Acessibilidade / Reportar erro

CHEMICAL COMPOSITION, BIOLOGICAL ACTIVITIES AND USES OF ANACARDIACEAE SPECIES: AN UPDATED REVIEW

Abstract

The present review, with 169 references, describes a critical updated compilation of studies regarding the Anacardiaceae family. Firstly, it is shown a detailed report of the chemical composition (essential oils, terpenoids, flavonoids, alkyl and alkenyl phenols, and other compounds) of species of all studied genera, followed by the biological properties (in vitro and in vivo activities) of extracts, enriched fractions, and pure new isolated metabolites. Furthermore, it is reported herein that some deposited processes developed with Anacardiaceae spp. (cosmetic and pharmacological compositions, besides some technological applications) as well as new findings about the biosynthesis of phenolic lipids, the primary chemical marker of the family. Consequently, these outcomes highlight the relevance of this family in developing natural products’ chemistry from 2006 to now.

Keywords:
Anacardiaceae; specialized metabolites; bioactivity; biosynthesis


INTRODUCTION

Anacardiaceae is a family consisting of about 600 species distributed in 76 genera. The genera are subdivided into five tribes (Anacardieae, Dobineae, Rhoeae, Semecarpeae, and Spondiadeae). The plants of this family are known as sources of edible fruits and condiments such as mango, cashew, pistachios (Pistacia spp.), sumac (Rhus coriaria) and pink peppercorns (Schinus terebinthifolia). Approximately 25% of genera present toxic phenolics, compounds responsible for several contact dermatitis. In general, the poisonous species of this family are restricted to the tribes Anacardieae, Rhoeae, and Semecarpeae.11 Correia, S. J.; David, J. P.; David, J. M.; Quim. Nova 2006, 29, 1287. [Crossref ]
Crossref...
, 22 Baer, H. In The Poisonous Anacardiaceae; Kinghorn, A. D., eds.; Columbia Univ. Press: New York, 1979, p. 161-170.

Phenolic and catecholic lipids are usual compounds present in these plants, which are usually responsible for their toxic properties, whether alone or in mixtures of different saturated or unsaturated aliphatic chains. These compounds are present in different plant parts and frequently occur in Rhus species. Thus, species of this family have been frequently studied from a chemical and biological point of view due to their potential as sources of new bioactive compounds. The most studied genera are Mangifera, Spondias, Lannea, Toxicodendron (Rhus), Schinus, Pistacia, Lithraea, Tapirira, Semecarpus, Melanorrhoea and Anacardium. However, most of Anacardiaceae species remain unknown regarding their chemical composition, alongside pharmacological and other biological activities. Although recent reviews about some classes or specific compounds in Anacardiaceae33 Schulze-Kaysers, N.; Feuereisen, M. M.; Schieber, A.; RSC Adv. 2015, 5, 73301. [Crossref ]
Crossref...
,44 Singh, S. K.; Sharma, V. K.; Kumar, Y. ; Kumar, S. S.; Sinha, S. K.; Herba Pol. 2009, 55, 126. [Link] accessed in August 2023
Link...
and genus Schinus55 El-Nashar, H. A. S.; Mostafa, N. M.; Abd El-Ghffar, E. A.; Eldahshan, O. A.; Singab, A. N. B.; Nat. Prod. Res. 2022, 36, 4839. [Crossref ]
Crossref...
were performed, there are just two reviews of all families, the last one dated from 2006.11 Correia, S. J.; David, J. P.; David, J. M.; Quim. Nova 2006, 29, 1287. [Crossref ]
Crossref...
, 22 Baer, H. In The Poisonous Anacardiaceae; Kinghorn, A. D., eds.; Columbia Univ. Press: New York, 1979, p. 161-170.

The current review with approximately 170 references is an update of the chemical composition, biological activities in extracts and pure compounds isolated from different Anacardiaceae plant species since 2006. Moreover, some processes, technological applications and new insights about the biosynthesis of phenolic lipids were also reviewed.

LITERATURE SEARCH STRATEGY

A bibliographic survey of scientific articles published in indexed journals and deposited process patents was performed to develop this review. For this purpose, the databases SciFinder, Web of Science, Science Direct, PubMed, Scielo and Google Scholar were utilized. All articles published from 2006 to March 2023 were considered, including papers not considered in a previous review. In the quest “Advanced search” feature combined with the keywords “Anacardiaceae”, “chemical composition”, “bioactivity”, “biosynthesis”, and all the genera described in specialized literature were used.66 Mobot Research, https://www.mobot.org/mobot/research/apweb/genera/anacardiaceaegen.html, accessed in August 2023.
https://www.mobot.org/mobot/research/apw...
The titles of articles and patents found were scanned and organized in a file when considered meaningful. Afterward, duplicates were removed and, thus, the abstracts of the articles obtained were checked for relevant information as part of the inclusion strategy. Finally, all articles and patents were carefully read and, after reviewing, 149 papers and 21 patents were selected to compose the present work.

CHEMICAL COMPOSITION OF ANACARDIACEAE spp.

Essential oils (EOs) and volatile other compounds (VOCs)

Studies concerning to essential oils (EOs) and volatile organic compounds (VOCs) of Anacardiaceae family have been frequently developed, especially for edible species such as fruits and seeds. The EOs are usually obtained from plants’ leaves, flowers and other aerial parts. The most recent works will be highlighted herein, including the compositions of these metabolites in different species and genera, the identification of new substances and other relevant information.

The investigation of the EOs’ chemical composition of Mangifera indica (var. “coquinho”)77 Simionatto, E.; Peres, M. T. L. P.; Hess, S. C.; da Silva, C. B.; Chagas, M. O.; Poppi, N. R.; Prates, C. B.; Matos, M. F. C.; Santos, E. C. S.; de Carvalho, J. E.; J. Essent. Oil Res. 2010, 22, 596. [Crossref ]
Crossref...
indicated that the sesquiterpene hydrocarbons are the leading representative compounds (66.4%) against the oxygenated ones (8.7%), which have presented anticancer, antimicrobial and antioxidant activities. On the other hand, in barks of M. indica L. was reported88 Nyegue, M. A.; Kemegne, G. A.; Kamdem, S. L. S.; François-Xavier, E.; Menut, C.; Nat. Prod. Commun. 2018, 13, 903. [Crossref ]
Crossref...
that the sesquiterpene hydrocarbons reached 97.0% in an analog study (Table 1). The other components of these EOs are monoterpenes (≤ 2%).

Table 1
Relative composition (%) of the more abundant compounds in the essential oils from some Mangifera indica77 Simionatto, E.; Peres, M. T. L. P.; Hess, S. C.; da Silva, C. B.; Chagas, M. O.; Poppi, N. R.; Prates, C. B.; Matos, M. F. C.; Santos, E. C. S.; de Carvalho, J. E.; J. Essent. Oil Res. 2010, 22, 596. [Crossref ]
Crossref...
, 88 Nyegue, M. A.; Kemegne, G. A.; Kamdem, S. L. S.; François-Xavier, E.; Menut, C.; Nat. Prod. Commun. 2018, 13, 903. [Crossref ]
Crossref...
varieties

Rhus cotinus L. (syn. Cotinus coggygria Scop.) is a European tree commonly grown as an ornamental plant, presenting different cultivars due to the different purple foliage and flowers. The wood of this species presented economic importance, since it was formerly used to make the yellow dye called young fustic (fisetin), now replaced by synthetic dyes. The profile of EOs obtained from the same species varies according to the biome, the part of the plant (fresh aerial parts,99 Joshi, S. C.; Mathela, C. S.; J. Nat. Prod. Plant Resour. 2014, 4, 39. [Link] accessed in August 2023
Link...
leaves1010 Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Çenet, M.; Öztürk, B.; Balcilar, M.; Nat. Prod. Res. 2014, 28, 2150. [Crossref ]
Crossref...
or flowering aerial parts1111 Fraternale, D.; Ricci, D.; Nat. Prod. Commun. 2018, 13, 1175. [Crossref ]
Crossref...
) and seasonally, even between regions that are close in latitude. Thus, the total composition of monoterpenes was not similar in both cases (Table 2).

Table 2
Relative composition (%) of the most abundant essential oils from Rhus cotinus 99 Joshi, S. C.; Mathela, C. S.; J. Nat. Prod. Plant Resour. 2014, 4, 39. [Link] accessed in August 2023
Link...
, 1010 Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Çenet, M.; Öztürk, B.; Balcilar, M.; Nat. Prod. Res. 2014, 28, 2150. [Crossref ]
Crossref...
, 1111 Fraternale, D.; Ricci, D.; Nat. Prod. Commun. 2018, 13, 1175. [Crossref ]
Crossref...

Pistacia spp. (such as P. lentiscus L., P. vera, P. terebinthus L., and P. khinjuk Stocks) are employed in Europe and the Mediterranean region as food, for cooking, and for other purposes (e.g., the oleoresin). Consequently, this is the most probable reason for the expressive number of studies dealing with the EO composition of these species.

The EOs profile of P. lentiscus is similar to species from different habitats1212 Negro, C.; De Bellis, L.; Miceli, A.; J. Essent. Oil Res. 2015, 27, 23. [Crossref ]
Crossref...
(Southern Italy and Morocco, Tunisia, Greece or France), but distinct from other EO profiles obtained from specimens from Egypt, Sardinia Island/Italy and Spain, probably due to the different climate and seasonal changes, besides insect presence, physicochemical soil properties, extraction methods and others. Furthermore, mastic gum essential oils (MGEOs) of wild plants of P. lentiscus1313 Tabanca, N.; Nalbantsoy, A.; Kendra, P. E.; Demirci, F.; Demirci, B.; Molecules 2020, 25, 2136. [Crossref ]
Crossref...
are quantitatively different compared to the cultivated plants, so that the tree age could be another affecting this chemical composition. Other subsequent studies1414 Abed, A.; Rachid, D.; Catherine, M.; Ismahene, S.; Aicha, L.; Nadia, B.; Hichem, D.; Charef, R.; Mehdi, E.; Farida, T.; Mounira, O. K.; Lahouari, D.; Int. J. Biosci. 2017, 10, 146. [Crossref ]
Crossref...
, 1515 Komaitis, M.; Gardeli, C.; Papageorgiou, V. ; Mallouchos, A.; Theodosis, K.; Food Chem. 2008, 107, 1120. [Crossref ]
Crossref...
present several data that confirm the exact behavior of the EOs profile.

Similarly, the EOs content in P. terebinthus1616 Hadjari, A.; Pulaj, B.; Mustafa, B.; Nelson, K.; Quave, C. L.; BMC Complementary Altern. Med. 2016, 16, 147. [Crossref ]
Crossref...
, 1717 Ulukanli, Z.; Karabörklü, S.; Öztürk, B.; Çenet, M.; Balcilar, M.; J. Food Process. Preserv. 2014, 38, 815. [Crossref ]
Crossref...
is also related to the plant organ and population origins. In these studies, the variability of the composition was carefully analyzed by the principal component analysis (PCA), and the conclusion is that abiotic (climatic, edaphic, chemical, among others) and biotic (genotypic diversity and nutritional variations) factors may be related to these variations. At last, since no previous published data deals with the P. khinjuk EO leaf profile, it was impossible to compare the current study with the EO composition of other P. khinjuk1818 Abolghasemi, A.; Shojaaddini, M.; Tajabadipour, A.; Sefidkon, F.; J. Essent.Oil Bear. Plants 2018, 21, 796. [Crossref ]
Crossref...
trees from other regions (particularly from Iran).

Studies employing PCA (Principal Component Analysis) and HCA (Hierarchical Cluster Analysis) permitted to evaluate if EO constituents could reflect the chemotaxonomic relationships in Pistacia species. Based on the most abundant compounds present in the EOs (contents ≥ 3.5%), the groups were classified as chemotypes (i) Group A (α-pinene, β-pinene, limonene and terpinen-4-ol, P. lentiscus) and (ii) Group B (B1, α-terpinene, P. terebinthus; B2, limonene, P. vera).1919 Ismail, A.; Lamia, H.; Mohsen, H.; Samia, G.; Bassem, J.; Sci. Int. 2013, 1, 148. [Crossref ]
Crossref...
Table 3 summarizes the volatile compounds from Pistacia spp., and the examination of the data clearly indicates the monoterpenes are the main compounds – especially α- and β-pinenes (in P. lentiscus), α-pinene, limonene, and β-ocimene (in P. terebinthus and P. vera) and myrcene and eudesmol (in P. khinjuk).

Table 3
Relative composition (%) of the most abundant essential oils from Pistacia spp.1212 Negro, C.; De Bellis, L.; Miceli, A.; J. Essent. Oil Res. 2015, 27, 23. [Crossref ]
Crossref...
, 1313 Tabanca, N.; Nalbantsoy, A.; Kendra, P. E.; Demirci, F.; Demirci, B.; Molecules 2020, 25, 2136. [Crossref ]
Crossref...
, 1414 Abed, A.; Rachid, D.; Catherine, M.; Ismahene, S.; Aicha, L.; Nadia, B.; Hichem, D.; Charef, R.; Mehdi, E.; Farida, T.; Mounira, O. K.; Lahouari, D.; Int. J. Biosci. 2017, 10, 146. [Crossref ]
Crossref...
, 1515 Komaitis, M.; Gardeli, C.; Papageorgiou, V. ; Mallouchos, A.; Theodosis, K.; Food Chem. 2008, 107, 1120. [Crossref ]
Crossref...
, 1616 Hadjari, A.; Pulaj, B.; Mustafa, B.; Nelson, K.; Quave, C. L.; BMC Complementary Altern. Med. 2016, 16, 147. [Crossref ]
Crossref...
, 1717 Ulukanli, Z.; Karabörklü, S.; Öztürk, B.; Çenet, M.; Balcilar, M.; J. Food Process. Preserv. 2014, 38, 815. [Crossref ]
Crossref...
, 1818 Abolghasemi, A.; Shojaaddini, M.; Tajabadipour, A.; Sefidkon, F.; J. Essent.Oil Bear. Plants 2018, 21, 796. [Crossref ]
Crossref...
, 1919 Ismail, A.; Lamia, H.; Mohsen, H.; Samia, G.; Bassem, J.; Sci. Int. 2013, 1, 148. [Crossref ]
Crossref...

Spondias L. is a genus with about ten species, occuring mainly in Asia, three or four species native to the Neotropics, most of them produce edible fruits. A previous study with S. pinnata from east India showed that the major VOCs of whole green fruits were isopropyl myristinate (36.85%), isophorone (6.55%), limonene (4.46%) and linalool (3.57%).2020 Satpathy, G.; Tyagi, Y. K.; Gupta, R. K.; Food Res. Int. 2011, 44, 2076. [Crossref ]
Crossref...
However, the EOs from fruits of specimens growing in Egypt was composed mainly of long-chain alkanes (51.1%) besides fatty acid esters (25.7%). The relative most predominant component was n-nonacosane (25.0%).2121 Sameh, S.; Al-Sayed, E.; Labib, R. M.; Singab, A. N. B.; Ind. Crops Prod. 2019, 137, 468. [Crossref ]
Crossref...
Therefore, these results indicate that the profile of the significant constituents of EOs in the green fruits, ripe fruits and fruit peels can change with the plant part studied, even though the extraction methods or geographic locations could also influence such differences, which may partly determine the variation in bioactivity.2222 Ren, L.; Jing, Y. J.; Zhen, S. X.; Fei, W. Y. ; Corlett, R. T.; Kai, X. Y. ; Bin, H. H.; Molecules 2020, 25, 343. [Crossref ]
Crossref...

Variations in the EO compositions could be related to the investigated species’ cultivation, vegetative stage, source or seasonal growing. Furthermore, an increase in the oxygenated monoterpenoid amount, as well as a decrease in the sesquiterpenoid hydrocarbons content, was observed due to the dehydrating of the leaves, while the contents of some minor metabolites (geraniol, eugenol, borneol, terpinen-4-ol, besides others) were stable in the two oils, although were present in small quantities (< 1.0%).2323 Oladimeji, A. O.; Aliyu, M. B.; Ogundajo, A. L.; Babatunde, O.; Adeniran, O. I.; Balogun, O. S.; Pharm. Biol. 2016, 54, 2674. [Crossref ]
Crossref...
Table 4 summarizes the data and presents additional compounds of some Spondias spp.

Table 4
Relative composition (%) of the most abundant essential oils from Spondias spp.2222 Ren, L.; Jing, Y. J.; Zhen, S. X.; Fei, W. Y. ; Corlett, R. T.; Kai, X. Y. ; Bin, H. H.; Molecules 2020, 25, 343. [Crossref ]
Crossref...
, 2323 Oladimeji, A. O.; Aliyu, M. B.; Ogundajo, A. L.; Babatunde, O.; Adeniran, O. I.; Balogun, O. S.; Pharm. Biol. 2016, 54, 2674. [Crossref ]
Crossref...

Table 5 summarizes the last updates in the VOCs’ content of Schinus species.2424 Lago, J. H. G.; Santana, J. S.; Sartorelli, P.; Guadagnin, R. C.; Matsuo, A. L.; Figueiredo, C. R.; Soares, M. G.; da Silva, A. M.; Pharm. Biol. 2012, 50, 1248. [Crossref ]
Crossref...
, 2525 Gazim, Z. C.; Bortolucci, W. C.; de Oliveira, H. L. M.; Silva, E. S.; Vilas Boas, M. R.; de Carvalho, T. M.; Campo, C. F. A. A.; Gonçalves, J. E.; Piau Júnior, R.; Aust. J. Crop Sci. 2018, 12, 1645. [Crossref ]
Crossref...
, 2626 Fernandes, M. Z. L. C. M.; Zanini, S. F.; Affonso, C. R. G.; Fernandes, R. M.; de Oliveira, J. M. G.; Martins, M. C. C.; de Lima, S. G.; Souza Júnior, G. R.; J. Braz. Chem. Soc. 2012, 23, 180. [Crossref ]
Crossref...
, 2727 Sartorelli, P. ; Santana, J. S.; Guadagnin, R. C.; Lago, J. H. G.; Pinto, E. G.; Tempone, A. G.; Stefani, H. A.; Soares, M. G.; da Silva, A. M.; Quim. Nova 2012, 35, 743. [Crossref ]
Crossref...
, 2828 dos Santos, A. C.; Rossato, M.; Agostini, F.; Serafni, L. A.; dos Santos, P. L.; Molon, R.; Dellacassa, E.; Moyna, P.; J. Essent. Oil Bear. Plan. 2009, 12, 16. [Crossref ]
Crossref...
, 2929 Pawlowski, A.; Kaltchuk-Santos, E.; Zini, C. A.; Caramão, E. B.; Soares, G. L. G.; S. Afr. J. Bot. 2012, 80, 96. [Crossref ]
Crossref...
, 3030 Chaves, D. S. A.; Cavalcanti, A. S.; Alves, M. S.; da Silva, L. C. P.; Patrocínio, D. S.; Sanches, M. N.; de Souza, M. A. A.; Rev. Bras. Farmacogn. 2015, 25, 356. [Crossref ]
Crossref...
, 3131 Barbosa, L. C. A.; Montanari, R. M.; Demuner, A. J.; Silva, C. J.; Andrade, N. J.; Ismail, F. M. D.; Barbosa, M. C. A.; Molecules 2012, 17, 9728. [Crossref ]
Crossref...
, 3232 Simionatto, E.; Chagas, M. O.; Peres, M. T. L. P.; Hess. S. C.; da Silva, C. B.; Ré-Poppi, N.; Gebara, S. S.; Corsino, J.; Morel, A. F.; Stuker, C. Z.; Matos, M. F. C.; de Carvalho, J. E.; J. Essent.Oil Bear. Plants 2011, 14, 590. [Crossref ]
Crossref...
, 3333 Afifi, F. U.; Aboalhaija, N. H.; Awwad, O.; Khalil, E.; Abbassi, R.; Abaza, I. F.; Chem. Biodiversity 2019, 16, e1900388. [Crossref ]
Crossref...
, 3434 Budel, J. M.; Machado, C. D.; Raman, V.; Rehman, J. U.; Maia, B. H. L. N. S.; Meneghetti, E. K.; Almeida, V. P.; Silva, R. Z.; Farago, P. V. ; Khan, I. A.; Rev. Bras. Farmacogn. 2019, 29, 1. [Crossref ]
Crossref...
, 3535 Rodilla, J. M.; Rocha, P. M. M.; Diéz, D.; Elder, H.; Guala, M. S.; Silva, L. A.; Pombo, E. B.; Molecules 2012, 17, 12023. [Crossref ]
Crossref...
, 3636 Machado, M. M.; de Campos, M. M. A.; Duarte, J. A.; Zambrano, L. A. B.; Quintana, L. D.; Rocha, M. B.; Schmitt, E. G.; Boligon, A. A.; de Oliveira, L. F. S.; J. Evidence-Based Complementary Altern. Med. 2018, 1, 1. [Crossref ]
Crossref...
, 3737 Descamps, L. R.; Chopa, C. S.; Ferrero, A. A.; Nat. Prod. Commun. 2011, 6, 887. [Crossref ]
Crossref...
, 3838 Murray, A. P.; Gurovic, M. S. V. ; Rodríguez, S. A.; Murray, M. G.; Ferrero, A. A.; Nat. Prod. Commun. 2009, 4, 873. [Crossref ]
Crossref...
Different parts of Schinus terebinthifolia Raddi (sin.: Schinus terebinthifolia Raddi) and S. molle L. are widely studied, probably due to the employment of these species as folk medicines, and the fruits are used as spicier (pink pepper). The studies with the composition of S. terebinthifolia leaves EOs corroborated with seasonal variation previously observed. The oil obtained from specimens harvested in March showed a high concentration of myrcene (15.4%) and (E)-caryophyllene (14.7%); in July, these constituents represented only 0.8% and 2.7% (respectively) of the total oil. Germacrene-D content increased from 8.8% in March to 21.0% in July, whereas α-phellandrene, undetectable in oils collected in March, rose to 18.2% in July. The EOs obtained in July contained 15.5% of oxygenated sesquiterpenes, and these compounds are present in only 5.8% in the oils obtained from March studies.3131 Barbosa, L. C. A.; Montanari, R. M.; Demuner, A. J.; Silva, C. J.; Andrade, N. J.; Ismail, F. M. D.; Barbosa, M. C. A.; Molecules 2012, 17, 9728. [Crossref ]
Crossref...

