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ABSTRACT 

The use of mechanistic plant growth models relies on the availability of high-quality 
inputs to reduce uncertainty in estimates. Measurements of photosynthetically active 
radiation inside a protected environment are either more expensive to obtain or dependent 
on assumptions regarding external measurements. This study aimed to reduce the 
influence of uncertainty in the measurements of low-cost lux meters by using a data 
assimilation strategy. We first determined, by simulation, the impact of different sensors 
on the estimates. We then used the Ensemble Kalman Filter to assimilate artificial 
observations of tomato growth in the Reduced-State Tomgro model, in simulations for 
which the solar radiation inputs were obtained from a low-cost lux meter. We compared 
the assimilated estimates to the simulations that used solar radiation obtained with a 
scientific-grade quantum sensor. For periods of larger radiation intensity, in which the 
differences in measurements from both instruments are larger, assimilation of 
observations with low errors lead to estimates that are closer to the ones obtained by 
scientific grade sensors. These results suggest that low-cost sensors could be used to 
obtain inputs for growth models in protected environments, provided there are also 
imperfect observations of the state. 

 
INTRODUCTION 

One limitation often associated with the use of crop 
models is the availability of input data and, in particular, 
of input data with the required quality (Dias & Sentelhas, 
2021; Ramirez-Villegas & Challinor, 2012). While most 
uncertainty quantification studies focus on climate models 
as sources of uncertainty in climate inputs, there is another 
factor of great relevance: the various sources of weather 
datasets (Chapagain et al., 2022). However, differently 
from field crops, in which the availability is connected to 
the presence of meteorological stations that should 
represent large areas, greenhouses and other protected 
environments may be more easily monitored, which allows 
a certain degree of control of environmental conditions. In 
the context of Internet of Things, monitoring temperature 
and relative humidity in protected environments is a 
procedure often mentioned in the literature (Tzounis et al., 

2017). Nevertheless, solar radiation data for modeling is not 
as easily available as data related to these two other factors. 

In greenhouse tomato modeling studies, for various 
reasons, the photosynthetically active radiation (PAR) that 
reaches the plants inside the greenhouse has often been 
estimated based on external global radiation (Berrueta et 
al., 2020; Righini et al., 2020). Using external data 
requires not only the measurement to be available but also 
an estimate of the transmissivity of the material, which, for 
plastic greenhouses, may change depending on 
condensation or dirt (Montero et al., 2019). Scientific grade 
alternatives to external radiation measurements, obtained 
inside the greenhouse, could be obtained by a net 
radiometer, a pyranometer, a quantum sensor, or a 
spectroradiometer (Both et al., 2015). Each instrument leads 
to a different measurement connected to solar radiation: net 
radiation, solar irradiance, photosynthetically active 
radiation, and flux in discrete wavebands, respectively. 
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As different models require different specifications 
of inputs, depending on how they were developed, 
conversions are often used. For example, for the 
conversion from global radiation to photosynthetically 
active radiation, approximations are used. (Berrueta et al., 
2020) and (Righini et al., 2020) assumed PAR as 50% of 
the global radiation, while (Impron et al., 2007) assumed 
43.4%. This ratio varies depending on cloud cover, 
atmospheric water and aerosols content, clearness and sky 
brightness, diffuse fraction, dew point temperature, and 
solar zenith angle (García-Rodríguez et al., 2021). 
Nonetheless, some conversions and the resulting 
approximations add to the uncertainty of the 
measurements. The use of low-cost sensors as substitutes to 
more accurate instruments, which has been proposed inter 
alia for control systems in greenhouses (Pisanu et al., 2020; 
Sumalan et al., 2020), can also be a source of uncertainty. 

Assessments of uncertainty in weather forecasts 
impacting control systems’ operational returns have 
already been performed (Kuijpers et al., 2022), and, while 
the impact of uncertainty in solar radiation datasets for 
current and future field crop estimates has been studied 
(Zhang et al., 2022), there has been no assessment 
regarding how inputs obtained by low-cost sensors in 
greenhouses could affect yield estimates. And since 
uncertainty in measurements of low-cost sensors could 
lead to larger uncertainty in model predictions, more 
accurate estimates would also be desirable. Uncertainty in 
model estimates may be reduced by the adoption of data 
assimilation. By including additional measurements of the 
state variable, i.e., additional information concerning the 
model, this technique allows for lower prediction errors 
as well as lower uncertainty in the outputs (Wallach et 
al., 2019). 

