SCA3 parece ser a mais comum no nosso meio. A deficiência familial de vitamina E (cromossomo 8q) leva a quadro semelhante ao da ataxia de Friedreich (cromossomo 9p), mas responde à reposição oral de tocoferol. Formas familiais de ataxia periódica com (cromossomo 12p) ou sem (cromossomo 19p) mioquimia foram caracterizadas, a primeira resultado de mutações dos gens de canais de potássio. Os portadores do gen da ataxia-teleangiectasia (cromossomo 1 lq) representam 1-3% da população e são suscetíveis aos efeitos oncogênicos da radiação iônica. Sem olvidar da importância da avaliação clínica neurológica, a avaliação genética laboratorial passa a ser valiosa ferramenta para o diagnóstico e aconselhamento genético, além do melhor entendimento da patogênese dessas doenças.

ataxia cerebelar; doenças cerebelares; trinucleotídeos; genética


The hereditary ataxias comprise a complex group of neurological disorders involving the cerebellum and its connections. Several classifications based on clinical and/or pathological data have been only partially successful. Recent progress in molecular genetics has identified the genic loci of hereditary ataxias and has allowed a more precise diagnosis of distinct genetic diseases. Trinucleotide repeat expansions has been recognized as a mechanism of disease in some autosomal dominant spinocerebellar ataxias (ADCA) (SCA1 to SCA7), including Machado-Joseph disease / SCA3, probably the most common form of ADCA in South Brazil, and Friedreich ataxia (GAA expansion - chromosome 9p). Familial alpha-tocopherol deficiency (chromosome 8q) may have a Friedreich ataxia phenotype and responds to the oral supplementaion with vitamin E. Familial episodic ataxias with (EA1 - chromosome 12p) and without (chromosome 19p - EA2) myokimia were identified, the first one caused by point mutations in the gene encoding the KCNA1 potassium voltage-gated channel. The gene responsible for ataxia-teleangiectasia (chromosome 1 lq) was found to encode a putative DNA binding protein kinase (ATM), related to the cell cycle control. One to 3% of the population are heterozygotic ATM gen carry and pose a higher risk of cancer when exposed to ionizing radiation. Molecular biology has provided us with useful tools to diagnosis and genetic counseling and, hopefully, will provide us with a better understanding of the pathogenesis and eventual treatment of the several forms of hereditary ataxias.

cerebellar ataxia; cerebellar diseases; trinucleotides; genetics


Ataxias cerebelares hereditárias: do martelo ao gen

Hereditary cerebellar ataxias from neurological hammer to genetics

Walter Oleschko ArrudaI; Hélio A. Ghizoni TeiveII

IProfessor Assistente de Neurologia do Departamento de Clínica Médica do Hospital de Clínicas da Universidade Federal do Paraná (UFPR), Neurologista da Unidade de Ciências Neurológicas do Hospital das Nações / Hospital Vita, Curitiba

IIProfessor Assistente de Neurologia do Departamento de Clínica Médica do Hospital da Clínicas da UFPR, Curitiba

RESUMO

As heredoataxias constituem grupo complexo de doenças neurodegenerativas hereditárias, para o qual várias formas de classificação clínica e patológica foram propostas com sucesso variável. O desenvolvimento das técnicas de biologia molecular trouxe informações importantes que têm permitido caracterizar geneticamente as ataxias cerebelares hereditárias. O reconhecimento das doenças causadas por expansões de trinucleotídeos abre novo capítulo para a pesquisa sobre outros mecanismos de doenças, como na ataxia de Friedreich e nas várias formas de ataxia cerebelar autossômica dominante(SCAl a SCA7), das quais a doença de Machado-Joseph / SCA3 parece ser a mais comum no nosso meio. A deficiência familial de vitamina E (cromossomo 8q) leva a quadro semelhante ao da ataxia de Friedreich (cromossomo 9p), mas responde à reposição oral de tocoferol. Formas familiais de ataxia periódica com (cromossomo 12p) ou sem (cromossomo 19p) mioquimia foram caracterizadas, a primeira resultado de mutações dos gens de canais de potássio. Os portadores do gen da ataxia-teleangiectasia (cromossomo 1 lq) representam 1-3% da população e são suscetíveis aos efeitos oncogênicos da radiação iônica. Sem olvidar da importância da avaliação clínica neurológica, a avaliação genética laboratorial passa a ser valiosa ferramenta para o diagnóstico e aconselhamento genético, além do melhor entendimento da patogênese dessas doenças.