Table 5
Relative composition (%) of the most abundant essential oils from different parts of Schinus spp.2424 Lago, J. H. G.; Santana, J. S.; Sartorelli, P.; Guadagnin, R. C.; Matsuo, A. L.; Figueiredo, C. R.; Soares, M. G.; da Silva, A. M.; Pharm. Biol. 2012, 50, 1248. [Crossref ]
Crossref...
, 2525 Gazim, Z. C.; Bortolucci, W. C.; de Oliveira, H. L. M.; Silva, E. S.; Vilas Boas, M. R.; de Carvalho, T. M.; Campo, C. F. A. A.; Gonçalves, J. E.; Piau Júnior, R.; Aust. J. Crop Sci. 2018, 12, 1645. [Crossref ]
Crossref...
, 2626 Fernandes, M. Z. L. C. M.; Zanini, S. F.; Affonso, C. R. G.; Fernandes, R. M.; de Oliveira, J. M. G.; Martins, M. C. C.; de Lima, S. G.; Souza Júnior, G. R.; J. Braz. Chem. Soc. 2012, 23, 180. [Crossref ]
Crossref...
, 2727 Sartorelli, P. ; Santana, J. S.; Guadagnin, R. C.; Lago, J. H. G.; Pinto, E. G.; Tempone, A. G.; Stefani, H. A.; Soares, M. G.; da Silva, A. M.; Quim. Nova 2012, 35, 743. [Crossref ]
Crossref...
, 2828 dos Santos, A. C.; Rossato, M.; Agostini, F.; Serafni, L. A.; dos Santos, P. L.; Molon, R.; Dellacassa, E.; Moyna, P.; J. Essent. Oil Bear. Plan. 2009, 12, 16. [Crossref ]
Crossref...
, 2929 Pawlowski, A.; Kaltchuk-Santos, E.; Zini, C. A.; Caramão, E. B.; Soares, G. L. G.; S. Afr. J. Bot. 2012, 80, 96. [Crossref ]
Crossref...
, 3030 Chaves, D. S. A.; Cavalcanti, A. S.; Alves, M. S.; da Silva, L. C. P.; Patrocínio, D. S.; Sanches, M. N.; de Souza, M. A. A.; Rev. Bras. Farmacogn. 2015, 25, 356. [Crossref ]
Crossref...
, 3131 Barbosa, L. C. A.; Montanari, R. M.; Demuner, A. J.; Silva, C. J.; Andrade, N. J.; Ismail, F. M. D.; Barbosa, M. C. A.; Molecules 2012, 17, 9728. [Crossref ]
Crossref...
, 3232 Simionatto, E.; Chagas, M. O.; Peres, M. T. L. P.; Hess. S. C.; da Silva, C. B.; Ré-Poppi, N.; Gebara, S. S.; Corsino, J.; Morel, A. F.; Stuker, C. Z.; Matos, M. F. C.; de Carvalho, J. E.; J. Essent.Oil Bear. Plants 2011, 14, 590. [Crossref ]
Crossref...
, 3333 Afifi, F. U.; Aboalhaija, N. H.; Awwad, O.; Khalil, E.; Abbassi, R.; Abaza, I. F.; Chem. Biodiversity 2019, 16, e1900388. [Crossref ]
Crossref...
, 3434 Budel, J. M.; Machado, C. D.; Raman, V.; Rehman, J. U.; Maia, B. H. L. N. S.; Meneghetti, E. K.; Almeida, V. P.; Silva, R. Z.; Farago, P. V. ; Khan, I. A.; Rev. Bras. Farmacogn. 2019, 29, 1. [Crossref ]
Crossref...
, 3535 Rodilla, J. M.; Rocha, P. M. M.; Diéz, D.; Elder, H.; Guala, M. S.; Silva, L. A.; Pombo, E. B.; Molecules 2012, 17, 12023. [Crossref ]
Crossref...
, 3636 Machado, M. M.; de Campos, M. M. A.; Duarte, J. A.; Zambrano, L. A. B.; Quintana, L. D.; Rocha, M. B.; Schmitt, E. G.; Boligon, A. A.; de Oliveira, L. F. S.; J. Evidence-Based Complementary Altern. Med. 2018, 1, 1. [Crossref ]
Crossref...
, 3737 Descamps, L. R.; Chopa, C. S.; Ferrero, A. A.; Nat. Prod. Commun. 2011, 6, 887. [Crossref ]
Crossref...
, 3838 Murray, A. P.; Gurovic, M. S. V. ; Rodríguez, S. A.; Murray, M. G.; Ferrero, A. A.; Nat. Prod. Commun. 2009, 4, 873. [Crossref ]
Crossref...

Other Schinus species are frequent sources of essential oils (S. longifolia, S. fasciculata, S. lentiscifolius and S. weinmannifolius).3939 Murray, A. P.; Rodríguez, S. A.; Murray, M. G.; Nat. Prod. Commun. 2008, 3, 1551. [Crossref ]
Crossref...
, 4040 da Silva, E. R.; Lazarotto, D. C.; Pawlowski, A.; Soares, G. L. G.; Rev. Cubana Plant. Med. 2019, 24, 783. [Link] accessed in August 2023
Link...
, 4141 Hernandes, C.; Taleb-Contini, S. H.; Bartolomeu, A. C. D.; Bertoni, B. W.; França, S. C.; Pereira, A. M. S.; Nat. Prod. Commun. 2014, 9, 1383. [Crossref ]
Crossref...
Likewise, in the former examples, the differences between the found EOs profiles are related to seasonal factors, extraction methodologies and geographical origin.

Anacardium genus always presents commercially and economically important species, which have justified extensive studies with its main species, including their flavor-related volatile compounds. Studies with Brazilian A. occidentale L. oil, occurring in different regions, indicate differences in the chemical compositions of major compounds, whose differences are probably associated with genetic variability amongst the populations grown at each location. In the leaf species collected in Minas Gerais state (Brazil), (E)-caryophyllene (15.4%), germacrene-D (11.5%) and a-copaene (10.3%) are the main components. On the other hand, the major compounds from plants cultivated in Pará state (Brazil) were (E)-P-ocimene (28.8%) and a-copaene (13.6%). Compared with specimens collected in Nigeria, the composition is also different, and those were composed mainly of P-phellandrene (42.7%).3131 Barbosa, L. C. A.; Montanari, R. M.; Demuner, A. J.; Silva, C. J.; Andrade, N. J.; Ismail, F. M. D.; Barbosa, M. C. A.; Molecules 2012, 17, 9728. [Crossref ]
Crossref...
Table 6 also includes the composition of the VOCs of other Anacardiaceae species that were determined for the first time.4242 Cardoso, C. A. L.; Jeller, A. H.; Ré-Poppi, N.; Coelho, R. M.; Yasunaka, D. S.; Schleder, J. D. E.; J. Essent. Oil Res. 2010, 22, 469. [Crossref ]
Crossref...
, 4343 Carvalho, C. E. S.; Sobrinho-Júnior, E. P. C.; Brito, L. M.; Nicolau, L. A. D.; Carvalho, T. P.; Moura, A. K. S.; Rodrigues, K. A. F.; Carneiro, S. M. P.; Arcanjo, D. D. R.; Citó, A. M. G. L.; Carvalho, F. A. A.; Exp. Parasitol. 2017, 175, 59. [Crossref ]
Crossref...
, 4444 Tintino, S. R.; Figueredo, F. G.; Lucena, B. F. F.; Matias, E. F. F.; Leite, N. F.; Andrade, J. C.; Nogueira, L. F. B.; Morais, E. C.; Costa, J. G. M.; Coutinho, H. D. M.; Rodrigues, F. F. G.; Pharm. Biol. 2014, 52, 560. [Crossref ]
Crossref...
, 4545 Zoghbi, M. G. B.; Pereira, R. A.; de Lima, G. S. L.; Bastos, M. N. C.; Quim. Nova 2014, 37, 1188. [Crossref ]
Crossref...

Table 6
Relative composition (%) of the most abundant essential oils from other Anacardiaceae species4242 Cardoso, C. A. L.; Jeller, A. H.; Ré-Poppi, N.; Coelho, R. M.; Yasunaka, D. S.; Schleder, J. D. E.; J. Essent. Oil Res. 2010, 22, 469. [Crossref ]
Crossref...
, 4343 Carvalho, C. E. S.; Sobrinho-Júnior, E. P. C.; Brito, L. M.; Nicolau, L. A. D.; Carvalho, T. P.; Moura, A. K. S.; Rodrigues, K. A. F.; Carneiro, S. M. P.; Arcanjo, D. D. R.; Citó, A. M. G. L.; Carvalho, F. A. A.; Exp. Parasitol. 2017, 175, 59. [Crossref ]
Crossref...
, 4444 Tintino, S. R.; Figueredo, F. G.; Lucena, B. F. F.; Matias, E. F. F.; Leite, N. F.; Andrade, J. C.; Nogueira, L. F. B.; Morais, E. C.; Costa, J. G. M.; Coutinho, H. D. M.; Rodrigues, F. F. G.; Pharm. Biol. 2014, 52, 560. [Crossref ]
Crossref...
, 4545 Zoghbi, M. G. B.; Pereira, R. A.; de Lima, G. S. L.; Bastos, M. N. C.; Quim. Nova 2014, 37, 1188. [Crossref ]
Crossref...

The literature reports presence of mixtures of essential oils and VOCs in other Anacardiaceae species, such as Pleyoginium timorense (Dc.) Leenh,4646 Said, A.; Omer, E. A.; El Gendy, M. A. M.; Fawzy, G.; Abd El-Kader, A. E.; Fouad, R.; J. Mater. Environ. Sci. 2018, 9, 2274. [Link] accessed in August 2023
Link...
Pseudospondias microcarpa (A. Rich) Engl.4747 Babouongolo, S. G.; Loumpangou, C. N.; Dao, E.; Simon, V. ; Elouma Ndinga, A. M.; Ouamba, J. M.; J. Essent.Oil Bear. Plants 2021, 24, 421. [Crossref ]
Crossref...
and Sclerocarya birrea subsp. Caffra.4848 Viljoen, A. M.; Kamatou, G. P. P.; Baser, K. H. C.; S. Afr. J. Bot. 2008, 74, 325. [Crossref ]
Crossref...
, 4949 Kpoviéssi, D. S. S.; Gbaguidi, F. A.; Kossouoh, C.; Agbani, P.; Yayi-Ladekan, E.; Sinsin, B.; Moudachirou, M.; Accrombessi, G. C.; Quetin-Leclercq, J.; J. Med. Plants Res. 2011, 5, 4640. [Link] accessed in August 2023
Link...
In these examples, the most predominant metabolites in P. timorense fruits4646 Said, A.; Omer, E. A.; El Gendy, M. A. M.; Fawzy, G.; Abd El-Kader, A. E.; Fouad, R.; J. Mater. Environ. Sci. 2018, 9, 2274. [Link] accessed in August 2023
Link...
were D-limonene (64.51%), γ-terpinene (5.60%), a-copaene and (E)-caryophyllene (4.74%). In P. microcarpa fruits,4747 Babouongolo, S. G.; Loumpangou, C. N.; Dao, E.; Simon, V. ; Elouma Ndinga, A. M.; Ouamba, J. M.; J. Essent.Oil Bear. Plants 2021, 24, 421. [Crossref ]
Crossref...
α-terpinol and borneol (22.9% and 8.2%, for the epicarp), besides vaccenic acid and ascorbic acid 2,6-dihexadecanoate (20.1% and 29.8%, for the hull), caryophyllene oxide and a-humulene (8.4% and 6.8%, for the seed) and α-humulene and β-caryophyllene (9.4% and 6.4%, for the kernel) were the main compounds detected. Lastly, in Sclerocarya birrea fruits,4848 Viljoen, A. M.; Kamatou, G. P. P.; Baser, K. H. C.; S. Afr. J. Bot. 2008, 74, 325. [Crossref ]
Crossref...
β-caryophyllene and α-humulene (91.3% and 8.3%) were the major compounds of fruit pulp. However, in head-space studies with the whole fruit, heptadecene (16.1%), benzyl 4-methylpentanoate (8.8%), benzyl butyrate (6.7%), (Z)-13-octadecenal (6.2%), cyclopentadecane (5.7%) and (Z)-3-decen-1-ol (8.4%) were the most abundant VOCs. Otherwise, it should be highlighted that the EOs composition of S. birrea (A. Rich) Hochst leaves from Benin were different according to the season.4949 Kpoviéssi, D. S. S.; Gbaguidi, F. A.; Kossouoh, C.; Agbani, P.; Yayi-Ladekan, E.; Sinsin, B.; Moudachirou, M.; Accrombessi, G. C.; Quetin-Leclercq, J.; J. Med. Plants Res. 2011, 5, 4640. [Link] accessed in August 2023
Link...
Thus, in hot period, the major constituents were 7-epi-α-selinene (38 ± 0.03%), α-muurolene (25 ± 0.03%), valencene (17 ± 0.06%), β-selinene (4.3 ± 0.01%), β-caryophyllene (3.2 ± 0.02%), allo-aromadendrene epoxide (1.5 ± 0.03%) and 14-hydroxy-α-humulene (1.5 ± 0.03%), but in the cold season the EOs was characterized by 7-epi-α-selinene (51.7 ± 0.12%), β-selinene (15.1 ± 0.2%), valencene (12.9 ± 0.05%), α-selinene (8.1 ± 0.03%) and β-caryophyllene (1.8 ± 0.02%). These results constitute the first report of these components in this species.

Terpenoids and steroids

Terpenoids are the most abundant class of natural products found in plants and have particular importance due to their role in plant physiology, biological properties and some industrial uses. They are present in different Anacardiaceae genera, and some isolates from this family are presented in Figure 1. The isolated compounds of these subclasses are well-known in plants in general as well as in Anacardiaceae spp. Compounds 1-8 were obtained from Mangifera mekongensis,5050 Nguyen, H. X.; Le, T. C.; Van Do, T, N.; Le, T. H.; Nguyen, N. T.; Nguyen, M. T. T.; Chem. Cent. J. 2016, 10, 1. [Crossref ]
Crossref...
so that the esters 1 (mekongsterol A), 2 (mekongsterol B) and 3 (β-sitosteryl-3-O-β-D-glucopyranosyl-6-O-palmitate) constitute novel derivatives, whereas stigmastane-3,6-dione (4), ambonic acid (5), ambolic acid (6), mangiferonic acid (7) and mangiferolic acid (8) are common in Mangifera. Besides, compounds 9-10 were obtained from Mangifera pajang Kosterm.,5151 Sukari, M. A.; Ahmad, S.; Ismail, N.; Ismail, I. S.; Abdul, A. B.; Abu Bakar, M. F.; Kifli, N.; Ee, G. C. L.; BMC Complementary Altern. Med. 2015, 21, 105. [Crossref ]
Crossref...
metabolites 11-14 from S. terebinthifolia5252 Silva-Júnior, E. F.; Aquino, P. G. V. ; Santos-Júnior, P. F. S.; Nascimento, I. J. S.; Gomes, E. A.; Silva, A. L. L.; Verissimo, R. C. S. S.; Aquino, T. M.; Araújo-Júnior, J. X.; J. Chem. Pharm. Res. 2015, 7, 389. [Link] accessed in August 2023
Link...
and daucosterol (15) from Schinopsis brasiliensis Engl.5353 David, J. M.; Moreira, B. O.; Vilar, V. L. S.; de Almeida, R. N. S.; Morbeck, L. L. B.; Andrade, B. S.; Barros, R. G. M.; Neves, B. M.; de Carvalho, A. L.; Cruz, M. P. ; Yatsuda, R.; J. Ethnopharmacol. 2022, 289, 115089. [Crossref ]
Crossref...
It is noteworthy that 14 was named as schinol and possesses a structure different from the previously registered compound named schinol (CAS #6813-07-6). The structure of compound 14 is previously known as the name of 3-epimasticadienolic acid (CAS #31539-04-5). The substances 11-13, found in the fruit oil of S. terebenthifolia, can be associated with the demonstrated antioxidant activity of the species, to the inhibition of NO synthase production and to antimicrobial properties, as well as 14 is related to antifungal activity5252 Silva-Júnior, E. F.; Aquino, P. G. V. ; Santos-Júnior, P. F. S.; Nascimento, I. J. S.; Gomes, E. A.; Silva, A. L. L.; Verissimo, R. C. S. S.; Aquino, T. M.; Araújo-Júnior, J. X.; J. Chem. Pharm. Res. 2015, 7, 389. [Link] accessed in August 2023
Link...
against Paracoccidioides brasiliensis. From the roots of Dobinea delavayi (Baill.) Baill. were isolated several sesquiterpenes, including new compounds (16-23),5454 Cheng, Z. Q.; Yang, D.; Ma, Q. Y.; Dai, H. F.; Huang, S. Z.; Yi, X. H.; Zhou, J.; Zhao, Y. X.; Planta Med. 2012, 78, 1878. [Crossref] and ergostane-type compounds (24-27) were obtained from the stem bark of Antrocaryon klaineanum Pierre.5555 Fouokeng, Y.; Akak, C. M.; Tala, M. F.; Azebaze, A. G. B.; Dittrich, B.; Vardamides, J. C.; Laatsch, H.; Fitoterapia 2017, 117, 61. [Crossref ]
Crossref...
The novel compound antrocarine E (24) was obtained with the known substances (7a)-7,20-dihydroxyergosta-4,24(28)-dien-3-one (25), (6a,7a)-6-methoxyergosta-4,24(28)-dien-7-ol (26) and (6a,7a)-ergosta-4,24(28)-diene-6,7-diol (27). Lastly, the new steroid-type compound named 3-oxolanosta-1,20(22)-dien-26-oic acid (28) was isolated from the galls of Pistacia integerrima Stewart.5656 Ahmad, S.; Ali, M.; Ansari, S. H.; Ahmed, F.; J. Saudi Chem. Soc. 2010, 14, 409. [Crossref ]
Crossref...