Palavras-chave: ataxia cerebelar, doenças cerebelares, trinucleotídeos, genética.

ABSTRACT

The hereditary ataxias comprise a complex group of neurological disorders involving the cerebellum and its connections. Several classifications based on clinical and/or pathological data have been only partially successful. Recent progress in molecular genetics has identified the genic loci of hereditary ataxias and has allowed a more precise diagnosis of distinct genetic diseases. Trinucleotide repeat expansions has been recognized as a mechanism of disease in some autosomal dominant spinocerebellar ataxias (ADCA) (SCA1 to SCA7), including Machado-Joseph disease / SCA3, probably the most common form of ADCA in South Brazil, and Friedreich ataxia (GAA expansion - chromosome 9p). Familial alpha-tocopherol deficiency (chromosome 8q) may have a Friedreich ataxia phenotype and responds to the oral supplementaion with vitamin E. Familial episodic ataxias with (EA1 - chromosome 12p) and without (chromosome 19p - EA2) myokimia were identified, the first one caused by point mutations in the gene encoding the KCNA1 potassium voltage-gated channel. The gene responsible for ataxia-teleangiectasia (chromosome 1 lq) was found to encode a putative DNA binding protein kinase (ATM), related to the cell cycle control. One to 3% of the population are heterozygotic ATM gen carry and pose a higher risk of cancer when exposed to ionizing radiation. Molecular biology has provided us with useful tools to diagnosis and genetic counseling and, hopefully, will provide us with a better understanding of the pathogenesis and eventual treatment of the several forms of hereditary ataxias.

Key-words: cerebellar ataxia, cerebellar diseases, trinucleotides, genetics.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Agradecimentos - Os autores agradecem o inestimável apoio secretarial de Marina Ribeiro.

Aceite: 12-agosto-1997.

Dr. Wlater Oleschko Arruda - Rua Gonçalves Dias 713 - 80240-340 Curitiba PR - Brasil.

Referências bibliográficas

  • 1. Allotey R, Twells R, Cemal C, et al. The spinocerebellar ataxia II locus is located within a 3-cM interval on chromosome 12q23-24.1 Am J Hum Genet 1995;57:185-189.
  • 2. Arruda WO. Classificação das ataxias cerebelares hereditárias. Arq Neuropsiquiatr 1991;49:57-65.
  • 3. Arruda WO, Petzl-Erler ML, Cardoso MA, Lehner T, Ott J. Late onset autosomal dominant cerebellar ataxia: a family description and linkage analysis with the HLA system. Arq Neuropsiquiatr 1991;49:285-291.
  • 4. Baloh RW, Yue Q, Furman JM, Nelson SF. Familial episodic ataxia: clinical heterogeneity in four families linked to chromosome 19p. Ann Neurol 1997;41:8-16.
  • 5. Belal S, Cancel G, Stevanin G, et al. Clinical and genetic analysis of a Tunisian family with autosomal dominant cerebellar ataxia type 1 linked to the SCA2 locus. Neurology 1994;44:1423-1426.
  • 6. Ben Hamida C, Doerflinger N, Belal S, et al. Localization of Friedreich ataxia phenotype with selective vitamina E deficiency to chromosome 8q by homozigosity mapping. Nat Genet 1993;5:195-200.
  • 7. Benomar A, Krols L, Stevanin G, et al. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3pl2-p21.1. Nat Genet 1995;10:84-88.
  • 8. Brice A, Cancel G, Durr A, et al. SCA2 (spinocerebellar ataxia 2): another unstable CAG expansion. Molecular and clinical analysis of 101 patients. Neurology 1997;48(Suppl):A210.
  • 9. Browne D, Gancher ST, Nutt JG, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA 1. Nat Genet 1994;8:136-140.
  • 10. Bürk K, Abele M, Fetter M, et al. Autosomal dominant cerebellar ataxia type I: clinical features and MRI in families with SCAl, SCA2 and SCA3. Brain 1996;119:1497-1505.
  • 11. Burke JR, Winfield MS, Lewis KE et al. The Haw River syndrome: dentatorubral-pallidoluysian atrophy (DRPLA) in an African-American family. Nat Genet 1994;7:521-524.
  • 12. Campuzano V, Montermini L, Molto MD, et al. Friedreich's ataxia: autosomal recessive disease caused by an introni GAA triplet repeat expansion. Science 1996;271:1423-1426.
  • 13. Cancel G, Abbas N, Stevanin G, et al. Marked pheonotypic heterogeneity associated with expansion of a CAG reapeat sequence at the spinocerebellar ataxia 31 Machado-Joseph disease locus. Am J Hum Genet 1995;57:809-816.
  • 14. Chamberlain S, Shaw J, Rowland A. et al. Mapping of mutation causing Friedreich's ataxia to human chromosome 9. Nature 1988;334:248-250.
  • 15. Chung M-y, Ranum LPW, Duvick L, et al. Analysis of the CAG repeat expansion in spinocerebellar ataxia type 1: evidence for a possible mechanism predisposing to instability. Nat Genet 1993;5:254-258.
  • 16. Claus D. Zur Differentialdiagnostik der Friedreich Ataxic Nervenarzt 1986;60:26-31.
  • 17. Coutinho P, Andrade C. Autosomal dominant system degeneration in Portuguese families of the Azores Islands. Neurology 1978;28:703-709.
  • 18. David G, Giubti P, Abbas N, et al. The gene for autosomal dominant cerebellar ataxia type II is located ina 5-cM region in 3pl2-pl3: genetic and physical mapping of the SCA7 locus. Am J Hum Genet 1996;59:1328-1336.
  • 19. Dubourg O, Durr A, Cancel G, et al. Analysis of the SCAl CAG repeat in a large number of families with dominant ataxia: clinical and molecular correlations. Ann Neurol 1995;37:176-180.
  • 20. Durr A, Cossee M, Agid Y, et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N Engl J Med 1996.335:1169-1175.
  • 21. Durr A, Smadja D, Cancel G, et al. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from thre unrelated SCA2 families. Brain 1995;118:1573-1581.
  • 22. Enevoldson TP, Sanders MD, Harding AE. Autosomal dominant cerebellar ataxia qith pigmentary macular dystrophy: a clinical and genetic study of eight families. Brain 1994;117:445-460.