Figure 1
Structures of terpenes and terpenoids obtained from plants of different Anacardiaceae species

Flavonoids and biflavonoids

Flavonoids are common in all plant kingdom, but biflavonoids are restricted in some families, including Anacardiaceae.11 Correia, S. J.; David, J. P.; David, J. M.; Quim. Nova 2006, 29, 1287. [Crossref ]
Crossref...
Figure 2 presents an update of the presence of this class (29-39) in species of this family. They were isolated from from Lannea coromandelica and L. acida.5757 Achika, J. I.; Trop. J. Nat. Prod. Res. 2018, 2, 442. [Crossref ]
Crossref...
From Semecarpus anacardium Linn. the biflavonoids nallaflavanone (40), anacarduflavanone (41), jeediflavanone (42), galluflavanone (43), tetrahydroamentoflavanone (44) and semecarpuflavone (45) were obtained.5858 Semalty, M.; Semalty, A.; Badola, A.; Joshi, G. P.; Rawat, M. S. M.; Pharmacogn. R ev. 2010, 4, 88. [Crossref ]
Crossref...
This flavonoid subclass is common in Anacardiaceae spp. Robustaflavone (46) was obtained for the first time from the leaves of S. terebinthifolia5959 Formagio, A. S. N.; da Silva, M. M.; Iriguchi, E. K. K.; Kassuya, C. A. L.; Vieira, M. C.; Foglio, M. A.; de Carvalho, J. E.; Ruiz, A. L. T. G.; Souza, K. P.; Rev. Bras. Farmacogn. 2017, 27, 445. [Crossref ]
Crossref...
and some chalcone derivatives - schinopsone A (47) and schinopsone B (48), besides two known biflavonoid derivatives5353 David, J. M.; Moreira, B. O.; Vilar, V. L. S.; de Almeida, R. N. S.; Morbeck, L. L. B.; Andrade, B. S.; Barros, R. G. M.; Neves, B. M.; de Carvalho, A. L.; Cruz, M. P. ; Yatsuda, R.; J. Ethnopharmacol. 2022, 289, 115089. [Crossref ]
Crossref...
(49, 50) – were isolated from the roots of Schinopsis brasiliensis Engl. Moreover, kaempferol-3-O-P-(2”-sulphategalactopyranoside) (51) and quercetin-3-O-P-(2”-sulphategalactopyranoside) (52)6060 Nawwar, M.; Hussein, S.; Ayoub, N.; Hashim, A.; El-Sharawy, R.; Lindequist, U.; Harms, M.; Wende, K.; Fitoterapia 2011, 82, 1265. [Crossref ]
Crossref...
were obtained for the first time from aqueous methanol leaf extract of Harpephyllum caffrum. In addition, a novel dimer (53) C-3/C-3’’ of butin (3’,4’,7-trihydroxyflavanone) was isolated from C. coggygria Scop. wood6161 Antal, D. S.; Schwaiger, S.; Ellmerer-Mueller, E. P. ; Stuppner, H.; Planta Med. 2010, 76, 1765. [Crossref ]
Crossref...
alongside other known compounds (catechin, fisetin, quercetin, butein, sulfuretin, fustin, dihydroquercetagetin, and eriodictyol). From MeOH and EtOH antioxidant extracts of Pistacia terebinthus L. fruits6262 Topcu, G.; Ay, M.; Bilici, A.; Sarikuerkcue, C.; Oezturk, M.; Ulubelen, A.; Food Chem. 2007, 103, 816. [Crossref ]
Crossref...
it was isolated the new flavone 2-(2,4-dihydroxy-5-methoxyphenyl)-5,7,8-trihydroxy-4H-1-benzopyran-4-one (54) besides other known flavonoids (apigenin, luteolin, quercetin and luteolin-7-O-glucoside). On the other hand, the novel hispolone derivative 55 (methyl 5-(3,4-dihydroxyphenyl)-3-hydroxypenta-2,4-dienoate)6363 Yousfi, M.; Djeridane, A.; Bombarda, I.; Chahrazed-Hamia; Duhem, B.; Gaydou, E. M.; Phytother. Res. 2009, 23, 1237. [Crossref ]
Crossref...
was obtained from the mushroom Inonotus hispidus growing on Pistacia atlantica as well as hispolone, hispidin and other phenolic compounds. The compound 56 (named acuminatanol)6464 Hu, J. F.; Garo, E.; Hough, G. W.; Goering, M. G.; Johnson, M. N.; Eldridge, G. R.; Tetrahedron Lett. 2007, 48, 5747. [Crossref ]
Crossref...
was the first 2’2’’’-bis-dihydrobiflavonol isolated from the aqueous extract of Trichoscypha acuminata, being the first example of a bis-dihydroflavonol linked exclusively via the B-rings at C-2’ and C-2’’’ positions. At last, the phytochemical investigation of the leaves of Sorindeia juglandifolia A. Rich. led to the obtention of a new C-glucosylflavone (2’’,6’’-di-O-acetyl-7-O-methylvitexin),6565 Ndongo, J. T.; Mbing, J. N.; Bikobo, D. N.; Atchade, A. T.; Shaaban, M.; Pegnyemb, D. E.; Laatsch, H.; Z. Naturforsch., C: J. Biosci. 2013, 68, 169. [Crossref ]
Crossref...
besides other seven known compounds.

Figure 2
Flavonoids and biflavonoids isolated from plants of different Anacardiaceae species

Alkyl and alkenylphenols

Alkyl and alkenylphenols, also known as phenolic lipids, are chemotaxonomic markers of various species of Anacardiaceae. In general, they present a salicylic acid moiety, but some are decarboxylated structures. Figure 3 presents the structures of several alkyl and alkenylphenols isolated from Anacardiaceae spp. Ozorcardic acids A (57) and B (58), alongside anacardic acid (59), were obtained for the first time from Ozoroa pulcherrima Schweinf.6666 Christelle, T. D.; Hussain, H.; Dongo, E.; Hermine, J. M. B.; Ahmed, I.; Krohn, K.; Nat. Prod. Commun. 2011, 6, 1133. [Crossref ]
Crossref...
Furthermore, 3-((7Z,10Z)-pentadeca-7,10-dien-1-yl)benzene-1,2-diol (60) and 3-((8Z)-pentadec-8-en-1-yl)benzene-1,2-diol (61) are kwown compounds now obtained from S. anacardium5858 Semalty, M.; Semalty, A.; Badola, A.; Joshi, G. P.; Rawat, M. S. M.; Pharmacogn. R ev. 2010, 4, 88. [Crossref ]
Crossref...
and the new alkyl resorcionols (Z,Z)-5-(trideca-4,7-dienyl)-benzeno-1,2-diol (62), (Z)-5-(trideca-4-enyl)-benzeno-1,2-diol (63), (Z,Z)-5-(pentadeca-6,9-dienyl)-benzeno-1,2-diol (64), (Z,Z)-5-(trideca-5,8-dienyl)-benzeno-1,2-diol (65) and (Z)-5-(heptadec-6-enyl)-benzeno-1,2-diol (66) from Lithraea molleoides6767 Catalano, A.; Lantaño, B.; Fabián, L.; López, P. ; Am. J. Plant Sci. 2020, 11, 861. [Crossref ]
Crossref...
Vell. Eng. Besides, 3-(2-(heptan-2-yl)-3-methylnonyl) phthalic acid (67) and 2-hydro-6-[(8’E, 11’E, 14’E)-22’-hydroxydocasa-8’,11’,14’-trienyl] benzoic acid (68) were obtained from sheets of Spondias mombin.6868 Tokoudagba, J. M.; Gandonou, C. D.; Hougbeme, A.; Gom, S. N.; Auger, C.; Schini-Kerth, V.; Lobstein, A.; World J. Pharm. Pharm. Sci. 2018, 7, 309. [Link] accessed in September 2023
Link...
The presence of (E)-double bonds and branched alkyl chains in 67 and 68 are unusual, whose detailed analysis of the NMR and MS data published indicates the need of new experiments to corroborate with the published unusual structures for these compounds. Moreover, three new dihydrobenzofuranoids [2-[(10’Z)-dodec-10’-enyl]-dihydro-1-benzofuran-5-ol (69), 2-[(10’Z)-tridec-10’-enyl]-dihydro-1-benzofuran-5-ol (70) and 2-[(10’Z)-pentadec-10’-enyl]-dihydro-1-benzofuran-5-ol] (71) were isolated from Tapirira guianensis seeds.6969 da Silva, E. P. ; David, J. M.; David, J. P. ; Garcia, G. H. T.; Silva, M. T.; Quim. Nova 2020, 43, 1216. [Crossref ]
Crossref...
On the other hand, unusual dimeric alkylresorcinol named integracin E (72) was obtained from the stem barks of Swintonia floribunda, besides propyl ferulate.7070 Dang, P. H.; Nguyen, L. T. T.; Nguyen, H. T. T.; Le, T. H.; Do, T. N. V.; Nguyen, H. X.; Le, N. D.; Nguyen, M. T. T.; Nguyen, N. T.; Nat. Prod. Res. 2019, 33, 2883. [Crossref ]
Crossref...
At last, gentisic acid derivative 73 (mycronic acid) has been isolated for the first time from Micronychia tsiramiramy roots7171 Razakarivony, A. A.; Lenta, B. N.; Andriamihaja, B.; Michalek, C.; Razanamahefa, B.; Razafimahefa, D. R.; Rakotondramanga, M. F.; Randrianasolo, R.; Lannang, A. M.; Randriamiaramisaina, R.; Boyom, F. F.; Rosenthal, P. J.; Sewald, N.; Zeitschrift für Naturforschung B 2016, 71, 297. [Crossref ]
Crossref...
with several known compounds previously isolated.

Figure 3
Alkyl, alkenylphenols and acids isolated from several Anacardiaceae species

Miscellaneous compounds isolated from Anacardiaceae

Many other types of metabolites that can occur in Anacardiaceae spp. and were reported in the period of this review update (Figure 4), such as the simple phenolic derivatives butein (74) and anacardoside (75) from Semeacarpus anacardium Linn.5858 Semalty, M.; Semalty, A.; Badola, A.; Joshi, G. P.; Rawat, M. S. M.; Pharmacogn. R ev. 2010, 4, 88. [Crossref ]
Crossref...
Besides, for the first time 1,2,3,4,6-penta-O-galloyl-glucopyranoside (PGG, 76) was isolated from Schinus terebeinthifolia5959 Formagio, A. S. N.; da Silva, M. M.; Iriguchi, E. K. K.; Kassuya, C. A. L.; Vieira, M. C.; Foglio, M. A.; de Carvalho, J. E.; Ruiz, A. L. T. G.; Souza, K. P.; Rev. Bras. Farmacogn. 2017, 27, 445. [Crossref ]
Crossref...
and three new metabolites [1,2-benzenedicarboxylic acid-mono(2-ethylhexyl)ester (77), (9E,12E)-tetradeca-9,12-dien-1-yl acetate (78) and 3-chloro-N-(2-phenylethyl)propanamide (79)], the last two atypical compounds, from Mangifera indica.7272 Garg, A. N.; Singh, R.; Singh, S. K.; Maharia, R. S.; J. Pharm. Biomed. Anal. 2015, 105, 150. [Crossref ]
Crossref...
(+)-Pinoresinol (80), syringaresinol (81) and (+)-epi-pinoresinol (82) were obtained from the stem barks of Swintonia floribunda7070 Dang, P. H.; Nguyen, L. T. T.; Nguyen, H. T. T.; Le, T. H.; Do, T. N. V.; Nguyen, H. X.; Le, N. D.; Nguyen, M. T. T.; Nguyen, N. T.; Nat. Prod. Res. 2019, 33, 2883. [Crossref ]
Crossref...
and the antioxidant compounds as the novel biaurone disulfuretin (83), sulfuretin (84) and sulfurein (85) were isolated of two separate collections of Cotinus coggygria (R. cotinus),7373 Kinghorn, A. K.; Westenburg, H. E.; Lee, K. J.; Lee, S. K.; Fong, H. H. S.; van Breemen, R. B.; Pezzuto, J. M.; J. Nat. Prod. 2000, 63, 1696. [Crossref ]
Crossref...
all of them for the first time in these genera. Moreover, the new lignan (+)-(8S,8’S)-5’-metoxi-4,4’-di-O-methylsecoisolariciresinol (86)7474 Nguyen, M. T. T.; Nguyen, N. T.; Dang, P. H.; Nguyen, H. X.; Le, T. H.; Van Do, T. N.; Nat. Prod. Res. 2022, 36, 3737. [Crossref ]
Crossref...
was obtained from stems of Buchanania lucida. Other several studies described the isolation of many novel special metabolites, as the compounds 2,6,3’,4’-tetrahydroxy-4-methoxybenzophenone (87), 2,6,4’-trihydroxy-4,3’-dimethoxybenzophenone (88) and dobiniside A (89) from the roots of Dobinea delavayi,7575 Shen, Y. ; Chen, H.; Lang, L. J.; Dong, X.; Xiao, C. J.; Jiang, B.; Phytochem. Lett. 2021, 46, 172. [Crossref ]
Crossref...
,7676 Cheng, Z. Q.; Yang, D.; Ma, Q. Y. ; Yi, X. H.; Zhou, J.; Zhao, Y. X.; Chem. Nat. Compd. 2013, 49, 46. [Crossref ]
Crossref...
3-methoxyellagic acid 4-O-galactopyranoside6060 Nawwar, M.; Hussein, S.; Ayoub, N.; Hashim, A.; El-Sharawy, R.; Lindequist, U.; Harms, M.; Wende, K.; Fitoterapia 2011, 82, 1265. [Crossref ]
Crossref...
(90) from the leaves of H. caffrum and the fatty acid ester 91 from Cyrtocarpa procera7777 Rodriguez-Lopez, V.; Aguirre-Crespo, F.; Salazar, L.; Estrada-Soto, S.; Nat. Prod. Res. 2006, 20, 1. [Crossref ]
Crossref...
Kunth (besides other known analogues). The new 1,4-benzoquinone derivative (92), which can be consider an alkenyl phenol derivative, was isolated from the root of M. tsiramiramy,7171 Razakarivony, A. A.; Lenta, B. N.; Andriamihaja, B.; Michalek, C.; Razanamahefa, B.; Razafimahefa, D. R.; Rakotondramanga, M. F.; Randrianasolo, R.; Lannang, A. M.; Randriamiaramisaina, R.; Boyom, F. F.; Rosenthal, P. J.; Sewald, N.; Zeitschrift für Naturforschung B 2016, 71, 297. [Crossref ]
Crossref...
and the novel benzofuran lactone 93 (rhuscholide A)7878 Gu, Q.; Wang, R. R.; Zhang, X. M.; Wang, Y. H.; Zheng, Y. T.; Zhou, J.; Chen, J. J.; Planta Med. 2007, 73, 279. [Crossref ]
Crossref...
was isolated from the stems of Rhus chinensis with other known compounds. At last, the new bischromanone 94 has been obtained from the stems of Semecarpus caudata7979 Dang, P. H.; Nguyen, T. T.; Le, T. H.; Nguyen, H. X.; Nguyen, M. T. T.; Nguyen, N. T.; Nat. Prod. Res. 2018, 32, 1745. [Crossref ]
Crossref...
alongside five known flavonoids (quercetin, naringenin, taxifolin, (+)-eriodictyol and 3,4’,7-trihydroxyflavone) and two novel long-chain alkyl compounds 9,11-dihydroxyoctadecan-7-one (95) and (-)-3-hydroxydecyl eicosanoate (96) from the galls of Pistacia integerrima Stewart.5656 Ahmad, S.; Ali, M.; Ansari, S. H.; Ahmed, F.; J. Saudi Chem. Soc. 2010, 14, 409. [Crossref ]
Crossref...
The authors signed compound 95 as rel-(+)-(9R,11R) enantiomer; however, they did not present spectrometric data supporting the proposed stereochemistry. Bis(2-ethylhexyl) phthalate is a plasticizer and compound 77 could not be a natural product, as pointed out by the authors. However, once there is no evidence of optical light deviation of 77, a partial hydrolysate was synthesized from the commercial phthalate. For compounds 78 and 92, there are also no spectrometric evidence of the stereochemistry and carbon position of the double bonds of the linear carbon chains.

Figure 4
Miscellaneous compounds obtained from different Anacardiaceae spp

In conclusion, we could highlight the occurrence of β-sitosteryl-3β-glucopyranoside-6’-O-fatty acid esters, β-sitosterol, phytol, a mixture of phytyl fatty acid esters and β-sitosteryl fatty acid esters, chlorophyll, squalene, the compound 59 and other long-chain constituents in the CH2Cl2 extract of Dracontomelon dao (Merr. & Rolfe)8080 Ragasa, C. Y.; Vivar, J. L. A.; De Los Reyes, M. M.; van Altena, I. A.; Pharma Chem. 2016, 8, 257. [Link] accessed in August 2023
Link...
leaves, as well as the isolation of 15 together with gallic acid and ethyl gallate from the EtOH extract of Mauria heterophylla.8181 Mori, T.; Chang, C.; Maurtua, D.; Hammond, G. B.; Phytother. Res. 2006, 20, 160. [Crossref ]
Crossref...

BIOLOGICAL ACTIVITIES

Anacardiaceae family presents several species that produce compounds with different biological properties. Therefore, in the last decades, numerous studies have employed extracts and some isolated metabolites presenting in vitro and in vivo activities, mainly as radical quenching, antinociceptive and anti-inflammatory, as well as against microorganisms/strains, cell lines and viruses.

Biological activities of extracts of Anacardiaceae spp.

In vitro studies

Lannea spp.8282 Brice, B. J.; Benson, B. B.; Fernique, K. K.; Mida, K. G. R.; Christian, K. K.; Nathalie, G. K.; Akhanovna, M. B. J.; Alain, B. Y. ; Int. J. Pharm. Pharm. Sci. 2018, 10, 64. [Crossref ]
Crossref...
,8383 Pare, D.; N’do, J. Y. P.; Guenne, S.; Nikiema, M.; Hilou, A.; Asian J. Chem. Sci. 2019, 6, 1. [Crossref ]
Crossref...
biological studies such as aqueous extracts of L. barteri Engl. bark8282 Brice, B. J.; Benson, B. B.; Fernique, K. K.; Mida, K. G. R.; Christian, K. K.; Nathalie, G. K.; Akhanovna, M. B. J.; Alain, B. Y. ; Int. J. Pharm. Pharm. Sci. 2018, 10, 64. [Crossref ]
Crossref...
have presented antibacterial activity against Pseudomonas aeruginosa (MIC = 6.25-25.00 mg mL−1, LBE 6.25; 12.5; 25.0; 50.0 and 100.0 mg mL−1) and Acinetobacter baumannii (MIC = 25.00-43.75 mg mL−1, LBE 6.25; 12.5; 25.0; 50.0 and 100.0 mg mL−1), including MIC/MBC = 1.0 in all cases. These biological properties are probably due to phenolic/polyphenolic compounds in extracts, whose results may justify the plant’s traditional use against urinary infections. Moreover, the ethanolic extract of L. velutina A. Rich8383 Pare, D.; N’do, J. Y. P.; Guenne, S.; Nikiema, M.; Hilou, A.; Asian J. Chem. Sci. 2019, 6, 1. [Crossref ]
Crossref...
has presented antioxidant (% DPPH inhibition: 52.81 ± 2.16; % Fe3+ reducing power/FRAP: 1.74 ± 0.45 mmol EAA 10 g extract−1) and antimicrobial activities (against Gram-positive and Gram-negative bacteria strains, with inhibition diameters greater than 8 mm), which is related to the flavonoid (1.770 ± 0.005 mg eq. Quercetin 10 g extract−1) and polyphenol (969.67 ± 8.23 mg GAE g extract−1) contents.

Concerning the studies dealing with M. indica,8484 Mirghani, M. E. S.; Al-Shwyeh, H. A.; Jamal, P. ; Afr. J. Biotechnol. 2011, 10, 18739. [Crossref ]
Crossref...
, 8585 Pithayanukul, P.; Leanpolchareanchai, J.; Saparpakorn, P.; Molecules 2009, 14, 3198. [Crossref ]
Crossref...
, 8686 Kumar, M.; Saurabh, V.; Tomar, M.; Hasan, M.; Changan, S.; Sasi, M.; Maheshwari, C.; Prajapati, U.; Singh, S.; Prajapat, R. K.; Dhumal, S.; Punia, S.; Amarowicz, R.; Mekhemar, M.; Antioxidants 2021, 10, 299. [Crossref ]
Crossref...
, 8787 Jahnavi, C. H.; Jyothsna, K.; Geetika, D. L.; Keerthi, G. S.; Santhosha, D.; Ramesh, A.; J. Pharmacogn. Phytochem. 2020, 9, 1166. [Link] accessed in August 2023
Link...
, it is known that compounds from this plant present many biological activities, typically related to mangiferin (97) and other polyphenolic compounds. The antibacterial activity8484 Mirghani, M. E. S.; Al-Shwyeh, H. A.; Jamal, P. ; Afr. J. Biotechnol. 2011, 10, 18739. [Crossref ]
Crossref...
of (seed) mango kernel extracts were attributed to 2,4-bis(1,1-dimethylethyl)phenol (98), and the inhibitory effect8585 Pithayanukul, P.; Leanpolchareanchai, J.; Saparpakorn, P.; Molecules 2009, 14, 3198. [Crossref ]
Crossref...
over PLA2 (phospholipase A2), hyaluronidase and LAAO (L-amino acid oxidase) is associated with PGG (99), which selectively block the PLA2 and LAAO active sites (Figure 5). Observed anticancer proprieties8686 Kumar, M.; Saurabh, V.; Tomar, M.; Hasan, M.; Changan, S.; Sasi, M.; Maheshwari, C.; Prajapati, U.; Singh, S.; Prajapat, R. K.; Dhumal, S.; Punia, S.; Amarowicz, R.; Mekhemar, M.; Antioxidants 2021, 10, 299. [Crossref ]
Crossref...
are possibly due to mangiferin, and other activities8686 Kumar, M.; Saurabh, V.; Tomar, M.; Hasan, M.; Changan, S.; Sasi, M.; Maheshwari, C.; Prajapati, U.; Singh, S.; Prajapat, R. K.; Dhumal, S.; Punia, S.; Amarowicz, R.; Mekhemar, M.; Antioxidants 2021, 10, 299. [Crossref ]
Crossref...
, 8787 Jahnavi, C. H.; Jyothsna, K.; Geetika, D. L.; Keerthi, G. S.; Santhosha, D.; Ramesh, A.; J. Pharmacogn. Phytochem. 2020, 9, 1166. [Link] accessed in August 2023
Link...
(e.g., antidiabetic, antioxidant, and antimicrobial) might be associated with different compounds, such as aglycones, saponins and terpenes.

Figure 5
Some bioactive compounds from Mangifera indica

Crude extract and leaf EtOAc fraction of Pistacia spp. and P. atlantica Desf. displayed, simultaneously, a stronger antioxidant activity8888 Bakka, C.; Hadjadj, M.; Smara, O.; Dendougui, H.; Mahdjar, S.; J. Pharm. Sci. Res. 2019, 11, 3634. [Link] accessed in August 2023
Link...
(DPPH assay: IC50 = 0.0273 ± 0.0001 and 0.0419 ± 0.0010 mg mL−1) in comparison on BHA and ascorbic acid (IC50 = 0.08 ± 0.002 and 0.06 ± 0.002 mg mL−1) in DPPH assay due to the presence of flavonoids and tannins. Pistacia integerrima Rechinger f. stems EtOAc and CHCl3 fractions extracts8989 Zia, M.; Bibi, Y. ; Nisa, S.; Waheed, A.; Ahmed, S.; Chaudhary, M. F.; Indian J. Pharm. Sci. 2012, 74, 375. [Crossref ]
Crossref...
exhibited low to moderate antitumor activity, with dose-dependent cell viability (97.4-100% inhibition of MCF-7 cells lines by at 200 μg mL−1) as well as antifungal activities. Moreover, the anti-melanogenic activity9090 Taleghani, A.; Eghbali-Feriz, S.; Shokouhnam, P.; Emami, S. A.; Farhadi, F.; Asili, J.; Hasanzadeh, S.; Tayarani-Najaran, Z.; Jundishapur J. Nat. Pharm. Prod. 2021, 16, e69844. [Crossref ]
Crossref...
of P. atlantica subsp. kurdica extracts showed significant inhibition of tyrosinase activity and an ensuing reduction of melanin synthesis, what is potentially valuable for treatments for skin hyperpigmentation disorders and new advances in the cosmetic industry. In conclusion, EtOH extracts of in vitro samples (under NaCl stress) and in vivo (grown naturally) of P. khinjuc specimens9191 Tilkat, E. H.; Kuru, I. S.; Süzerer, V. ; Haşimi, N.; Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1885. [Crossref ]
Crossref...
were compared regarding their antioxidant and antimicrobial properties and, according to the results, samples from in vivo specimens generally presented higher activities than in vitro counterparts.

Rhus parviflora aqueous leaf extract was used as a medium (with 0.1 mol L−1 solution of zinc acetate dehydrate) in ZnO nanoparticles synthesis,9292 Kumar, G.; Badoni, P. P.; Int. J. ChemTech Res. 2017, 10, 377. [Link] accessed in August 2023
Link...
which exhibited potential antimicrobial activity against S. aureus, P. aeruginosa, A. niger and C. albicans. Likewise, the MeOH:CH2Cl2 (1:1), MeOH and aqueous extracts of R. vulgaris Meikle stem bark were bactericidal/bacteriostatic against different microorganisms,9393 Mutuku, A.; Mwamburi, L.; Keter, L.; Ondicho, J.; Korir, R.; Kuria, J.; Chemweno, T.; Mwitari, P.; BMC Complementary Med. Ther. 2020, 20, 272. [Link] accessed in August 2023
Link...
in such a way that MeOH extract showed significant activity toward MRSA/methicillin-resistant Staphylococcus aureus (MIC 0.391 mg mL−1 and MBC 1.563 mg mL−1). The authors pointed these results supports traditional use of R. vulgaris as a toothbrush. On the other hand, extracts’ cytotoxicity and mild skin damage warrant further research, so R. vulgaris can be recommended to develop effective and safe mouthwashes. Lastly, there are several other Rhus spp. who also have shown many mild biological properties9494 Rayne, S.; Mazza, G.; Plant Foods Hum. Nutr. 2007, 62, 165. [Crossref ]
Crossref...
(antiviral, antimutagenic, antioxidant, hypoglycemic, antitumour, antimalarial etc.) which depend on their constituents, among which phenolic compounds, flavonoids/biflavonoids and glycosides are the primary bioactive metabolites.

Schinus genus is widely present in folk medicine and, in a study with S. molle ripe fruits,9595 Al-Naser, Z.; Ibrahim, B.; Int. J. ChemTech Res. 2014, 6, 2799. [Link] accessed in August 2023
Link...
the hexane and petroleum ether extracts were tested and showed antifungal activity against Botrytis cinerea, whose activity was attributed to a composition of oleic and linoleic acids and monoterpenes. The petrol extract was weakly active (at 1000 ppm), although there was a higher suppression for the fungi at this concentration according to the extract. Likewise, different leaf extracts and fractions of S. lentiscifolius were tested for the first time against five Gram-positive, three Gram-negative bacteria and four yeasts,9696 Morel, A. F.; Gehrke, I. T. S.; Tibursky Neto, A.; Pedroso, M.; Mostardeiro, C. P. ; da Cruz, I. B. M.; Silva, U. F.; Ilha, V. ; Dalcol, I. I.; J. Ethnopharmacol. 2013, 148, 486. [Crossref ]
Crossref...
which displayed a broad spectrum of weak antibacterial activity with MIC ranging 125 to 250 μg mL−1, but a meaningful antifungal activity (MIC = 15.5-25 μg mL−1). The EtOAc fraction was the most active, and various compounds were isolated from it, among which the most active metabolite was the moronic acid (100) (MIC = 1.52-3.12 μg mL−1). Sequentially, 100 was submitted to derivatization (Figure 6) to evaluate the role of carbonyl(C-3) and carboxyl(C-28) groups regarding the activity. The methyl ester derivative of moronic acid (101), obtained by treatment with diazomethane, was more active against Cryptococcus neoformans (MIC = 50 μg mL−1). Schinus terebinthifolia is the species more studied, and the last decade studies have shown its antimycobacterial activity against Mycobacterium bovis BCG, alongside a significant inhibitory effect on the nitric oxide production (IC50 19.23 ± 1.64 μg mL−1) and mycobacterial growth (IC50 14.53 ± 1.25 μg mL−1),9797 Oliveira, D. B.; Bernardes, N. R.; Heggdorne-Araújo, M.; Borges, I. F. J. C.; Almeida, F. M.; Amaral, E. P.; Lasunskaia, E. B.; Muzitano, M. F.; Rev. Bras. Farmacogn. 2014, 24, 644. [Crossref ]
Crossref...
what is probably due to the flavonoids therein.

Figure 6
Scheme of reduction of moronic acid (100) to morolic (101) and acridocarpusic (102) acids

Similarly, some species of Spondias have exhibited many applications and useful therapeutic properties. Stem bark aqueous and methanolic extracts of S. mombin9898 Boni, A. N. R.; Ahua, K. M.; Kouassi, K.; Djaman, A. J.; Nguessan, J. D.; Res. J. Pharm., Biol. Chem. Sci. 2014, 5, 1457. [Link] accessed in August 2023
Link...
were evaluated concerning the dose-dependent antioxidant activity, whose outcomes indicated that MeOH extract presented the highest level of active constituents (total phenolic and flavonoids), being more active than the aqueous according to DPPH and FRAP scavenging assays and FTC method. Besides, S. tuberosa hexane leaf extracts were studied and presented antioxidant and antifungal activities.9999 Cordeiro, B. M. P. C.; Santos, N. D. L.; Ferreira, M. R. A.; de Araújo, L. C. C.; Carvalho Júnior, A. R.; Santos, A. D. C.; de Oliveira, A. P.; da Silva, A. G.; Falcão, E. P. S.; Correia, M. T. S.; Almeida, J. R. G. S.; da Silva, L. C. N.; Soares, L. A. L.; Napoleão, T. H.; da Silva, M. V. ; Paiva, P. M. G.; BMC Complementary Altern. Med. 2018, 18, 284. [Crossref ]
Crossref...
Flavonoids, hydrolysable tannins, saponins and terpenes were identified by TLC and HPLC analysis in the extracts and, likewise, fatty acid methyl esters (saturated and unsaturated) by 11 Correia, S. J.; David, J. P.; David, J. M.; Quim. Nova 2006, 29, 1287. [Crossref ]
Crossref...
H NMR data as the main components. The extract showed mild activity in DPPH assay (IC50 = 234.00 mg mL−1) and moderate by ABTS method (IC50 = 123.33 μg mL−1). Moreover, it was also weakly active against C. albicans and glabrata (MIC50 2.0 and 0.078 mg mL−1, respectively). Finally, an active fraction from the hydromethanolic extracts of S. pinnata stem bark exhibited a high antioxidant effect and radical scavenging potential against ROS and RNS, including the reducing power and inhibiting lipid peroxidation (Fe2+ in vitro chelation and ferritin ion release assays).100100 Chaudhuri, D.; Ghate, N. B.; Panja, S.; Basu, T.; Shendge, A. K.; Mandal, N.; BMC Complementary Altern. Med. 2016, 16, 262. [Crossref ]
Crossref...

In addition, the phytochemical composition of Searsia chirindensis leaf101101 Madikizela, B.; Aderogba, M. A.; Van Staden, J.; J. Ethnopharmacol. 2013, 150, 609. [Crossref ]
Crossref...
organic extracts indicated presence of antibacterial compounds with activity against Gram-negative (Campylobacter jejuni, E. coli and Shigella flexneri) and Gram-positive (S. aureus) strains. From the the most active extract (EtOAc) were obtained methyl gallate, myricetin-3-O-arabinopyranoside, myricetrin-3-O-rhamnoside, kaempferol-3-O-rhamnoside and quercetin-3-O-arabinofuranoside. All the compounds showed antibacterial activity against all bacterial strains tested (MIC = 30-250 μg mL−1), whose activities corroborate to the ethnomedicinal use of S. chirindensis against diarrhoea. Furthermore, different phytocompounds from the aqueous-MeOH extract (70%) leaf extract of Searsia lancea were evaluated for antibacterial properties (MIC) against four bacterial strains (Enterococcus faecalis, Klebsiella pneumoniae, Neisseria gonorrhoeae and S. aureus).102102 Vambe, M.; Naidoo, D.; Aremu, A. O.; Finnie, J. F.; Van Staden, J.; Nat. Prod. Res. 2021, 35, 4658. [Crossref ]
Crossref...
Thus, an EtOAc chromatographic sub-fraction demonstrated good antibacterial properties (MIC range: 31-61 μg mL−1 against E. faecalis and S. aureus) and, based on uncommon GC-MS analysis for medium polar extracts, 81.5% of it consisted of broad-spectrum antibacterial compounds tetracosanol (43.98%) and nonadecanol (37.5%). Therefore, these current findings may support the traditional use of S. lancea leaves to manage gastro-intestinal disorders as well as gonorrhea.

In conclusion, the study of the total extract (a XO inhibitor in vitro) of Terminthia paniculata (Sanyeqi)103103 Yang, T. H.; Yan, D. X.; Huang, X. Y.; Hou, B.; Ma, Y. B.; Peng, H.; Zhang, X. M.; Chen, J. J.; Geng, C. A.; Phytochemistry 2019, 164, 228. [Crossref ]
Crossref...
and its active fractions yielded six chalcone-flavonone heterodimers (Figure 7). Termipaniculatones A (103) and E (108) showed XO inhibitory activity (IC50 = 55.6 and 89.5 μmol L−1, respectively), which took effects via a mix-type mode. Regarding to their action mechanisms, a molecular modeling study revealed that termipaniculatone A (103) was well located into the active site of XO by interacting with Glu802, Arg880, Thr1010 and Val1011 residues. At last, this is the first time wherein the anti-acute gouty arthritis properties of T. paniculata and the characteristic biflavonoids as active constituents were related, which provides valuable information for searching new XO inhibitors from natural sources.

Figure 7
Chalcone-flavones from Terminthia paniculata

Other biological activities of extracts and enriched fractions from different Anacardiaceae spp.6969 da Silva, E. P. ; David, J. M.; David, J. P. ; Garcia, G. H. T.; Silva, M. T.; Quim. Nova 2020, 43, 1216. [Crossref ]
Crossref...
, 104104 Silva, F. G.; Curado, F. M. L. M. J.; Gazolla, A. P.; Pedroso, R. C. N.; Pimenta, L. P.; de Oliveira, P. F.; Tavares, D. C.; Andrade-Silva, M. L.; Cunha, W. R.; Pietro, R. C. L. R.; Januário, A. H.; Pauletti, P. M.; Sales, J. F.; J. Med. Plants Res. 2016, 10, 450. [Crossref ]
Crossref...
, 105105 Suleiman, M. M.; Elgorashi, E. E.; Samuel, B. B.; Naidoo, V. ; Eloff, J. N.; Biochem. Pharmacol. 2013, 2, 1000123. [Crossref ]
Crossref...
, 106106 Ahmed, A. S.; McGaw, L. J.; Moodley, N.; Naidoo, V. ; Eloff, J. N.; S. Afr. J. Bot. 2014, 95, 9. [Crossref ]
Crossref...
, 107107 Martinez-Elizalde, K. S.; Jimenez-Estrada, M.; Flores, C. M.; Hernández, L. B.; Rosas-López, R.; Duran-Diaz, A.; Nieto-Yañez, O. J.; Barbosa, E.; Rodríguez-Monroy, M. A.; Canales-Martinez, M.; BMC Complementary Altern. Med. 2015, 15, 74. [Crossref ]
Crossref...
, 108108 Araújo, B. S.; Santos, C. C. S.; Araújo, S. S.; Santos, A. L. L. M.; Almeida, E. C. V. ; Dias, A. S.; Damascena, N. P. ; Santos, D. M.; Santos, M. I. S.; Júnior, K. A. L. R.; Pereira, C. K. B.; Lima, A. C. B.; Shan, A. Y. K. V.; Sant’ana, A. E. G.; Estevam, C. S.; Rev. Bras. Farmacogn. 2014, 24, 298. [Crossref ]
Crossref...
, 109109 Van Giau, V.; Nguyen, N. H.; Thuc-Huy, D.; Nguyen, T. T.; Ma, P. C.; Ta, Q. T. H.; Molecules 2020, 25, 1996. [Crossref], 110110 Adesegun, S. A.; Badejo, M. V.; Odebumni, S. O.; Ojobo, P. D.; Coker, H. B.; Trop. J. Nat. Prod. Res. 2019, 3, 58. [Crossref ]
Crossref...
, 111111 Sequeda-Castañeda, L. G.; Celis-Zambrano, C. A.; Torrenegra-Guerrero, R. D.; Pharmacology Online 2021, 1, 426. [Link] accessed in August 2023
Link...
, 112112 Milella, L.; Russo, D.; Miglionico, R.; Carmosino, M.; Bisaccia, F.; Andrade, P. B.; Valentão, P.; Armentano, M. F.; Int. J. Mol. Sci. 2018, 19, 186. [Crossref ]
Crossref...
, 113113 Njume, C.; Afolayan, A. J.; Green, E.; Ndip, R. N.; Int. J. Antimicrob. Agents 2011, 38, 319. [Crossref ]
Crossref...
, 114114 Shai, L. J.; Mogale, M. A.; Lebelo, S. L.; Thovhogi, N.; de Freitas, A. N.; Afr. J. Biotechnol. 2011, 10, 15033. [Crossref ]
Crossref...
, 116116 Al Sayed, E.; Martiskainen, O.; Sinkkonen, J.; Pihlaja, K.; Ayoub, N.; Singab, A. N.; El-Azizi, M.; Nat. Prod. Commun. 2010, 5, 545. [Crossref ]
Crossref...
are summarized in Table 7.

Table 7
Biological activities in vitro of different extracts in other Anacardiaceae spp.

In vivo studies

The in vivo antioxidant extracts of Lannea stuhlmannii and L. humilis were analyzed by HPLC-PDA-ESI-MS/MS and permitted to annotate 22 specialized metabolites, including sulphated flavonoids (Figure 8).117117 Sobeh, M.; Mahmoud, M. F.; Hasan, R. A.; Abdelfattah, M. A. O.; Sabry, O. M.; Ghareeb, M. A.; El-Shazly, A. M.; Wink, M.; Sci. Rep. 2018, 8, 9343. [Link] accessed in August 2023
Link...
The antioxidant behavior of the extracts was observed through the reduction of high levels of AST (serum aspartate aminotransferase) and total bilirubin by the attenuation of deleterious histopathologic changes in the liver (induced by D-GalN) or the protection of hepatocytes from apoptosis, besides an increased expression of Bcl-2 (anti-apoptotic protein). Moreover, molecular docking evaluation showed that some identified compounds from both plants could bind to the Bcl-2:Bim (BH3) interface by hydrophobic interactions (or hydrogen and ionic bonds) with an appreciable binding free energy, whose properties are due to the presence of flavonoids and proanthocyanidins. However, the correct stereochemistry of the catechins were not determined. On the other hand, the diuretic and saluretic effects of an aqueous decoction (LMaq) and EtOAc extract of L. microcarpa barks in comparison to amiloride’s and furosemide’s were reported, in such a way that their mechanism of action seemed more analogous to the furosemides.118118 Nitiéma, M.; Belemnaba, L.; Ouedraogo, S.; Ouedraogo, N.; Ouedraogo, S.; Gissou, I. P.; World J. Pharm. Res. 2018, 7, 39. [Link] accessed in September 2023
Link...
In this study, it was verified that the diuretic activity (urinary excretion) of LMaq was dose-dependent and that the administration of extracts provided the selective elimination of Na+ concerning the stabilizing excretion of K+, confirming that L. microcarpa extracts may be a promising alternative for the therapeutic management of renal and cardiovascular pathologies.

Figure 8
Compounds from active extracts of Lannea stuhlmannii and L. humilis

The leaf aqueous extract in vivo activities of Mangifera indica presented in vivo antidiabetic and hypolipidemic activities, which significantly decreased the total serum cholesterol, triglycerides (89.75 ± 0.46%) and very low-density lipoprotein (17.95 ± 0.09%) in rats (200 mg kg−1 body weight, p.o.) and, simultaneously, increased high-density lipoproteins (30.21 ± 2.59%). The results were almost comparable to those of atorvastatin.119119 Shah, K. A.; Patel, M. B.; Chauhan, K. N.; Shah, S. S.; Parmar, P. K.; Patel, N. M.; Pharm. Sin. 2010, 1, 156. [Link] accessed in August 2023
Link...
Furthermore, studies of the analgesic properties EtOH, and petroleum ether extracts of M. indica dried leaves120120 Ferdous, R. U.; Jami, S. I.; Begum, M.; Begum, T.; Rahman, M. A.; Haque, T.; Khan, A.; Hossain, B.; Tarek, H.; Alam, N. A.; Am. J. BioSci. 2015, 3, 19. [Crossref ]
Crossref...
indicated antinociceptive activity (oral dose of 200 mg kg−1 of body weight, with a writhing inhibition of 44.5-51.7% and 41.6-50.0%, respectively), while CCl4 presented a mild effect (writhing inhibition of 25-30%). Nevertheless, no investigation was performed to lead to identify the bioactive compounds.

The hypoglycemic effect of MeOH:H2O extract of Pistacia spp. (e.g., P. khinjuk) were evaluated in six groups of Swiss albino mice previously treated with alloxan monohydrate (except the normal group).121121 Shahid, S.; Taj, S.; 2nd International Conference on Functional Materials and Chemical Engineering (ICFMCE 2018), Lahore, Pakistan, 2019. [Crossref ]
Crossref...
In normoglycemic mice, the plant extract showed statistically significant hypoglycemic activity at 200 and 500 mg kg−1 and the blood glucose level decreased. On the other hand, the aqueous ethanolic extracts of leaves of Sclerocarya birrea were tested on basal plasma glucose (BPG) and oral tolerance glucose in mice, which significantly reduced peak of hyperglycemia at 100 mg kg−1 body (p < 0.001), though it did not have a relevant hypoglycemic effect on BPG. Moreover, this study reported that the co-administration of S. birrea aqueous EtOH extracts with analogous extracts of G. sylvestre (Asclepiadaceae) enabled a greater cutback on hyperglycemia (47%) compared to the S. birrea extract alone (36%).122122 Youl, E. N. H.; Nassouri, S.; Ilboudo, S.; Ouedraogo, M.; Sombié, C. B.; Ilboudo, S.; Dakuyo, Z. P.; Gissou, I. P.; Afr. J. Pharm. Pharmacol. 2020, 14, 339. [Crossref ]
Crossref...
These species are sources of flavonoids, saponosides, tannins and other bioactive metabolites, whose combined use of these plants would be an asset in treating diabetes.