  • 23. Farlow MR, DeMyer W, DIouhy S, Hodes ME. X-linked recessive inheritance of ataxia and adult-onset dementia: clinical features and preliminary linkage studies. Neurology 1987;37:602-607.
  • 24. Filia A, De Michele G, Banfi S, et al. Has spinocerebellar ataxia type 2 a distinct phenotype? Genetic and clinical study of an Italian family. Neurology 1995;45:793-796.
  • 25. Frontali M, Spadaro M, Giunti P, et al. Autosomal dominant pure cerebellar ataxia: neurological and genetic study. Brain 1992;115:1647-1654.
  • 26. Gardner K, Alderson K, Galster B, et al. Autosomal dominant spinocerebellar ataxia: clinical description of a distinct hereditary ataxia and genetic localization to chromosome 16 (SCA4) in a Utah kindred. Neurology 1994;44(Suppl 2): A361.
  • 27. Gatti RA, Berkel I, Boder E, et al. Localization of an ataxia-teleangiectasia gene to chromosome Uq22-23. Nature 1988;336:577-580.
  • 28. Gatti RA, Boder E, Vinters HV, et al. Ataxia-teleangiectasia: an interdisciplinary approach to pathogenesis. Medicine 1991;70:99-119.
  • 29. Genis D, Junck L, Fink JK. Machado-Joseph disease and SCA3: the genotype meets the phenotype. Neurology 1996;46:4-8.
  • 30. Geschwind D, Perlman S, Pulst S. Frequency and clinical pheonotype of mutations in the gene for spinocerebellar ataxia type 2 (SCA2). Neurology 1997;48 (Suppl):A176.
  • 31. Gispert S, Twells R, Orozco G, et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1. Nat Genet 1993;4:295-299.
  • 32. Giunti P, Sweeney MG, Harding AE. Detection of the Machado-Joseph disease I spinocerebellar ataxia three nucleotide repeat in families with autosomal dominant motor disorders, including the Drew family of Walworth. Brain 1995;118:1077-1085.
  • 33. Gouw LG, Digre KB, Harris CP, et al. Autosomal dominant cerebellar ataxia with retinal degeneration: clinical, neuropathologic, and genetic analysis of a large kindred. Neurology 1994;44:1441-1447.
  • 34. Harding AE. Early onset cerebellar ataxia with retained tendon reflexes: a clinical and genetic study of a disorder distinct from Friedreich's ataxia. J Neurol Neurosurg Psychiatry 1981;44:503-508.
  • 35. Harding AE. The hereditary ataxias and related disorders. Edinburgh: Churchill-Linvingstone, 1984:266.
  • 36. Harding AE, Matthews S, Jones S, et al. Spinocerebellar degeneration associated with a selective defect of vitamin E absorption. N Engl J Med 1985;313:32-35.
  • 37. Hentati A, Deng HX, Hung WY, et al. Human alpha-tocopherol transfer protein: gene structure and mutations in familial vitamin E deficiency. Ann Neurol 1996;39:295-300.
  • 38. Hoffman PM, Stuart WH, Earle KM, et al. Hereditary late onset cerebellar degeneration. Neurology 1971; 21:771-775.
  • 39. Jackson JF, Currier RD, Terasaki PI, Morton NE. Spinocerebelar ataxia and HLA linkage: risk prediction by HLA typing. N Engl J Med 1977;296:1138-1141.
  • 40. Jodice C, Frontali M, Parsichetti F, et al. The gene for spinal cerebellar ataxia 1 (SCA1) is flanked by two closely linked highly polymorphic microsatellite loci. Hum Mol Genet 1993;2:1383-1387.
  • 41. Klostermann W, Zuhlke C, Heide W, et.al. Slow saccades and other eye movement disorders in spinocerebellar atrophy type 1. J Neurol 1997;244:105-111.
  • 42. Koskinen T, Santavuori P, Sainio K, et al. Infantile onset spinocerebellar ataxia with sensory neuropathy: a new inherited disease. J Neurol Sci 1994,121:50-56.
  • 43. Krendel DA, Gilchrest JM, Johnson AO, Bossen EH. Isolated deficiency of vitamin E with progressive neurologic deterioration. Neurology 1987;37:538-540.
  • 44. La Spada AR, Paulson HL, Fischbeck KH. Trinucleotide repeat expansion neurological disease. Ann Neurol 1994;36:814-822.