Aqueous extract and enriched flavonoid fraction (FF) of the EtOAc of Rhus trilobata were evaluated as a potential alternative against colorectal adenocarcinoma cells and other types of cancer.123123 Varela-Rodríguez, L.; Sánchez-Ramírez, B.; Rodríguez-Reyna, I. S.; Ordáz-Ortiz, J. J.; Chávez-Flores, D.; Salas-Muñoz, E.; Osorio-Trujillo, J. C.; Ramos-Martínez, E.; Talamás-Rohana, P.; BMC Complementary Altern. Med. 2019, 19, 153. [Crossref ]
Crossref...
The toxicological effect of the extracts was determined in female BALB/c mice after 24 h and 14 days of intraperitoneal administration of 200 mg kg−1 of both extracts. Besides, UPLC-PAD-MSE permitted to detect the most abundant compounds in the active extracts. Known compounds such as methyl gallate, epigallocatechin 3-cinnamate, quercetin 3-(2”-alloylglucosyl)-(1→2)-alpha-L-arabinofuranoside, β-PGG (100), 4-O-digalloyl-1,2,3,6-tetra-O-β-D-galloylglucose, myricetin 3-(4”-galloylrhamnoside) and fisetin were annotated, which possibly are responsible for the activity. The evaluation of toxicity did not reveal meaningful anatomical changes nor histological damages.

Similarly, the total flavonoid content of Rhus cotinus (e.g. Cotinus coggygria)124124 Wang, G.; Li, F.; Du, L.; Wang, J. J.; BioMed Res. Int. 2015, 1, 1. [Crossref ]
Crossref...
showed a potent in vivo antitumor effect in xenograft animal models of ectopic glioblastoma against several lineages of highly malignant cells (IC50 = 93.57-128.49 μg mL−1). This activity (tumor’s volume reduction at 25 and 50 mg kg−1 CCF) was analogous to that temozolomide (positive control). The compounds present in the extract inhibited the growth of tumors in mice in a day-dependent pattern (7-28 days, p < 0.05).

Spondias pinnata stands out regarding in vivo bioactivity. The investigation of the antioxidant effect of aqueous bark extract125125 Attanayake, A. P.; Jayatilaka, K. A. P. W.; Pathirana, C.; Mudduwa, L. K. B.; Int. J. Pharmacogn. 2015, 2, 166. [Crossref ]
Crossref...
(through evaluation of the activity of several enzymes in STZ-diabetic rats) showed that AEsp decreased, (i) the LPO (by 17%) and (ii) the alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities by 20, 17 and 36%, respectively. However, the (i) liver reduced liver glutathione (GSH) content and (ii) the activities of glutathione reductase, glutathione peroxidase and glutathione S-transferase were increased by 43, 44, 69 and 52%, respectively (p < 0.05 at a dose of 1.00 g kg−1). Furthermore, the EtOAc extract of S. pinnata’s stem heartwood exhibited a hepatoprotective effect126126 Rao, B. G.; Raju, N. J.; Asian J. Chem. 2009, 21, 7416. [Link] accessed in August 2023
Link...
in rats under CCl4-injury induction. The results showed that this extract brought back the altered serum levels of some biochemical markers (SGPT/serum glutamyl pyruvate transaminase, SGOT/serum glutamyl oxalacetic acid transaminase, ALKP/alkaline phosphatase and bilirubin) to near normal range according to a dose-dependent mechanism. Finally, we could highlight in the study of the antipyretic potentials127127 Panda, B. K.; Patro, V. J.; Mishra, U. S.; Kar, S.; J. Pharm., Chem. Biol. Sci. 2014, 1, 26. [Link] accessed in August 2023
Link...
of the acetone and EtOH extracts of S. pinnata stem bark were evaluated. The ethanol extract (at 200-400 mg kg−1 p.o) presented a substantial reduction in yeast-induced elevated temperature in mice (along 1 h up to 5 h) in a dose-dependent manner, being compared to paracetamol. The possible mechanisms of action of S. pinnata stem bark extracts and the bioactive compounds still need to be further elucidated.

Moreover, in studies with Buchnania lanzan,128128 Chaturvedi, B.; Chaturvedi, D. S.; Int. J. Pharm. Sci. Res. 2021, 12, 3744. [Crossref ]
Crossref...
the MeOH leaf extract exhibited a significant neuroprotective activity (against AlCl3 induced Alzheimer’s in Albino Wistar rats) in two different doses (200 and 400 mg kg−1 day−1, orally for four weeks). The evaluation of learning and memory outcomes indicated that the leaf part of B. lanzan was more active in attenuating memory deficits than other parts. Furthermore, its mechanism of memory retention seems to be similar as compared to standard drugs, which might allow this plant has potential in the treatment of cognitive dysfunctions connected with neurodegenerative disorders.

Lastly, the crude MeOH extract of barks of Holigarna longifolia Roxb. and its chromatographic fractions demonstrated neuroprotective activities by increase of phenobarbitone-induced sleeping time of mice, as well as a substantial inflammation inhibitory efficacy compared to positive control. In addition, only MeOH extract provoked a significant antinociceptive activity by inhibiting abdominal writhes produced by AcOH compared to standard analgesic diclofenac sodium, whose outcomes indicate that H. longifolia might be a promising neuroprotective plant.115115 Uddin, Z. M.; Rana, S. M.; Hossain, S.; Ferdous, S.; Dutta, E.; Dutta, M.; Bin-Emram, T.; J. Complementary Integr. Med. 2020, 17, 20190102. [Crossref ]
Crossref...

Biological activities of isolated compounds from Anacardiaceae spp.

In vitro studies

Firstly, it can stood out that catechin-3-O-rhamnoside, a flavonoid isolated from Lannea kerstingii Engl. (EtOAc stem bark extract)129129 Stanislaus, N. N.; Ibrahim, S. M.; Usman, P. U.; Sa’adyia, H. H.; Garba, M. M.; Toyin, A. S.; Moji, B. O. T.; Ndifor, A. R.; Osas, E. G.; Oyetunji, S. A.; Salawu, S. M.; Pak. J. Pharm. Sci. 2021, 34, 629. [Link] accessed in September 2023
Link...
for the first time, exhibited antimicrobial (diffusion and broth dilution methods) and antioxidant (by DPPH scavenging assay) activities. This compound presented a selective activity against several bacteria and fungi (Candida spp.) with MIC ranging from 6.25 μg mL−1 (for S. aureus and MRSA, B. subtilis, E. coli, K. pneumonia and S. dysentariae) to 12.5 μg mL−1 (for S. typhi- S. enterica, C. albicans and C. tropicalis), while the MBC/MFC (minimum bactericidal/ fungicidal concentrations) ranged from 12.5 to 50.0 μg mL−1. Moreover, these activities are higher than chloramphenicol and positive nystatin controls, probably due to the flavonoid skill to complex with bacterial cell walls and extracellular soluble proteins.

Two new prenylated flavonoids 117 and 118 (Figure 9), alongside four known compounds (myricitrin, betmidin, lupeol and sitosterol) isolated from L. alata Engl. roots, might be associated to a good antibacterial and dose-dependent DPPH scavenging activity.130130 Okoth, D. A.; Koorbanally, N. A.; Chenia, H. Y. ; Phytochem. Lett. 2013, 6, 476. [Crossref ]
Crossref...
Both glycosides presented better antioxidant activity than 117 and 118 and betmidin showed the best antimicrobial activity among all tested metabolites. The presence of 3-O-arabinose glucoside might be associated to the activity of betmidin against Gram-positive bacteria. Similarly, the arabinofuranoside’s antioxidant effect (followed by the rhamnopyranoside), which was compared to ascorbic acid in high concentrations, corroborates with the ethnomedicinal uses of L. alata in the management of Gram-positive bacteria sicknesses. Structural features of 117 and 118 are narrowly related to their properties, such that the lower antioxidant (compared to the glycosides) behavior may be due to the presence of cyclized prenyl moieties thereon. Nevertheless, flavonol 117 is more active than 118 against Gram-negative strains (Pseudomonas spp.), what can be related with its planar C2-C3 double bond and suitability to this activity.

Figure 9
Structures of lanneaflavonol (117) and dihydrolanneaflavonol (118) isolated from L. alata roots

Lupeol and a mixture of phenolic lipids (mainly urushiols, with minor amounts of an alkenylphenols) from Schinopsis lorentzii (Griseb.) Engl. and S. haenkeana Engl. showed antifungal (against Fusarium graminearum and F. verticillioides) and antimicotoxigenic effects. In this study, the phenolic lipids were more active than lupeol against Fusarium spp. presenting MIC50 31 to 28 μg g−1 for F. graminearum and 165 to 150 μg g−1 for F. verticillioides.131131 Ficoseco, M. E. A.; Sampietro, D. A.; Vattuone, M. A.; Audenaert, K.; Catalán, C. A. N.; J. Appl. Microbiol. 2014, 116, 1262. [Crossref ]
Crossref...
Besides, the antimicotoxigenic activity was higher than that of ferulic acid, since the fumosinin and deoxynivalenol production was thoroughly inhibited by all bioactive metabolites even at lower concentrations. This activity is relevant to controlling these toxigenic fungi, owing to the stimulation of mycotoxin biosynthesis by several commercial antifungals.

The in vitro activities of several EOs of branches, fruits and leaves of Rhus typhina L. wood132132 Beretta, G.; Arlandini, E.; Gelmini, F.; Testa, C.; Angioletti, S.; Nat. Prod. Res. 2021, 35, 4764. [Crossref ]
Crossref...
(from Northeast Italy) exhibited high antimicrobial activity in vitro against C. albicans (inhibition zone 22.6-35.0 mm, MIC 0.02 mg mL−1), although only the EOs from leaves and fruits were active against E. coli ATCC (inhibition zone 17.6-22.5 mm, MIC 0.064 mg mL−1). Furthermore, the antioxidant effect (DPPH assay) of leaf and fruit EOs was superior to that EOs of the branches, as indicated by their respective IC50 values (2.29 ± 0.10 μg mL−1, leaves; 2.54 ± 0.10 μg mL−1, fruits; 5.80 ± 0.18 μg mL−1, branches).

Biological studies with Mangifera indica133133 Zhang, B.; Fang, J.; Chen, Y.; Zhao, J.; Li, S.; Zeng, L.; Pharm. Biol. 2015, 53, 503. [Crossref ]
Crossref...
have shown a wide range of applications of active extracts and isolated compounds such as 97. Mangiferin (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) is a pharmacologically active metabolite present in high yields in M. indica (bark, roots, fruits, and leaves) and exhibits diverse biological properties, among which are the antibacterial and cytotoxic/anticancer activities. A study reports that the solution of 97 was found to exert promising activity against both Gram-positive and Gram-negative bacteria, which is particularly relevant because known antibiotics resistance. Besides, the cytoprotective potential of 97 for hematopoietic cells from leukemogenesis was verified based on the decreased olive tail moment (OTM) and micronucleus (MN) frequency, so that 97 probably reduces DNA damage in the etoposide-treated mononuclear cells.133133 Zhang, B.; Fang, J.; Chen, Y.; Zhao, J.; Li, S.; Zeng, L.; Pharm. Biol. 2015, 53, 503. [Crossref ]
Crossref...

Moreover, a study for the characterization of epicuticular leaf DCM extracts and several derivatives of Lithrea caustica (Molina) Hook and Arn. showed that litreol ((3-[pentadecyl-10-enyl-catechol]) and some derivatives behave as inhibitors of 15 soybean and 5 human lipoxygenases (15-sLOX and 5-hLOX).134134 Muñoz-Ramírez, A.; Torrent-Farías, C.; Mascanayo-Collado, C.; Urzúa-Moll, A.; Phytochemistry 2020, 174, 112359. [Crossref ]
Crossref...
The highest activities were exhibited by litreol (IC50 = 54.77 μmol L−1, against s-LOX; 2.09 μmol L−1, against h-LOX) and 3-pentadecylcathecol (IC50 = 55.28 μmol L−1, against s-LOX; 2.74 μmol L−1, against h-LOX), in such a way that the respective kinetic studies indicated a mixed and selective inhibition mechanism to 5-hLOX.

Besides, the pistagremic acid (119) isolated from the dried galls of Pistacia integerrima Stewart exhibited an inhibitory effect against α-glucosidase in vitro against yeast (IC50 = 89.12 ± 0.12 μmol L−1),135135 Uddin, G.; Rauf, A.; Al-Othman, A. M.; Collina, S.; Arfan, M.; Ali, G.; Khan, I.; Fitoterapia 2012, 83, 1648. [Crossref ]
Crossref...
confirming former molecular docking simulations. Thus, a molecular binding mode was explored, and the results indicated hydrogen bonding interactions between this triterpene and significant amino acid residues surrounding the catalytic site of the α-glucosidase, which could be mainly responsible for their role in potent inhibitory activity. Therefore, 119 (Figure 10) showed a promising potential to be further investigated as a new lead compound for better management of diabetes.

Figure 10
Pistagremic acid (119) isolated from Pistacia integeriima and of pleiogenones A-C (120-122) obtained from Pleiogynium timoriense

The investigation of a DCM extract of the bark of Pleiogynium timoriense against the A2780 ovarian cancer cell line (A2780 OCCL) indicated an IC50 value of 1.3 μg mL−1. Bioassay-directed fractionation of this extract yielded the three new bioactive trihydroxyalkylcyclohexenones (Figure 10) named pleiogenones A (120), B (121) and C (122), which showed a higher antiproliferative activity against the A2780 OCCL presenting IC50 of 0.8, 0.7, and 0.8 μg mL−1, respectively.136136 Eaton, A. L.; Rakotondraibe, L.; Harinantenaina, B.; Peggy J.; Goetz, M.; Kingston, D. G. I.; Planta Med. 2015, 78, 1752. [Crossref ]
Crossref...
Compound 72, named integracin E, obtained from the stem barks of Swintonia floribunda,7070 Dang, P. H.; Nguyen, L. T. T.; Nguyen, H. T. T.; Le, T. H.; Do, T. N. V.; Nguyen, H. X.; Le, N. D.; Nguyen, M. T. T.; Nguyen, N. T.; Nat. Prod. Res. 2019, 33, 2883. [Crossref ]
Crossref...
also presented a potent tyrosinase inhibitory activity with an IC50 value of 48.2 μmol L−1.

Likewise, the bioactivity-guided fractionation of EtOAc leaf extract of Poupartia borbonica J.F.Gmel. furnished three novel alkyl cyclohexenone derivatives (123-125)137137 Ledoux, A.; St-Gelais, A.; Cieckiewicz, E.; Jansen, O.; Bordignon, A.; Illien, B.; Di Giovanni, N.; Marvilliers, A.; Hoareau, F.; Pendeville, H.; Quetin-Leclercq, J.; Frederich, M.; J. Nat. Prod. 2017, 80, 1750. [Crossref ]
Crossref...
with absolute configurations assigned (Figure 11). These compounds were active against 3D7 and W2 Plasmodium falciparum strains (IC50 = 0.55-1.81 μmol L−1) and exhibited in vitro cytotoxicity against WI38 human fibroblasts and human cervical cancer (HeLa) cell lines (WST-1 assay), but no hemolytic activity was observed for the extract and pure metabolites. Besides, the MeOH extract was also evaluated, and it displayed moderate antiplasmodial properties in vitro, which might be attributed to its flavonoid content, including the unknown compound 3’-O-hydroxysulfonylquercetin (126). Moreover, studies with Tapirira guianensis leaves allowed the obtention of these compounds, which seems to be precursors of alkyl and alkenyl phenols (127-130). The cyclohexene derivatives 127 and 128 were in mixture and they also showed against P. falciparum strains (IC50 = 4.7 ± 0.3 and 5.4 ± 1.7 μmol L−1) against F32 and FcB1 strains. This mixture was also active against Leshimania amazonensis (IC50 = 1.0 ± 0.1 μmol L−1), S. aureus (IC50 = 75.4 μmol L−1) and S. epidermidis (IC50 = 17.6 μmol L−1).138138 Roumy, V.; Fabres, N.; Portet, B.; Bourdy, G.; Acebey, L.; Vigor, C.; Valentim, A.; Moules, C.; Phytochemistry 2009, 70, 305. [Crossref ]
Crossref...

Figure 11
New bioactive alkyl and alkenyl cyclohexenone derivatives and sulphorated quercentin from P. borbonica and alkenyl derivatives from T. guianensis

In sequential studies with P. borbonica, the cytotoxicity and pharmacological activities139139 Ledoux, A.; Beriot, D.; Mamede, L.; Desdemoustier, P.; Detroz, F.; Jansen, O.; Frederich, M.; Maquoi, E.; Planta Med. 2021, 87, 1008. [Crossref ]
Crossref...
of poupartone B (123) were deeply evaluated. A real-time live-cell imaging of different human cancer cell lines and normal fibroblasts treated with 123 was carried out. Thus, this compound showed a potent inhibition of cell proliferation associated with the induction of cell death. Besides, 123 (at 1-2 μg m L −1) induced a rapid retraction of cellular protrusions associated with cell rounding, massive cytoplasmic vacuolization, loss of plasma membrane integrity and plasma membrane bubbling, ultimately leading to paraptosis-like cell death. These results highlight the cytotoxicity of 123 against several in vitro cancer cell lineages.

The stem bark CHCl3 extract of Protorhus longifolia (Benrh.) Engl. Furnished the known 3-oxo-5α-lanosta-8,24-dien-21-oic acid (131) and 3β-hydroxylanosta-9,24-dien-24-oic acid (132), which were screened for several activities (Figure 12).140140 Mosa, R. A.; Oyedeji, A. O.; Shode, F. O.; Singh, M.; Opoku, A. R.; Afr. J. Pharm. Pharmacol. 2011, 5, 2698. [Link] accessed in September 2023
Link...
These compounds showed satisfactory anti-platelet aggregation activities dose dependent, so that 131 showed the highest activity (IC50 = 0.99 mg mL−1) on the thrombin-induced platelet aggregation.

Figure 12
3-oxo-5α-lanosta-8,24-dien-21-oic and 3β-hydroxylanosta-9,24-dien-24-oic acids with anti-platelet aggregation activities from P. longifolia

Two different studies with Semecarpus anacardium afforded the obtention and 3-(8’(Z),11’(Z)-pentadecadienyl)-catechol (SA-3C) isolated from the plant kernel141141 Nair, P. K. R.; Melnick, S. J.; Wnuk, S. F.; Rapp, M.; Escalon, E.; Ramachandran, C.; J. Ethnopharmacol. 2009, 122, 450. [Crossref ]
Crossref...
and tetrahydroamentoflavone142142 Arimboor, R.; Rangan, M.; Aravind, S. G.; Arumughan, C.; J. Ethnopharmacol. 2011, 133, 1117. [Crossref ]
Crossref...
from the seeds. The alkylphenol showed cytotoxic activity against tumor cell lines with IC50 values lower than doxorubicin and even multidrug resistant tumor cell lines were equally sensitive to SA-3C. Besides, it induced apoptosis in human leukemia cell lines in a dose-dependent pattern, showed synergistic cytotoxicity with doxorubicin and induced the cell cycle arrest at S- and G2/M-phases, what was correlated with inhibition of checkpoint kinases. On the other hand, tetrahydroamentoflavone (THA) exhibited a strong inhibitory effect against xanthine oxidase (XO), what was investigated through a Lineweaver-Burk (LB) plot for the XO inhibition of THA and allopurinol constructed from the kinetic data. In this case, IC50 values of THA and allopurinol for XO inhibition were 92 and 100 nmol L−1 and their corresponding values for Ki were 0.982 and 0.612 μmol L−1.

In conclusion, the fruit extract of Sorindeia juglandifolia furnished two bioactive simple compounds identified as 2,3,6-trihydroxybenzoic acid and methyl 2,3,6-trihydroxybenzoate.143143 Kamkumo, R. G.; Ngoutane, A. M.; Tchokouaha, L. R. Y. ; Fokou, P. V. T.; Madiesse, E. A. K.; Legac, J.; Kezetas, J. J. B.; Lenta, B. N.; Boyom, F. F.; Dimo, T.; Mbacham, W. F. M.; Gut, J.; Rosenthal, P. J.; Malar. J. 2012, 11, 382. [Crossref ]
Crossref...
These compounds showed inhibitory effects against P. falciparum W2 (IC50 16.5 μmol L−1 and 13.0 μmol L−1) and falcipain-2 (IC50 35.4 and 6.1 μmol L−1), respectively.

In vivo studies with pure compounds

To date, there are few examples of in vivo studies of isolated metabolites of Anacardiaceae. For instance, compounds isolated from EtOH extracts of leaves of Schinus polygamous C. (3-O-acetyllupeol, β-sitosterol, lupeol, gallic acid, methyl gallate, kaempferol, quercetin-3-α-O-rhamnoside and its aglicone quercetin) were submitted to hepatoprotective, antioxidant and curative in vivo studies. Lupeol and gallic acid were evaluated by oral administration in adult male albino rats (50-100 mg kg−1) and both compounds showed a significant protection against CCl4-induced liver damage. Besides, a remarkable antioxidant effect (> 90% for both compounds, measured by the activity of enzyme reduced glutathione) was observed.144144 El Sayed, A. M.; J. Med. Plants Res. 2016, 10, 223. [Crossref ]
Crossref...