  • 45. Lima L, Coutinho P. Clinical criteria for diagnosis of Machado-Joseph disease: report of a non-Azorean Portuguese family. Neurology 1980;30:319-322.
  • 46. Lopes-Cendes I, Andermann E, Attig E, et al. Confirmation of the SCA-2 locus as an alternative locus for dominantly inherited spinocerebellar ataxias and refinement of the candidate region. Am J Hum Genet 1994;54:774-781.
  • 47. Lopes-Cendes I, Andermann E, Nechiporuk A, et al. Frequency and molecular characteristics of the spinocerebellar ataxia type 2 mutation. Neurology 1997;48(Suppl):A177.
  • 48. Lopes-Cendes I, Silveira I, Maciel P, et al. Limits of clinical assessment in the accurate diagnosis of Machado-Joseph disease. Arch Neurol 1996;53:1168-1174.
  • 49. Manila T, McCall A, Subramony SH, Zoghbi HY. Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado-Joseph disease. Ann Neurol 1995;38:68-72.
  • 50. Middleton LT, Christodoulou K. Classification of autossomal recessive spinocerebellar ataxias (ARSCA) based on recent genetic studies. Neurology 1997;48 (Suppl):A177.
  • 51. Nagafuchi S, Yanagisawa H, Sato K, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Genomics 1994;6:14-18.
  • 52. Nakano KK, Dawson DM, Spence A. Machado disease: a hereditary ataxia in Portuguese immigrants to Massachusetts. Neurology 1972;22:49-55.
  • 53. Nielsen JE, Sorensen SA, Hasholt L, Norremolle A. Dentatorubral-pallidoluysian atrophy: clinical features of a five-generation Danish family. Mov Disord 1996;11:533-541.
  • 54. Nikali K, Isosomppi J, Lonqvist T et al. Toward cloning of a novel ataxia gene: refined assingment and physical map of IOSCA locus (SCA8) on 10q24. Genomics 1997; 39:185-191.
  • 55. Nikali K, Suomalainen A, Terwilliger J, et al. Random search for shared chromosomal regions in four affected individuals: the assignment of a new hereditary ataxia locus. Am J Hum Genet 1995; 56:1088-1095.
  • 56. Orozco DG, Nodarse FA, Cordovés SR, Augurger G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology 1990;40:1369-1375.
  • 57. Orr HT, Chung M, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993;4:221-226.
  • 58. Ranum LPW, Lundgren JK, Schut LI, et al. Spinocerebellar ataxia type I and Machado-Joseph disease: incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia. Am J Hum Genet 1995;57:603-608.
  • 59. Ranum LPW, Schutt LJ, Lundgren JK, et al. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet 1994;8:280-284.
  • 60. Richter RB. Late cortical cerebellar atrophy: a form of hereditary cerebellar ataxia. J Human Genet 1950;2:1-6.
  • 61. Romanul FCA, Fowler HL, Radvany J, et al. Azorean disease of the nervous system. N Engl J Med 1977;296:1505-1508.
  • 62. Rosenberg RN. Autosomal dominant cerebellar phenotypes: the genotype has settled the issue. Neurology 1995;45:1-5.
  • 63. Rosenberg RN. DNA-tripIet repeats and neurologic diseases. N Engl J Med 1996; 335:1222-1224.
  • 64. Rosenberg RN, Nyhan WL, Bay C, Shore P. Autosomal dominant striatonigral degeneration. Neurology 1976;26:703-714.
  • 65. Roses AD. From genes to mechanisms to therapies: lessons to be learned from neurological diseases. Nature Med 1996;2:267-269.
  • 66. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia teleangiectasia gene with a product similar to PI-3 kinase. Science 1995;268:1749-1753.
  • 67. Sequeiros J, Coutinho P. Epidemiology and clinical aspects of Machado-Joseph disease. In: Harding AE, Deufel T. Inherited ataxias. Adv Neurol 1993,61:139-153.
  • 68. Silveira I, Lopes-Cendes I, Kish S, et al. Frequency of spinocerebellar type I, dentatorubropallidoluyisian atrophy, and Machado-Joseph disease in a large group of spinocerebellar atrophy patients. Neurology 1996;46:214-218.