In addition, the in vivo study of antihyperglycemic activity of the methyl ester of 3β-hydroxylanosta-9,24-dien-21-oic acid (132) from P. longifolia stem bark extract showed antihyperglycemic behavior in an STZ-induced diabetes rat model. This compound showed hypoglycemic effect by reducing blood glucose levels by 37% and improved glucose tolerance in the diabetic rats. Furthermore, a relatively higher hepatic glycogen content, alongside hexokinase and glucokinase activities (with a decrease in glucose-6-phosphatase activity), was observed in the triterpene-treated diabetic group when compared with the diabetic control group. The treatment increased antioxidant status of the diabetic animals, as well as the activity of superoxide dismutase and catalase along with a decrease in malondialdehyde content.145145 Mosa, R. A.; Cele, N. D.; Mabhida, S. E.; Shabalala, S. C.; Penduka, D.; Opoku, A. R.; Molecules 2015, 20, 13374. [Crossref ]
Crossref...

At last, different compounds aforementioned have also exhibited in vivo bioactivities; termipaniculatone A103103 Yang, T. H.; Yan, D. X.; Huang, X. Y.; Hou, B.; Ma, Y. B.; Peng, H.; Zhang, X. M.; Chen, J. J.; Geng, C. A.; Phytochemistry 2019, 164, 228. [Crossref ]
Crossref...
(103) possesses anti-hyperuricemic and anti-inflammatory activities in mice, 2,3,6-trihydroxy benzoic acid143143 Kamkumo, R. G.; Ngoutane, A. M.; Tchokouaha, L. R. Y. ; Fokou, P. V. T.; Madiesse, E. A. K.; Legac, J.; Kezetas, J. J. B.; Lenta, B. N.; Boyom, F. F.; Dimo, T.; Mbacham, W. F. M.; Gut, J.; Rosenthal, P. J.; Malar. J. 2012, 11, 382. [Crossref ]
Crossref...
is active against P. berghei strain B, with mean parasitaemia suppressive and curative doses of 44.9 mg kg−1 and 42.2 mg kg−1, respectively. The 3β-hydroxylanosta-9,24-dien-24-oic acid140140 Mosa, R. A.; Oyedeji, A. O.; Shode, F. O.; Singh, M.; Opoku, A. R.; Afr. J. Pharm. Pharmacol. 2011, 5, 2698. [Link] accessed in September 2023
Link...
(132) showed a strong inhibition of the acute inflammation of rat paw but in a higher concentration (500 mg kg−1), while pourpatone B (123) showed in vivo antimalarial (P. berghei) growth inhibition at a dose 15 mg kg−1 day−1 i.p.137137 Ledoux, A.; St-Gelais, A.; Cieckiewicz, E.; Jansen, O.; Bordignon, A.; Illien, B.; Di Giovanni, N.; Marvilliers, A.; Hoareau, F.; Pendeville, H.; Quetin-Leclercq, J.; Frederich, M.; J. Nat. Prod. 2017, 80, 1750. [Crossref ]
Crossref...

PROCESSES AND PRODUCT PATENTS BASED ON ANACARDIACEAE spp.

Employment in cosmetics

During the last two decades three cosmetic formulations were developed based on compounds isolated or present from Anacardiaceae spp. extracts. Ellagic acid or its derivatives, essential oils or foaming agents were employed in formulations with surfactants, thickening agents and other constituents. All evaluate compositions showed a good anti-dandruff effect mainly caused by Malassezia (Pityrosporum spp. yeasts).146146 Poletti, M.; Marion, C.; FR pat. 2,959,666 A1 2010.

Likewise, a hair styling composition in the form of foam relating to a process for shaping keratin fibers was also developed, comprising the application of at least one “mousse” composition, including one or several fresh fruit juices, including species of Anacardiaceae (mango) and/or surfactants. This type of cosmetic formulation was mainly made in an aqueous medium or organic hydrophilic solvent (linear or ramified alcohols), in such a way as to allow to take advantage of some active constituents that are naturally present in fresh fruits (vitamins, α- and β-hydroxyacids, antioxidants, and anti-inflammatories), which have beneficial properties for the hair and scalp.147147 Dubief, C.; Nadia, K.; Boche, B.; FR pat. 2,961,693 A1 2010.

At last, a topical cosmetic formulation was elaborated, in which the dedifferentiated plant cells are elicited in vitro following a cycle of successive darkness and lighting periods under a CO2 atmosphere.148148 Ennamany, R.; EP 3,250,295 B1 2016. The compositions with Anacardiaceae spp. and other plants permitted to observe an anti-aging effect, a protective effect for the skin and an antioxidant effect, as well as antifungal and antiradical properties.

Patents of medical and other biological uses

Several formulations comprising a hydroxylated fatty acid (such as ricinoleic acid) or a triglyceride containing hydroxylated fatty acid (e.g., castor oil) were combined with the liquid from the cashew nut peel (A. occidentale and others) and/or alkyl phenols or anacardic acids and derivatives, which have presented broad antimicrobial against Gram-positive and Gram-negative bacteria, fungi and protozoans. In this case, for the first time was presented that ricinoleic acid might behave as an oral antibiotic and an antiprotozoal agent, which was followed by extremely low toxicity in comparison with other antibiotics. Therefore, these formulations are developed to the prevention and treatment of pathogenic processes in people and animals (by oral, topical or parenteral administration), as well as to control fermentation (made with yeast – S. cerevisiae) and as an antifungal for food and seeds.149149 Campmany, J. T.; US pat. 8,337,485 B2 2013.

An antiviral composition with antiretroviral properties for treating HIV patients, which was made with acetic acid and coconut extracts, a solution of mineral salts (e.g., seawater) and other plant extracts of Spondias mombin barks, Liliaceae (Smilax medica roots) and Euphorbiaceae (roasted castor beans, Ricinus spp.), was developed.150150 Commin, A. R.; WO pat. 2011/01000 A1 2011. The results of these formulations indicated an inhibition of the HIV-1 reverse transcriptase activity (which may exceed 90% compared to the activity measured in the controls) and a decrease in the cytopathogenic effect of HIV-1 in infected cells after the treatment with the antiviral compositions. Besides, the absence of toxicity was observed in mice essays.

On the other hand, a preparation for in vivo and in vitro applications based on an aqueous Mangifera indica fruit extract called sirtuin 1 (SIRT1) is claimed to be an activating agent,151151 Buter, K. B.; Buchwald-Werner, S.; US pat. 10,596,212 B2 2020. which may be used to reduce the risk of obesity, type-II diabetes, high blood lipid levels, arteriosclerosis, and heart illnesses, as well as a cellular and DNA protector. In addition, an aqueous ethanolic dilution of juices or extracts derived from some plants were transformed into a paste/jelly/jam/cake/cream puff/chocolate to be used as functional foods and had anti-stress (e.g., induced by gastric ulcers) and adaptogenic activities. The extracts of M. indica (65.0-75.0 wt.%), Withania somnifera (3.5-5.0 wt.%, Solanaceae), Aspargus recemosus (3.5-5.0 wt.%, Asparagaceae), Amaranthus hypochondriacus (10.0-20.0 wt.%, Amaranthaceae) and Evolvulus alsinoides (0.2-0.6 wt.%, Convolvulaceae)152152 Pushpangadan, P.; Rawat, A. K. S.; Rao, C. V.; Srivastava, S. K.; Govindarajan, R.; WO pat. 2006/061849 A1 2006. did not provoke mortality in any of the rats’ treated groups, as well as behavior’s abnormalities in the animals exposed with herbal preparations. The results of these formulations showed antiulcer proprieties (since they reduce the ulcer index and decrease its severity) and exhibited antioxidant effect by the decrement of lipid peroxidation, the rising of catalase levels and the enhancement of superoxide dismutase activity.

Another invention related to an herbal formulation prepared with several plants (including M. indica)153153 Krishnan, G.; EP pat. 2,326,338 B1 2009. developed for the diabetes prevention and treatment, as well as associated damages, was proposed in the period. The formulation developed therein might not only control type-II diabetes, but also offer reversal possibilities in prediabetes and, thereby, possible prevention for diabetes mellitus and its complications. The plant extract composition provides good glycemic management and reduces the glycosylation of hemoglobin, controls the total cholesterol levels, improves cardiovascular health by decreasing hypertension and enhances wound healing of diabetic ulcers. Besides, another minor effect is the reduction systolic and diastolic blood pressure, prevention of oxidative stress and minimization of hypertensive drug dependency.

Compositions and extracts based on Schinus terebinthifolia and one or more compounds present in this plant. In certain embodiments, the formula is administered in combination with another antibiotic agent.154154 Quave, C. L.; Lyles, J.; Tang, H.; Porras-Brenes, G.; US pat. 2021/0315906 A1 2021. These formulations prevent bacterial infections (e.g., caused by Staphylococci sp.), besides other skin damages, acne and other corresponding applications. Their main compounds herein were annotated by LC-FTMS (flavonoids, triterpenoids and steroidal sapogenins, among others), which are known to have many known biological properties.

Anacardic acids were used as an effective formulation for treating anemia and low blood pressure. In these formulations is including at least one anacardic acid of C-15 alkyl/alkenyl chain (59 and the ∆88 Nyegue, M. A.; Kemegne, G. A.; Kamdem, S. L. S.; François-Xavier, E.; Menut, C.; Nat. Prod. Commun. 2018, 13, 903. [Crossref ]
Crossref...
, 99 Joshi, S. C.; Mathela, C. S.; J. Nat. Prod. Plant Resour. 2014, 4, 39. [Link] accessed in August 2023
Link...
alkene derivative) isolated from roots and barks aqueous extract of Ozoroa paniculosa.155155 Bogoshi, M. N.; PAT035/TDP 2014/03582 2014. The composition was active for oral, rectal, nasal, vaginal or parenteral (subcutaneous, intramuscular, intravenous or intradermal) administration, both to humans and animals. Besides, six active fractions of Anacardiaceae and Asteraceae spp. were employed to elaborate herbal compositions to treat infertility in men presenting no-side effects.156156 Nandeshwar, W. M.; IN pat. 21,007,662, A23K1/18 2017. The inventors stated that these formulations restored vigor, increased sexual libido, exhibited a healing effect on X and Y chromosome-related diseases and granted other corresponding benefits in synergistic plant compositions.

Some like-urushiol derivatives were synthesized (e.g., 3-n-pentadecyl catechol, and/or 3-n-heptadecyl catechol), both similar that isolated from poison ivy.157157 Elsohly, M.; Gul, W.; Ashfaq, M. K.; US pat. 10,322,103 B2 2019. They are potential compositions for the prevention and/or prophylactic treatment of contact dermatitis caused by poison ivy and poison oak and other ACD causing plants of the family Anacardiaceae and Ginkoaceae. The embodiments were effective for tolerizing and desensitizing mammals, including humans. They comprise esters from urushiols and amino acid, or combination of amino acids (i.e. di, tri, or poly peptide residue), a carbamate forming compound, a sulphate or phosphate ester or even an ester of a dicarboxylic acid, resulting in a salt forming compounds with water soluble characteristics to facilitate the topic use.

Different insecticidal compositions were prepared in liquid, dehydrated and lyophilized forms, wherein several plants of various families (e.g., Pistacia vera, Anacardiaceae) were included, whose constituents (polypeptides alone vs. binary systems) expressed as polypeptides/polynucleotides showed pesticidal properties.158158 Rotem, M. O.; Elbaz, M.; Etkes, A. S.; Meihls, L. N.; Ben Naim, N.; Ghosh, D.; US pat. 2021/0171976 A1 2021. These combinations showed to be more active than the components individually, whose results are promising for agriculture, ecology, biotechnology and other scientific applications.

The efficacy of the gum of Odina wodier Roxb. (i.e., Rhus odina), an Asian plant that presents many applications in folk medicine, was evaluated for the first time as a tablet binder.159159 Mukherjee, B.; Samanta, A.; 61/KOL/2006 2003. Hitherto, the potential binding capability and an emulsifier have already been studied to stabilize emulsions. Chemical analyzes appointed to the presence of carbohydrates but the absence of tannins and peroxidase enzyme in the “gum odina” compositions, what removed the possibility of oxidative degradation of gum as excipient. The gum shows stable in liquid conditions and no toxicity was observed. These results showed that “gum odina” could be used as pharmaceutical excipients (e.g., tablet binder or emulsifier), being effective in minimal amounts compared to the standard tablet binders.

Furthermore, other studies with Anacardiaceae spp. were developed with new compositions or products that might be applied as (i) antimicrobial coating films for filters and air conditioning equipment (e.g., branch/leaf/rhizome/bark aqueous extracts of different plants, including Pistacia spp.),160160 Tomioka, T.; US pat. 2006/0008539 A1 2006. (ii) in procedures for a concentration of xanthones at high pressure on a semi-industrial scale using extracts of several plants (e.g., M. indica)161161 Fernández Ponce, M. T.; Fernández, E. J. M. O.; Cardoso, L. C.; Gay, D. A.; ES pat. 2,567,530 B1 2017. or (iii) to increase the content of desired ingredients in crops (such as fruits and vegetables) by applying succinate dehydrogenase inhibitors (SDIs).162162 Rieck, H.; Lachaise, H.; Steiger, D.; Labourdette, G.; US pat. 2011/0065580 A1 2011. Thus, the embodiments of invention (i) were intensely active against harmful microorganisms in the living environment, promoting its cleanliness and preventing microorganisms’ degradation. On the other hand, the use of a hydrophobic stationary phase mixed to a supercritical eluent (pure CO2 vs. a mix of CO2 with a polar cosolvent in isocratic or gradient mode) in (ii) allowed the obtention of phenolic acids, benzophenones, flavonoids and xanthones in high amounts (mainly 97, 5× higher than in original leaf extract), whose process was efficient and avoided losses in the bioactivity of the fractionated substances. At last, the study showed the behavior of several SDIs against various plant species (including mango, sumac, and pistachio), whose results indicated that different types of natural metabolites might have their contents increased thereon, since the SDI is applied to the crop prior to the harvest and at a rate ranging from 1 to 250 g ha−1.

Several formulations, including at least one plant of Asteraceae, Lamiaceae, Anacardiaceae (P. lentiscus) and Cistaceae families in treating varroatosis (by Varroa destructor, varroa mite) in bees were elaborated.163163 Bellei, S.; Melis, L.; Peloso, A.; Betti, N.; WO pat. 2021/009379 Al 2021. This invention achieves a composition that is harmless for bees and humans and effective in a short time on mites in both phoretic and reproductive phases in opened/operculated cells.Besides, antioxidant formulations from Anacardiaceae spp. (in particular, Sclerocarya birrea) were obtained by maceration/extraction of roots, bark, leaves, fruits or their parts (endocarp, mesocarp, epicarp) and using different solvents, whose results suggested that the prepared extracts had outstanding oxidative stability and showed a good antiradical behavior.164164 Cyril, N. L.; Raynard, M.; de Chily, P. C.; FR pat. 2,883,003 A1 2006.

Other plant compositions, including Anacardiaceae species prepared with unrefined oils (from natural seedlings) free of phorbolic esters and trans fatty acids, were developed for cosmetic, dermatologic, dietetic, insecticide, pharmaceutical, veterinary and eating uses.165165 Boucher, C.; Ghislain, H. M.; FR pat. 2,886,547 A1 2006. These compositions exhibited satisfactory outcomes as an antimicrobial/antifungal, germ inhibitor and for the management of cellular functions, including the potential to be employed in external and internal medications. In conclusion, in the same way a formulation comprising sumac (Rhus spp.) and oregano can be highlighted166166 Falco, G.; WO pat. 2021/124167 Al 2021. once it can be used as a preservative agent to prevent or slow down the deterioration of food products (e.g., for wet and dry baked products). These formulations allowed the storage time of the baked products to be significantly extended, substantially delaying both the appearance of mold (mainly on wet baked goods) and the rancidity, what probably is related to the presence of polyphenols.

PROGRESS IN BIOSYNTHESIS OF PHENOLIC LIPIDS

Phenolic lipids and derivatives are chemotaxonomic markers of this family, but their biosynthesis is still not completely enlightened.11 Correia, S. J.; David, J. P.; David, J. M.; Quim. Nova 2006, 29, 1287. [Crossref ]
Crossref...
More recent publications have given new contributions, such as the structure and function of polyketide biosynthetic enzymes (PKSs) and the strategies for producing several polyketides.167167 Miyanaga, A.; Biosci., Biotechnol., Biochem. 2017, 81, 2227. [Crossref ]
Crossref...
The results indicated that the type III PKSs have involved in the processes of polyphenols and phenolic lipids biosynthesis in plants, bacteria and fungi. Hence, type III PKSs synthesize a broad group of metabolites, since they differ in their preference of starter and extender substrates, the number of condensation steps and the mechanism of intramolecular cyclization of poly-β-keto intermediates.

In vitro biochemical analysis using Azotobacter vinelandii bacterium strains was formerly conducted since alkylresorcinols and alkylpyrones are the major lipids of A. vinelandii cyst membranes. Gene disruption analyzes showed that the ars gene cluster is essential for biosynthesis, which consists of two types I fatty acid synthase (FAS) genes (arsA, arsD) and two types III PKSs (arsB, arsC). Thus, it was observed that the reactions of arsA, arsB, and arsD lead to alkylresorcinols. In contrast, the reactions of arsA, arsC, and arsD lead to alkylpyrones, once arsB catalyzes the decarboxylative C2-C7 aldol condensation to produce alkylresorcinols and arsC catalyzes the C5 oxygen-C1 lactonization to synthesize alkylpyrones (Figure 13). These features are due to the specific amino acid residues at the type III PKSs active site cavity (Trp281 to alkylresorcinols and Gly284 to alkylpyrones).167167 Miyanaga, A.; Biosci., Biotechnol., Biochem. 2017, 81, 2227. [Crossref ]
Crossref...

Figure 13
The biosynthetic pathway of phenolic lipids according to the experiments with Azotobacter vinelandii (adapted from Miyanaga)167167 Miyanaga, A.; Biosci., Biotechnol., Biochem. 2017, 81, 2227. [Crossref ]
Crossref...

Similarly, a study of characterization of an orphan Type III polyketide synthase (PKS/CepA) in uncultivated Entotheonella sponge (Theonella spp.) provided new information in phenolic lipids’ biosynthesis, as well as the metagenomic features related. Three PKS18 aminoacid residues (Thr144, Cys205, and Ala209) were crucially involved in its substrate preference (i.e., alkylresorcinols vs. alkylpyrones, according to the long-chain alkyl units binding). Nevertheless, for the enzyme BpsA the PKS-like substrate-binding tunnel is composed of Thr, Cys and Phe residues at the corresponding positions. Based on their bioinformatic analyzes, seems CepA was most likely a resorcinol synthase that accepted just long-chain fatty acid starters (133-138) directly from several coenzyme-A precursors (Figure 14(a)). In optimized enzymatic assays, two alkylresorcinols, and three alkylpyrones (139-143) were obtained (Figure 14(b)). At last, the in vitro experiments demonstrate that CepA factor acts as a phenolic lipid synthase, processing long-chain fatty acid acyl-CoA and malonyl-CoA thioesters, wherein the product range includes tetraketide resorcinols as well as tri- and tetraketide α-pyrones, which were detected for the first time in theonellid sponges of Entotheonella species.168168 Piel, J.; Reiter, S.; Cahn, J. K. B.; Wiebach, V. ; Ueoka, R.; ChemBioChem 2020, 21, 564. [Crossref ]
Crossref...
However, the presence of alkylpyrones might indicate incoherence with the bioinformatic prediction.

Figure 14
(a) Structures of potential PKS starters used as test substrates. (b) Proposed structures to the tri- or tetraketides obtained by optimized enzymatic assays using theonellid sponges (CepA pathway)

In conclusion, the catalytic activity of O-methyltransferase SrsB in the decarboxylative methylation of alkylresorcylic acid (ARA) along phenolic lipid biosynthesis by Streptomyces griseus (or S. lividans)169169 Nakano, C.; Ohnishi, Y.; Funa, N.; Horinouchi, S.; J. Bacteriol. 2012, 194, 1544. [Crossref ]
Crossref...
was investigated, whose operon (Srs) encodes a type III PKS and a flavoprotein hydroxylase. Former studies have reported that SrsA enabled the production of an ARA as a direct product rather than a corresponding alkylresorcinol (ARC), while SrsB produced alkylresorcinol methyl esther (ARME) in the presence of S-adenosyl-l-methionine (SAM). However, SrsB has been shown incapable of catalyzing the O-methylation of ARC, suggesting that ARA was the substrate of SrsB, whose conversion to ARME might take place by (i) the O-methylation of the OH-group (C-6) or (ii) the decarboxylation of the neighboring carboxyl group (C-1). These studies proposed that O-methylation was coupled with decarboxylation, so that SrsB catalyzed the feasible SAM-dependent decarboxylative methylation of ARA, which is the first report of a methyltransferase with this catalytic behavior in an in vitro assay (Figure 15).

Figure 15
(A) Scheme of the Srs biosynthetic pathway and (B) proposed mechanism of biosynthesis of alkylresorcinol methyl ester by SrsA and SrsB with the mediation of S-adenosyl-L-methionine (SAM) (adapted from Nakano)169169 Nakano, C.; Ohnishi, Y.; Funa, N.; Horinouchi, S.; J. Bacteriol. 2012, 194, 1544. [Crossref ]
Crossref...

CONCLUSIONS

This review presents a detailed report regarding the chemical composition and biological activities of pure compounds and extracts of the Anacardiaceae family. Technological prospection was also detailed with a variety of patents. Furthermore, new significant information about phenolic lipids biosynthesis was finally pointed out. However, for plants from this family, the biosynthesis of the chemical markers remains unclear, once the biosynthesis update was carried out with microorganisms. This botanical family is significant to pharmacology, the chemistry of natural products and corresponding scientific fields. Therefore, based on the data and the new findings shown hither, further research with the Anacardiaceae family was needed, both to isolate new bioactive compounds and elucidate the compounds responsible for the biological activities, as well as towards alternative contributions to biosynthetic studies of chemotypes/chemotaxonomic markers in this family.

ACKNOWLEDGMENTS

The authors thank CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico (# 302848/2022-3), INCT Energia e Ambiente, and CAPES-Conselho de Aperfeiçoamento de Pessoal de Nível Superior (finance code 001) for financial suport and scholarship.

REFERENCES

  • 1
    Correia, S. J.; David, J. P.; David, J. M.; Quim. Nova 2006, 29, 1287. [Crossref ]
    » Crossref
  • 2
    Baer, H. In The Poisonous Anacardiaceae; Kinghorn, A. D., eds.; Columbia Univ. Press: New York, 1979, p. 161-170.
  • 3
    Schulze-Kaysers, N.; Feuereisen, M. M.; Schieber, A.; RSC Adv 2015, 5, 73301. [Crossref ]
    » Crossref
  • 4
    Singh, S. K.; Sharma, V. K.; Kumar, Y. ; Kumar, S. S.; Sinha, S. K.; Herba Pol 2009, 55, 126. [Link] accessed in August 2023
    » Link
  • 5
    El-Nashar, H. A. S.; Mostafa, N. M.; Abd El-Ghffar, E. A.; Eldahshan, O. A.; Singab, A. N. B.; Nat. Prod. Res 2022, 36, 4839. [Crossref ]
    » Crossref
  • 6
    Mobot Research, https://www.mobot.org/mobot/research/apweb/genera/anacardiaceaegen.html, accessed in August 2023.
    » https://www.mobot.org/mobot/research/apweb/genera/anacardiaceaegen.html
  • 7
    Simionatto, E.; Peres, M. T. L. P.; Hess, S. C.; da Silva, C. B.; Chagas, M. O.; Poppi, N. R.; Prates, C. B.; Matos, M. F. C.; Santos, E. C. S.; de Carvalho, J. E.; J. Essent. Oil Res 2010, 22, 596. [Crossref ]
    » Crossref
  • 8
    Nyegue, M. A.; Kemegne, G. A.; Kamdem, S. L. S.; François-Xavier, E.; Menut, C.; Nat. Prod. Commun 2018, 13, 903. [Crossref ]
    » Crossref
  • 9
    Joshi, S. C.; Mathela, C. S.; J. Nat. Prod. Plant Resour 2014, 4, 39. [Link] accessed in August 2023
    » Link
  • 10
    Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Çenet, M.; Öztürk, B.; Balcilar, M.; Nat. Prod. Res 2014, 28, 2150. [Crossref ]
    » Crossref
  • 11
    Fraternale, D.; Ricci, D.; Nat. Prod. Commun 2018, 13, 1175. [Crossref ]
    » Crossref
  • 12
    Negro, C.; De Bellis, L.; Miceli, A.; J. Essent. Oil Res 2015, 27, 23. [Crossref ]
    » Crossref
  • 13
    Tabanca, N.; Nalbantsoy, A.; Kendra, P. E.; Demirci, F.; Demirci, B.; Molecules 2020, 25, 2136. [Crossref ]
    » Crossref
  • 14
    Abed, A.; Rachid, D.; Catherine, M.; Ismahene, S.; Aicha, L.; Nadia, B.; Hichem, D.; Charef, R.; Mehdi, E.; Farida, T.; Mounira, O. K.; Lahouari, D.; Int. J. Biosci 2017, 10, 146. [Crossref ]
    » Crossref
  • 15
    Komaitis, M.; Gardeli, C.; Papageorgiou, V. ; Mallouchos, A.; Theodosis, K.; Food Chem 2008, 107, 1120. [Crossref ]
    » Crossref
  • 16
    Hadjari, A.; Pulaj, B.; Mustafa, B.; Nelson, K.; Quave, C. L.; BMC Complementary Altern. Med 2016, 16, 147. [Crossref ]
    » Crossref
  • 17
    Ulukanli, Z.; Karabörklü, S.; Öztürk, B.; Çenet, M.; Balcilar, M.; J. Food Process. Preserv 2014, 38, 815. [Crossref ]
    » Crossref
  • 18
    Abolghasemi, A.; Shojaaddini, M.; Tajabadipour, A.; Sefidkon, F.; J. Essent.Oil Bear. Plants 2018, 21, 796. [Crossref ]
    » Crossref
  • 19
    Ismail, A.; Lamia, H.; Mohsen, H.; Samia, G.; Bassem, J.; Sci. Int 2013, 1, 148. [Crossref ]
    » Crossref
  • 20
    Satpathy, G.; Tyagi, Y. K.; Gupta, R. K.; Food Res. Int 2011, 44, 2076. [Crossref ]
    » Crossref
  • 21
    Sameh, S.; Al-Sayed, E.; Labib, R. M.; Singab, A. N. B.; Ind. Crops Prod 2019, 137, 468. [Crossref ]
    » Crossref
  • 22
    Ren, L.; Jing, Y. J.; Zhen, S. X.; Fei, W. Y. ; Corlett, R. T.; Kai, X. Y. ; Bin, H. H.; Molecules 2020, 25, 343. [Crossref ]
    » Crossref
  • 23
    Oladimeji, A. O.; Aliyu, M. B.; Ogundajo, A. L.; Babatunde, O.; Adeniran, O. I.; Balogun, O. S.; Pharm. Biol 2016, 54, 2674. [Crossref ]
    » Crossref
  • 24
    Lago, J. H. G.; Santana, J. S.; Sartorelli, P.; Guadagnin, R. C.; Matsuo, A. L.; Figueiredo, C. R.; Soares, M. G.; da Silva, A. M.; Pharm. Biol 2012, 50, 1248. [Crossref ]
    » Crossref
  • 25
    Gazim, Z. C.; Bortolucci, W. C.; de Oliveira, H. L. M.; Silva, E. S.; Vilas Boas, M. R.; de Carvalho, T. M.; Campo, C. F. A. A.; Gonçalves, J. E.; Piau Júnior, R.; Aust. J. Crop Sci 2018, 12, 1645. [Crossref ]
    » Crossref
  • 26
    Fernandes, M. Z. L. C. M.; Zanini, S. F.; Affonso, C. R. G.; Fernandes, R. M.; de Oliveira, J. M. G.; Martins, M. C. C.; de Lima, S. G.; Souza Júnior, G. R.; J. Braz. Chem. Soc 2012, 23, 180. [Crossref ]
    » Crossref
  • 27
    Sartorelli, P. ; Santana, J. S.; Guadagnin, R. C.; Lago, J. H. G.; Pinto, E. G.; Tempone, A. G.; Stefani, H. A.; Soares, M. G.; da Silva, A. M.; Quim. Nova 2012, 35, 743. [Crossref ]
    » Crossref
  • 28
    dos Santos, A. C.; Rossato, M.; Agostini, F.; Serafni, L. A.; dos Santos, P. L.; Molon, R.; Dellacassa, E.; Moyna, P.; J. Essent. Oil Bear. Plan 2009, 12, 16. [Crossref ]
    » Crossref
  • 29
    Pawlowski, A.; Kaltchuk-Santos, E.; Zini, C. A.; Caramão, E. B.; Soares, G. L. G.; S. Afr. J. Bot 2012, 80, 96. [Crossref ]
    » Crossref
  • 30
    Chaves, D. S. A.; Cavalcanti, A. S.; Alves, M. S.; da Silva, L. C. P.; Patrocínio, D. S.; Sanches, M. N.; de Souza, M. A. A.; Rev. Bras. Farmacogn 2015, 25, 356. [Crossref ]
    » Crossref
  • 31
    Barbosa, L. C. A.; Montanari, R. M.; Demuner, A. J.; Silva, C. J.; Andrade, N. J.; Ismail, F. M. D.; Barbosa, M. C. A.; Molecules 2012, 17, 9728. [Crossref ]
    » Crossref
  • 32
    Simionatto, E.; Chagas, M. O.; Peres, M. T. L. P.; Hess. S. C.; da Silva, C. B.; Ré-Poppi, N.; Gebara, S. S.; Corsino, J.; Morel, A. F.; Stuker, C. Z.; Matos, M. F. C.; de Carvalho, J. E.; J. Essent.Oil Bear. Plants 2011, 14, 590. [Crossref ]
    » Crossref
  • 33
    Afifi, F. U.; Aboalhaija, N. H.; Awwad, O.; Khalil, E.; Abbassi, R.; Abaza, I. F.; Chem. Biodiversity 2019, 16, e1900388. [Crossref ]
    » Crossref
  • 34
    Budel, J. M.; Machado, C. D.; Raman, V.; Rehman, J. U.; Maia, B. H. L. N. S.; Meneghetti, E. K.; Almeida, V. P.; Silva, R. Z.; Farago, P. V. ; Khan, I. A.; Rev. Bras. Farmacogn 2019, 29, 1. [Crossref ]
    » Crossref
  • 35
    Rodilla, J. M.; Rocha, P. M. M.; Diéz, D.; Elder, H.; Guala, M. S.; Silva, L. A.; Pombo, E. B.; Molecules 2012, 17, 12023. [Crossref ]
    » Crossref
  • 36
    Machado, M. M.; de Campos, M. M. A.; Duarte, J. A.; Zambrano, L. A. B.; Quintana, L. D.; Rocha, M. B.; Schmitt, E. G.; Boligon, A. A.; de Oliveira, L. F. S.; J. Evidence-Based Complementary Altern. Med 2018, 1, 1. [Crossref ]
    » Crossref
  • 37
    Descamps, L. R.; Chopa, C. S.; Ferrero, A. A.; Nat. Prod. Commun 2011, 6, 887. [Crossref ]
    » Crossref
  • 38
    Murray, A. P.; Gurovic, M. S. V. ; Rodríguez, S. A.; Murray, M. G.; Ferrero, A. A.; Nat. Prod. Commun 2009, 4, 873. [Crossref ]
    » Crossref
  • 39
    Murray, A. P.; Rodríguez, S. A.; Murray, M. G.; Nat. Prod. Commun 2008, 3, 1551. [Crossref ]
    » Crossref
  • 40
    da Silva, E. R.; Lazarotto, D. C.; Pawlowski, A.; Soares, G. L. G.; Rev. Cubana Plant. Med 2019, 24, 783. [Link] accessed in August 2023
    » Link
  • 41
    Hernandes, C.; Taleb-Contini, S. H.; Bartolomeu, A. C. D.; Bertoni, B. W.; França, S. C.; Pereira, A. M. S.; Nat. Prod. Commun 2014, 9, 1383. [Crossref ]
    » Crossref
  • 42
    Cardoso, C. A. L.; Jeller, A. H.; Ré-Poppi, N.; Coelho, R. M.; Yasunaka, D. S.; Schleder, J. D. E.; J. Essent. Oil Res 2010, 22, 469. [Crossref ]
    » Crossref
  • 43
    Carvalho, C. E. S.; Sobrinho-Júnior, E. P. C.; Brito, L. M.; Nicolau, L. A. D.; Carvalho, T. P.; Moura, A. K. S.; Rodrigues, K. A. F.; Carneiro, S. M. P.; Arcanjo, D. D. R.; Citó, A. M. G. L.; Carvalho, F. A. A.; Exp. Parasitol 2017, 175, 59. [Crossref ]
    » Crossref
  • 44
    Tintino, S. R.; Figueredo, F. G.; Lucena, B. F. F.; Matias, E. F. F.; Leite, N. F.; Andrade, J. C.; Nogueira, L. F. B.; Morais, E. C.; Costa, J. G. M.; Coutinho, H. D. M.; Rodrigues, F. F. G.; Pharm. Biol 2014, 52, 560. [Crossref ]
    » Crossref
  • 45
    Zoghbi, M. G. B.; Pereira, R. A.; de Lima, G. S. L.; Bastos, M. N. C.; Quim. Nova 2014, 37, 1188. [Crossref ]
    » Crossref
  • 46
    Said, A.; Omer, E. A.; El Gendy, M. A. M.; Fawzy, G.; Abd El-Kader, A. E.; Fouad, R.; J. Mater. Environ. Sci 2018, 9, 2274. [Link] accessed in August 2023
    » Link
  • 47
    Babouongolo, S. G.; Loumpangou, C. N.; Dao, E.; Simon, V. ; Elouma Ndinga, A. M.; Ouamba, J. M.; J. Essent.Oil Bear. Plants 2021, 24, 421. [Crossref ]
    » Crossref
  • 48
    Viljoen, A. M.; Kamatou, G. P. P.; Baser, K. H. C.; S. Afr. J. Bot 2008, 74, 325. [Crossref ]
    » Crossref
  • 49
    Kpoviéssi, D. S. S.; Gbaguidi, F. A.; Kossouoh, C.; Agbani, P.; Yayi-Ladekan, E.; Sinsin, B.; Moudachirou, M.; Accrombessi, G. C.; Quetin-Leclercq, J.; J. Med. Plants Res 2011, 5, 4640. [Link] accessed in August 2023
    » Link
  • 50
    Nguyen, H. X.; Le, T. C.; Van Do, T, N.; Le, T. H.; Nguyen, N. T.; Nguyen, M. T. T.; Chem. Cent. J 2016, 10, 1. [Crossref ]
    » Crossref
  • 51
    Sukari, M. A.; Ahmad, S.; Ismail, N.; Ismail, I. S.; Abdul, A. B.; Abu Bakar, M. F.; Kifli, N.; Ee, G. C. L.; BMC Complementary Altern. Med 2015, 21, 105. [Crossref ]
    » Crossref
  • 52
    Silva-Júnior, E. F.; Aquino, P. G. V. ; Santos-Júnior, P. F. S.; Nascimento, I. J. S.; Gomes, E. A.; Silva, A. L. L.; Verissimo, R. C. S. S.; Aquino, T. M.; Araújo-Júnior, J. X.; J. Chem. Pharm. Res 2015, 7, 389. [Link] accessed in August 2023
    » Link
  • 53
    David, J. M.; Moreira, B. O.; Vilar, V. L. S.; de Almeida, R. N. S.; Morbeck, L. L. B.; Andrade, B. S.; Barros, R. G. M.; Neves, B. M.; de Carvalho, A. L.; Cruz, M. P. ; Yatsuda, R.; J. Ethnopharmacol 2022, 289, 115089. [Crossref ]
    » Crossref
  • 54
    Cheng, Z. Q.; Yang, D.; Ma, Q. Y.; Dai, H. F.; Huang, S. Z.; Yi, X. H.; Zhou, J.; Zhao, Y. X.; Planta Med 2012, 78, 1878. [Crossref]
  • 55
    Fouokeng, Y.; Akak, C. M.; Tala, M. F.; Azebaze, A. G. B.; Dittrich, B.; Vardamides, J. C.; Laatsch, H.; Fitoterapia 2017, 117, 61. [Crossref ]
    » Crossref
  • 56
    Ahmad, S.; Ali, M.; Ansari, S. H.; Ahmed, F.; J. Saudi Chem. Soc 2010, 14, 409. [Crossref ]
    » Crossref
  • 57
    Achika, J. I.; Trop. J. Nat. Prod. Res 2018, 2, 442. [Crossref ]
    » Crossref
  • 58
    Semalty, M.; Semalty, A.; Badola, A.; Joshi, G. P.; Rawat, M. S. M.; Pharmacogn. R ev 2010, 4, 88. [Crossref ]
    » Crossref
  • 59
    Formagio, A. S. N.; da Silva, M. M.; Iriguchi, E. K. K.; Kassuya, C. A. L.; Vieira, M. C.; Foglio, M. A.; de Carvalho, J. E.; Ruiz, A. L. T. G.; Souza, K. P.; Rev. Bras. Farmacogn 2017, 27, 445. [Crossref ]
    » Crossref
  • 60
    Nawwar, M.; Hussein, S.; Ayoub, N.; Hashim, A.; El-Sharawy, R.; Lindequist, U.; Harms, M.; Wende, K.; Fitoterapia 2011, 82, 1265. [Crossref ]
    » Crossref
  • 61
    Antal, D. S.; Schwaiger, S.; Ellmerer-Mueller, E. P. ; Stuppner, H.; Planta Med 2010, 76, 1765. [Crossref ]
    » Crossref
  • 62
    Topcu, G.; Ay, M.; Bilici, A.; Sarikuerkcue, C.; Oezturk, M.; Ulubelen, A.; Food Chem 2007, 103, 816. [Crossref ]
    » Crossref
  • 63
    Yousfi, M.; Djeridane, A.; Bombarda, I.; Chahrazed-Hamia; Duhem, B.; Gaydou, E. M.; Phytother. Res 2009, 23, 1237. [Crossref ]
    » Crossref
  • 64
    Hu, J. F.; Garo, E.; Hough, G. W.; Goering, M. G.; Johnson, M. N.; Eldridge, G. R.; Tetrahedron Lett 2007, 48, 5747. [Crossref ]
    » Crossref
  • 65
    Ndongo, J. T.; Mbing, J. N.; Bikobo, D. N.; Atchade, A. T.; Shaaban, M.; Pegnyemb, D. E.; Laatsch, H.; Z. Naturforsch., C: J. Biosci 2013, 68, 169. [Crossref ]
    » Crossref
  • 66
    Christelle, T. D.; Hussain, H.; Dongo, E.; Hermine, J. M. B.; Ahmed, I.; Krohn, K.; Nat. Prod. Commun 2011, 6, 1133. [Crossref ]
    » Crossref
  • 67
    Catalano, A.; Lantaño, B.; Fabián, L.; López, P. ; Am. J. Plant Sci 2020, 11, 861. [Crossref ]
    » Crossref
  • 68
    Tokoudagba, J. M.; Gandonou, C. D.; Hougbeme, A.; Gom, S. N.; Auger, C.; Schini-Kerth, V.; Lobstein, A.; World J. Pharm. Pharm. Sci 2018, 7, 309. [Link] accessed in September 2023
    » Link
  • 69
    da Silva, E. P. ; David, J. M.; David, J. P. ; Garcia, G. H. T.; Silva, M. T.; Quim. Nova 2020, 43, 1216. [Crossref ]
    » Crossref
  • 70
    Dang, P. H.; Nguyen, L. T. T.; Nguyen, H. T. T.; Le, T. H.; Do, T. N. V.; Nguyen, H. X.; Le, N. D.; Nguyen, M. T. T.; Nguyen, N. T.; Nat. Prod. Res 2019, 33, 2883. [Crossref ]
    » Crossref
  • 71
    Razakarivony, A. A.; Lenta, B. N.; Andriamihaja, B.; Michalek, C.; Razanamahefa, B.; Razafimahefa, D. R.; Rakotondramanga, M. F.; Randrianasolo, R.; Lannang, A. M.; Randriamiaramisaina, R.; Boyom, F. F.; Rosenthal, P. J.; Sewald, N.; Zeitschrift für Naturforschung B 2016, 71, 297. [Crossref ]
    » Crossref
  • 72
    Garg, A. N.; Singh, R.; Singh, S. K.; Maharia, R. S.; J. Pharm. Biomed. Anal 2015, 105, 150. [Crossref ]
    » Crossref
  • 73
    Kinghorn, A. K.; Westenburg, H. E.; Lee, K. J.; Lee, S. K.; Fong, H. H. S.; van Breemen, R. B.; Pezzuto, J. M.; J. Nat. Prod 2000, 63, 1696. [Crossref ]
    » Crossref
  • 74
    Nguyen, M. T. T.; Nguyen, N. T.; Dang, P. H.; Nguyen, H. X.; Le, T. H.; Van Do, T. N.; Nat. Prod. Res 2022, 36, 3737. [Crossref ]
    » Crossref
  • 75
    Shen, Y. ; Chen, H.; Lang, L. J.; Dong, X.; Xiao, C. J.; Jiang, B.; Phytochem. Lett 2021, 46, 172. [Crossref ]
    » Crossref
  • 76
    Cheng, Z. Q.; Yang, D.; Ma, Q. Y. ; Yi, X. H.; Zhou, J.; Zhao, Y. X.; Chem. Nat. Compd 2013, 49, 46. [Crossref ]
    » Crossref
  • 77