  • 69. Sokol RJ, Kayden HJ, Betas DB, et al. Isolated vitamin E deficiency in the absence of fat-mal-absorption - familial and sporadic cases: caracterization and investigation of causes. J Lab Clin Med 1988;111:548-559.
  • 70. Spira PJ, McLeod JG, Evans WA. A spinocerebellar degeneration with X-linked inheritance. Brain 1979;102:27-41.
  • 71. Stevanin G, Cancel G, Durr A, et al. The gene for spinal cerebellar ataxia 3 (SCA3) is located in a region of ~3 cM on chromosome 14q24.3-q32.2 Am J Hum Genet 1995;56:193-201.
  • 72. Suzuki Y, Sasaki H, Wakisaka A, et al. Spinocerebellar ataxia I (SCA-I) in the Japanese: analysis of CAG trinucleotide repeat expansion and instability of the repeat for paternal transmission. Jap J Hum Genet 1995;40:131-143.
  • 73. Takano T, Yamanouchi Y, Nagafuchi S, Yamada M. Assignment of the dentatorubral and pallidoluysian atrophy (DRPLA) gene to I2pl3.31 by fluorescence in situ hybridization. Genomics 1996;32:171-172.
  • 74. Takano H, Ikeuchi T, Igarashi S. et al. A molecular genetic study on autosomal dominant ataxias in Japanese: comparison of the prevalence and CAG repeat expansions amons spinocerebellar ataxia (SCAl), spinocerebellar ataxia type 2 (SCA2), Machado-Joseph disease (MJD) and dentatotrubral-pallidoluysian atrophy (DRPLA). Neurology 1997;48(Suppl):A209.
  • 75. Takiyama Y, Igarishi S, Rogaeva EA, et al. Evidence for inter-generational instability in the CAG reapeats in the MJD I gene and for conserved haplotype at flanking markers amongst Japanese and Caucasian subsjects with Machado-Joseph disease. Hum Mol Genet 1995; 4:1137-1146.
  • 76. Takiyama Y, Nishisawa M, Tanaka H, et al. The gene for Machado-Joseph disease maps to chromosome 14q. Nat Genet 1993;3:300-304.
  • 77. Teh BT, Silburn P, Lindblad K, et al. Familial periodic cerebellar ataxia without myokymia maps to a 19 cM region on 19pl3. Am J Hum Genet 1996;56:1443-1449.
  • 78. Teive HAG, Arruda WO, Trevisol PCB, et al. Spinocerebellar ataxia: a genetic study in 30 Brazilian families. Neurology 1997;48(Suppl):A177.
  • 79. Titica J, Van Bogaert L. Heredo-degenerative hemiballismus. Brain 1946;69:251-263.
  • 80. Twist EC, Casabon LK, Ruttledge MH et al. Machado-Joseph disease maps to the same region of chromosome 14 as the spinocerebellar ataxia type 3 locus. J Med Genet 1995;32:25-31.
  • 81. Vlghetto A, Froment JC, Trillet M, Aimard G. Magnetic resonance imaging in familial paroxysmal ataxia. Arch Neurol 1988;45:547-549.
  • 82. Warner TT, Lennox GG, Janota I, Harding AE. Autosomal dominant dentatorubropallidoluysian atrophy in the United Kingdom. Mov Disord 1994;9:289-296.
  • 83. Yakura H, Wasisaka A, Fujimori S, Itakura K. Hereditary ataxia and HLA genotypes. N Engl J Med 1974;291:154-155.
  • 84. Yokota T, Wada Y, Furukawa T, et al. Adult-onset spinocerebellar syndrome with idiopathic vitamin E deficiency. Ann Neurol 1987;22:84-87.
  • 85. Zappacosta B, Gellera C, Mazzuchelli F, et al. Clinical and genetic studies in Italian autosomal dominant cerebellar ataxias. Neurology 1997;48(Suppl):A177.
  • 86. Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha-la-voltage-dependent calcium channel. Nat Genet 1997;15:62-69.

Datas de Publicação

  • Publicação nesta coleção
    18 Out 2010
  • Data do Fascículo
    Set 1997
location_on
Academia Brasileira de Neurologia - ABNEURO R. Vergueiro, 1353 sl.1404 - Ed. Top Towers Offices Torre Norte, 04101-000 São Paulo SP Brazil, Tel.: +55 11 5084-9463 | +55 11 5083-3876 - São Paulo - SP - Brazil
E-mail: revista.arquivos@abneuro.org
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Acessibilidade / Reportar erro