    Rodriguez-Lopez, V.; Aguirre-Crespo, F.; Salazar, L.; Estrada-Soto, S.; Nat. Prod. Res 2006, 20, 1. [Crossref ]
    » Crossref
  • 78
    Gu, Q.; Wang, R. R.; Zhang, X. M.; Wang, Y. H.; Zheng, Y. T.; Zhou, J.; Chen, J. J.; Planta Med 2007, 73, 279. [Crossref ]
    » Crossref
  • 79
    Dang, P. H.; Nguyen, T. T.; Le, T. H.; Nguyen, H. X.; Nguyen, M. T. T.; Nguyen, N. T.; Nat. Prod. Res 2018, 32, 1745. [Crossref ]
    » Crossref
  • 80
    Ragasa, C. Y.; Vivar, J. L. A.; De Los Reyes, M. M.; van Altena, I. A.; Pharma Chem 2016, 8, 257. [Link] accessed in August 2023
    » Link
  • 81
    Mori, T.; Chang, C.; Maurtua, D.; Hammond, G. B.; Phytother. Res 2006, 20, 160. [Crossref ]
    » Crossref
  • 82
    Brice, B. J.; Benson, B. B.; Fernique, K. K.; Mida, K. G. R.; Christian, K. K.; Nathalie, G. K.; Akhanovna, M. B. J.; Alain, B. Y. ; Int. J. Pharm. Pharm. Sci 2018, 10, 64. [Crossref ]
    » Crossref
  • 83
    Pare, D.; N’do, J. Y. P.; Guenne, S.; Nikiema, M.; Hilou, A.; Asian J. Chem. Sci 2019, 6, 1. [Crossref ]
    » Crossref
  • 84
    Mirghani, M. E. S.; Al-Shwyeh, H. A.; Jamal, P. ; Afr. J. Biotechnol 2011, 10, 18739. [Crossref ]
    » Crossref
  • 85
    Pithayanukul, P.; Leanpolchareanchai, J.; Saparpakorn, P.; Molecules 2009, 14, 3198. [Crossref ]
    » Crossref
  • 86
    Kumar, M.; Saurabh, V.; Tomar, M.; Hasan, M.; Changan, S.; Sasi, M.; Maheshwari, C.; Prajapati, U.; Singh, S.; Prajapat, R. K.; Dhumal, S.; Punia, S.; Amarowicz, R.; Mekhemar, M.; Antioxidants 2021, 10, 299. [Crossref ]
    » Crossref
  • 87
    Jahnavi, C. H.; Jyothsna, K.; Geetika, D. L.; Keerthi, G. S.; Santhosha, D.; Ramesh, A.; J. Pharmacogn. Phytochem 2020, 9, 1166. [Link] accessed in August 2023
    » Link
  • 88
    Bakka, C.; Hadjadj, M.; Smara, O.; Dendougui, H.; Mahdjar, S.; J. Pharm. Sci. Res 2019, 11, 3634. [Link] accessed in August 2023
    » Link
  • 89
    Zia, M.; Bibi, Y. ; Nisa, S.; Waheed, A.; Ahmed, S.; Chaudhary, M. F.; Indian J. Pharm. Sci 2012, 74, 375. [Crossref ]
    » Crossref
  • 90
    Taleghani, A.; Eghbali-Feriz, S.; Shokouhnam, P.; Emami, S. A.; Farhadi, F.; Asili, J.; Hasanzadeh, S.; Tayarani-Najaran, Z.; Jundishapur J. Nat. Pharm. Prod 2021, 16, e69844. [Crossref ]
    » Crossref
  • 91
    Tilkat, E. H.; Kuru, I. S.; Süzerer, V. ; Haşimi, N.; Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1885. [Crossref ]
    » Crossref
  • 92
    Kumar, G.; Badoni, P. P.; Int. J. ChemTech Res 2017, 10, 377. [Link] accessed in August 2023
    » Link
  • 93
    Mutuku, A.; Mwamburi, L.; Keter, L.; Ondicho, J.; Korir, R.; Kuria, J.; Chemweno, T.; Mwitari, P.; BMC Complementary Med. Ther 2020, 20, 272. [Link] accessed in August 2023
    » Link
  • 94
    Rayne, S.; Mazza, G.; Plant Foods Hum. Nutr 2007, 62, 165. [Crossref ]
    » Crossref
  • 95
    Al-Naser, Z.; Ibrahim, B.; Int. J. ChemTech Res 2014, 6, 2799. [Link] accessed in August 2023
    » Link
  • 96
    Morel, A. F.; Gehrke, I. T. S.; Tibursky Neto, A.; Pedroso, M.; Mostardeiro, C. P. ; da Cruz, I. B. M.; Silva, U. F.; Ilha, V. ; Dalcol, I. I.; J. Ethnopharmacol 2013, 148, 486. [Crossref ]
    » Crossref
  • 97
    Oliveira, D. B.; Bernardes, N. R.; Heggdorne-Araújo, M.; Borges, I. F. J. C.; Almeida, F. M.; Amaral, E. P.; Lasunskaia, E. B.; Muzitano, M. F.; Rev. Bras. Farmacogn 2014, 24, 644. [Crossref ]
    » Crossref
  • 98
    Boni, A. N. R.; Ahua, K. M.; Kouassi, K.; Djaman, A. J.; Nguessan, J. D.; Res. J. Pharm., Biol. Chem. Sci 2014, 5, 1457. [Link] accessed in August 2023
    » Link
  • 99
    Cordeiro, B. M. P. C.; Santos, N. D. L.; Ferreira, M. R. A.; de Araújo, L. C. C.; Carvalho Júnior, A. R.; Santos, A. D. C.; de Oliveira, A. P.; da Silva, A. G.; Falcão, E. P. S.; Correia, M. T. S.; Almeida, J. R. G. S.; da Silva, L. C. N.; Soares, L. A. L.; Napoleão, T. H.; da Silva, M. V. ; Paiva, P. M. G.; BMC Complementary Altern. Med 2018, 18, 284. [Crossref ]
    » Crossref
  • 100
    Chaudhuri, D.; Ghate, N. B.; Panja, S.; Basu, T.; Shendge, A. K.; Mandal, N.; BMC Complementary Altern. Med 2016, 16, 262. [Crossref ]
    » Crossref
  • 101
    Madikizela, B.; Aderogba, M. A.; Van Staden, J.; J. Ethnopharmacol 2013, 150, 609. [Crossref ]
    » Crossref
  • 102
    Vambe, M.; Naidoo, D.; Aremu, A. O.; Finnie, J. F.; Van Staden, J.; Nat. Prod. Res 2021, 35, 4658. [Crossref ]
    » Crossref
  • 103
    Yang, T. H.; Yan, D. X.; Huang, X. Y.; Hou, B.; Ma, Y. B.; Peng, H.; Zhang, X. M.; Chen, J. J.; Geng, C. A.; Phytochemistry 2019, 164, 228. [Crossref ]
    » Crossref
  • 104
    Silva, F. G.; Curado, F. M. L. M. J.; Gazolla, A. P.; Pedroso, R. C. N.; Pimenta, L. P.; de Oliveira, P. F.; Tavares, D. C.; Andrade-Silva, M. L.; Cunha, W. R.; Pietro, R. C. L. R.; Januário, A. H.; Pauletti, P. M.; Sales, J. F.; J. Med. Plants Res 2016, 10, 450. [Crossref ]
    » Crossref
  • 105
    Suleiman, M. M.; Elgorashi, E. E.; Samuel, B. B.; Naidoo, V. ; Eloff, J. N.; Biochem. Pharmacol 2013, 2, 1000123. [Crossref ]
    » Crossref
  • 106
    Ahmed, A. S.; McGaw, L. J.; Moodley, N.; Naidoo, V. ; Eloff, J. N.; S. Afr. J. Bot 2014, 95, 9. [Crossref ]
    » Crossref
  • 107
    Martinez-Elizalde, K. S.; Jimenez-Estrada, M.; Flores, C. M.; Hernández, L. B.; Rosas-López, R.; Duran-Diaz, A.; Nieto-Yañez, O. J.; Barbosa, E.; Rodríguez-Monroy, M. A.; Canales-Martinez, M.; BMC Complementary Altern. Med 2015, 15, 74. [Crossref ]
    » Crossref
  • 108
    Araújo, B. S.; Santos, C. C. S.; Araújo, S. S.; Santos, A. L. L. M.; Almeida, E. C. V. ; Dias, A. S.; Damascena, N. P. ; Santos, D. M.; Santos, M. I. S.; Júnior, K. A. L. R.; Pereira, C. K. B.; Lima, A. C. B.; Shan, A. Y. K. V.; Sant’ana, A. E. G.; Estevam, C. S.; Rev. Bras. Farmacogn 2014, 24, 298. [Crossref ]
    » Crossref
  • 109
    Van Giau, V.; Nguyen, N. H.; Thuc-Huy, D.; Nguyen, T. T.; Ma, P. C.; Ta, Q. T. H.; Molecules 2020, 25, 1996. [Crossref]
  • 110
    Adesegun, S. A.; Badejo, M. V.; Odebumni, S. O.; Ojobo, P. D.; Coker, H. B.; Trop. J. Nat. Prod. Res 2019, 3, 58. [Crossref ]
    » Crossref
  • 111
    Sequeda-Castañeda, L. G.; Celis-Zambrano, C. A.; Torrenegra-Guerrero, R. D.; Pharmacology Online 2021, 1, 426. [Link] accessed in August 2023
    » Link
  • 112
    Milella, L.; Russo, D.; Miglionico, R.; Carmosino, M.; Bisaccia, F.; Andrade, P. B.; Valentão, P.; Armentano, M. F.; Int. J. Mol. Sci 2018, 19, 186. [Crossref ]
    » Crossref
  • 113
    Njume, C.; Afolayan, A. J.; Green, E.; Ndip, R. N.; Int. J. Antimicrob. Agents 2011, 38, 319. [Crossref ]
    » Crossref
  • 114
    Shai, L. J.; Mogale, M. A.; Lebelo, S. L.; Thovhogi, N.; de Freitas, A. N.; Afr. J. Biotechnol 2011, 10, 15033. [Crossref ]
    » Crossref
  • 115
    Uddin, Z. M.; Rana, S. M.; Hossain, S.; Ferdous, S.; Dutta, E.; Dutta, M.; Bin-Emram, T.; J. Complementary Integr. Med 2020, 17, 20190102. [Crossref ]
    » Crossref
  • 116
    Al Sayed, E.; Martiskainen, O.; Sinkkonen, J.; Pihlaja, K.; Ayoub, N.; Singab, A. N.; El-Azizi, M.; Nat. Prod. Commun 2010, 5, 545. [Crossref ]
    » Crossref
  • 117
    Sobeh, M.; Mahmoud, M. F.; Hasan, R. A.; Abdelfattah, M. A. O.; Sabry, O. M.; Ghareeb, M. A.; El-Shazly, A. M.; Wink, M.; Sci. Rep 2018, 8, 9343. [Link] accessed in August 2023
    » Link
  • 118
    Nitiéma, M.; Belemnaba, L.; Ouedraogo, S.; Ouedraogo, N.; Ouedraogo, S.; Gissou, I. P.; World J. Pharm. Res 2018, 7, 39. [Link] accessed in September 2023
    » Link
  • 119
    Shah, K. A.; Patel, M. B.; Chauhan, K. N.; Shah, S. S.; Parmar, P. K.; Patel, N. M.; Pharm. Sin 2010, 1, 156. [Link] accessed in August 2023
    » Link
  • 120
    Ferdous, R. U.; Jami, S. I.; Begum, M.; Begum, T.; Rahman, M. A.; Haque, T.; Khan, A.; Hossain, B.; Tarek, H.; Alam, N. A.; Am. J. BioSci 2015, 3, 19. [Crossref ]
    » Crossref
  • 121
    Shahid, S.; Taj, S.; 2nd International Conference on Functional Materials and Chemical Engineering (ICFMCE 2018), Lahore, Pakistan, 2019. [Crossref ]
    » Crossref
  • 122
    Youl, E. N. H.; Nassouri, S.; Ilboudo, S.; Ouedraogo, M.; Sombié, C. B.; Ilboudo, S.; Dakuyo, Z. P.; Gissou, I. P.; Afr. J. Pharm. Pharmacol 2020, 14, 339. [Crossref ]
    » Crossref
  • 123
    Varela-Rodríguez, L.; Sánchez-Ramírez, B.; Rodríguez-Reyna, I. S.; Ordáz-Ortiz, J. J.; Chávez-Flores, D.; Salas-Muñoz, E.; Osorio-Trujillo, J. C.; Ramos-Martínez, E.; Talamás-Rohana, P.; BMC Complementary Altern. Med 2019, 19, 153. [Crossref ]
    » Crossref
  • 124
    Wang, G.; Li, F.; Du, L.; Wang, J. J.; BioMed Res. Int 2015, 1, 1. [Crossref ]
    » Crossref
  • 125
    Attanayake, A. P.; Jayatilaka, K. A. P. W.; Pathirana, C.; Mudduwa, L. K. B.; Int. J. Pharmacogn 2015, 2, 166. [Crossref ]
    » Crossref
  • 126
    Rao, B. G.; Raju, N. J.; Asian J. Chem 2009, 21, 7416. [Link] accessed in August 2023
    » Link
  • 127
    Panda, B. K.; Patro, V. J.; Mishra, U. S.; Kar, S.; J. Pharm., Chem. Biol. Sci 2014, 1, 26. [Link] accessed in August 2023
    » Link
  • 128
    Chaturvedi, B.; Chaturvedi, D. S.; Int. J. Pharm. Sci. Res 2021, 12, 3744. [Crossref ]
    » Crossref
  • 129
    Stanislaus, N. N.; Ibrahim, S. M.; Usman, P. U.; Sa’adyia, H. H.; Garba, M. M.; Toyin, A. S.; Moji, B. O. T.; Ndifor, A. R.; Osas, E. G.; Oyetunji, S. A.; Salawu, S. M.; Pak. J. Pharm. Sci 2021, 34, 629. [Link] accessed in September 2023
    » Link
  • 130
    Okoth, D. A.; Koorbanally, N. A.; Chenia, H. Y. ; Phytochem. Lett 2013, 6, 476. [Crossref ]
    » Crossref
  • 131
    Ficoseco, M. E. A.; Sampietro, D. A.; Vattuone, M. A.; Audenaert, K.; Catalán, C. A. N.; J. Appl. Microbiol 2014, 116, 1262. [Crossref ]
    » Crossref
  • 132
    Beretta, G.; Arlandini, E.; Gelmini, F.; Testa, C.; Angioletti, S.; Nat. Prod. Res 2021, 35, 4764. [Crossref ]
    » Crossref
  • 133
    Zhang, B.; Fang, J.; Chen, Y.; Zhao, J.; Li, S.; Zeng, L.; Pharm. Biol 2015, 53, 503. [Crossref ]
    » Crossref
  • 134
    Muñoz-Ramírez, A.; Torrent-Farías, C.; Mascanayo-Collado, C.; Urzúa-Moll, A.; Phytochemistry 2020, 174, 112359. [Crossref ]
    » Crossref
  • 135
    Uddin, G.; Rauf, A.; Al-Othman, A. M.; Collina, S.; Arfan, M.; Ali, G.; Khan, I.; Fitoterapia 2012, 83, 1648. [Crossref ]
    » Crossref
  • 136
    Eaton, A. L.; Rakotondraibe, L.; Harinantenaina, B.; Peggy J.; Goetz, M.; Kingston, D. G. I.; Planta Med 2015, 78, 1752. [Crossref ]
    » Crossref
  • 137
    Ledoux, A.; St-Gelais, A.; Cieckiewicz, E.; Jansen, O.; Bordignon, A.; Illien, B.; Di Giovanni, N.; Marvilliers, A.; Hoareau, F.; Pendeville, H.; Quetin-Leclercq, J.; Frederich, M.; J. Nat. Prod 2017, 80, 1750. [Crossref ]
    » Crossref
  • 138
    Roumy, V.; Fabres, N.; Portet, B.; Bourdy, G.; Acebey, L.; Vigor, C.; Valentim, A.; Moules, C.; Phytochemistry 2009, 70, 305. [Crossref ]
    » Crossref
  • 139
    Ledoux, A.; Beriot, D.; Mamede, L.; Desdemoustier, P.; Detroz, F.; Jansen, O.; Frederich, M.; Maquoi, E.; Planta Med 2021, 87, 1008. [Crossref ]
    » Crossref
  • 140
    Mosa, R. A.; Oyedeji, A. O.; Shode, F. O.; Singh, M.; Opoku, A. R.; Afr. J. Pharm. Pharmacol 2011, 5, 2698. [Link] accessed in September 2023
    » Link
  • 141
    Nair, P. K. R.; Melnick, S. J.; Wnuk, S. F.; Rapp, M.; Escalon, E.; Ramachandran, C.; J. Ethnopharmacol 2009, 122, 450. [Crossref ]
    » Crossref
  • 142
    Arimboor, R.; Rangan, M.; Aravind, S. G.; Arumughan, C.; J. Ethnopharmacol 2011, 133, 1117. [Crossref ]
    » Crossref
  • 143
    Kamkumo, R. G.; Ngoutane, A. M.; Tchokouaha, L. R. Y. ; Fokou, P. V. T.; Madiesse, E. A. K.; Legac, J.; Kezetas, J. J. B.; Lenta, B. N.; Boyom, F. F.; Dimo, T.; Mbacham, W. F. M.; Gut, J.; Rosenthal, P. J.; Malar. J 2012, 11, 382. [Crossref ]
    » Crossref
  • 144
    El Sayed, A. M.; J. Med. Plants Res 2016, 10, 223. [Crossref ]
    » Crossref
  • 145
    Mosa, R. A.; Cele, N. D.; Mabhida, S. E.; Shabalala, S. C.; Penduka, D.; Opoku, A. R.; Molecules 2015, 20, 13374. [Crossref ]
    » Crossref
  • 146
    Poletti, M.; Marion, C.; FR pat. 2,959,666 A1 2010
  • 147
    Dubief, C.; Nadia, K.; Boche, B.; FR pat. 2,961,693 A1 2010
  • 148
    Ennamany, R.; EP 3,250,295 B1 2016
  • 149
    Campmany, J. T.; US pat. 8,337,485 B2 2013
  • 150
    Commin, A. R.; WO pat. 2011/01000 A1 2011
  • 151
    Buter, K. B.; Buchwald-Werner, S.; US pat. 10,596,212 B2 2020
  • 152
    Pushpangadan, P.; Rawat, A. K. S.; Rao, C. V.; Srivastava, S. K.; Govindarajan, R.; WO pat. 2006/061849 A1 2006
  • 153
    Krishnan, G.; EP pat. 2,326,338 B1 2009
  • 154
    Quave, C. L.; Lyles, J.; Tang, H.; Porras-Brenes, G.; US pat. 2021/0315906 A1 2021
  • 155
    Bogoshi, M. N.; PAT035/TDP 2014/03582 2014
  • 156
    Nandeshwar, W. M.; IN pat. 21,007,662, A23K1/18 2017
  • 157
    Elsohly, M.; Gul, W.; Ashfaq, M. K.; US pat. 10,322,103 B2 2019
  • 158
    Rotem, M. O.; Elbaz, M.; Etkes, A. S.; Meihls, L. N.; Ben Naim, N.; Ghosh, D.; US pat. 2021/0171976 A1 2021
  • 159
    Mukherjee, B.; Samanta, A.; 61/KOL/2006 2003
  • 160
    Tomioka, T.; US pat. 2006/0008539 A1 2006
  • 161
    Fernández Ponce, M. T.; Fernández, E. J. M. O.; Cardoso, L. C.; Gay, D. A.; ES pat. 2,567,530 B1 2017
  • 162
    Rieck, H.; Lachaise, H.; Steiger, D.; Labourdette, G.; US pat. 2011/0065580 A1 2011
  • 163
    Bellei, S.; Melis, L.; Peloso, A.; Betti, N.; WO pat. 2021/009379 Al 2021
  • 164
    Cyril, N. L.; Raynard, M.; de Chily, P. C.; FR pat. 2,883,003 A1 2006
  • 165
    Boucher, C.; Ghislain, H. M.; FR pat. 2,886,547 A1 2006
  • 166
    Falco, G.; WO pat. 2021/124167 Al 2021
  • 167
    Miyanaga, A.; Biosci., Biotechnol., Biochem 2017, 81, 2227. [Crossref ]
    » Crossref
  • 168
    Piel, J.; Reiter, S.; Cahn, J. K. B.; Wiebach, V. ; Ueoka, R.; ChemBioChem 2020, 21, 564. [Crossref ]
    » Crossref
  • 169
    Nakano, C.; Ohnishi, Y.; Funa, N.; Horinouchi, S.; J. Bacteriol 2012, 194, 1544. [Crossref ]
    » Crossref

Publication Dates

  • Publication in this collection
    10 May 2024
  • Date of issue
    2024

History

  • Received
    05 Apr 2023
  • Accepted
    11 Aug 2023
  • Published
    12 Sept 2023
Sociedade Brasileira de Química Secretaria Executiva, Av. Prof. Lineu Prestes, 748 - bloco 3 - Superior, 05508-000 São Paulo SP - Brazil, C.P. 26.037 - 05599-970, Tel.: +55 11 3032.2299, Fax: +55 11 3814.3602 - São Paulo - SP - Brazil
E-mail: quimicanova@sbq.org.br