This study aims to: i) compare the outcomes of 
simulations of growth and development of greenhouse 
tomatoes, with different sources for input radiation — 
quantum sensor and a low-cost lux meter; and ii) assess 
uncertainty in estimates from low-cost sensors by 
assimilating fruit images. 

 
MATERIAL AND METHODS 

Data 

Plant growth data was obtained during one growth 
cycle of tomatoes, cultivar Seminis – DRC 564, in a 
protected environment, from March 16, 2021 to June 11, 
2021. Approximately every two weeks, plants were 
subjected to destructive analyses to determine the dry 
biomass of plant organs — leaves, fruits, and stems — as 
well as plant leaf area. Dry biomass was determined by 
weighting the organs after drying for four days at 100 °C. 
Leaf area was determined by scanning the leaves along 
with a reference of known size and subsequently 
processing the digitized leaves to determine the area 
corresponding to leaves, measured in pixels, and the 
appropriate conversion to square meters.  

Weather data corresponds to solar radiation and to 
air temperature recorded in three different tomato growth 
cycles, including the one previously mentioned, also in 
research greenhouses. The other cycles took place from 
July 12, 2019 to October 28, 2019 and from November 05, 
2020 to February 12, 2021. Solar radiation was recorded as 
photosynthetically active solar radiation (PAR) by a 

quantum sensor Licor LI-190SA with a datalogger Licor 
LI-1400, and as luminosity by BH1750 sensors connected 
to Raspberry Pi model B computers. The first were 
recorded every fifteen minutes, and the latter, every five 
minutes. Concerning temperature, the data was obtained 
by SHT75 transducers installed in a hardware platform for 
wireless sensor networks (Radiuino BE900), as well as by 
DHT-22 sensors also connected to Raspberry Pi model B 
computers. The transducers were protected by porous 
capsules, which in turn were protected by polyvinyl 
chloride tubes coated with aluminum foil. The tubes 
included downstream fans. In both cases, data was 
recorded every five minutes. As the different sensors were 
not directly equivalent, unit conversion was required. Data 
from the lux meters was converted into 
photosynthetically active radiation [μmol s−1 m−2] by 
multiplying measured value by 18 x 10−3 μmol s−1 m−2 
lux−1 (Hall & Scurlock, 1993). 

Data obtained by sensors connected to the 
Raspberry Pi computers will be considered, for the 
purpose of this study, as low-cost, and the other sensors 
will be defined as scientific grade. Two sensor nodes were 
placed in different positions in the greenhouse, and while 
data from both nodes will be presented to characterize    
the measurements, simulations will use only data from one 
of them. 

Plant growth observations, along with input data 
from the scientific grade sensors, were used to obtain 
calibration for the model. Parameters were obtained          
by optimization. 

Model and calibration 

The Reduced State-Variable Tomgro (RT) model 
(Jones et al., 1999) was used to simulate growth and 
development of the tomatoes. Model parameters were 
calibrated by using an optimization algorithm with the 
destructive data described and using weather data from the 
scientific-grade sensors as inputs. Non-calibrated 
simulations used parameters from the original Gainesville 
calibration. Regardless of calibration, input data such as 
maximum leaf area or plant density referred to data from 
the evaluated cycle. 

Observation data 

Simulations using the calibrated model with the 
weather data from all four cycles were treated as the truth 
values of an artificial dataset. The simulations of fruit and 
mature fruit biomass were perturbed by Gaussian noise 
sampled from a distribution of zero mean and standard 
deviation corresponding to 10%, 30%, and 50% of the 
simulated truth. These were treated as observations of the 
truth. Twenty observation datasets were generated. 

Data assimilation 

The Ensemble Kalman Filter (Evensen, 1994, 
2003) was used to assimilate the artificial observations, 
with the model estimates being obtained by the 
simulations run with inputs from the low-cost sensors. In 
this case, ensembles were generated by perturbation of 
weather inputs corresponding to 30% of the measured 
input. Weather inputs were provided by the low-cost 
sensors. The procedure was repeated 20 times, with     
each observation dataset, to avoid biasing the results due 
to sampling. 



Can accuracy issues of low-cost sensor measurements be overcome with data assimilation? 
 

 
Engenharia Agrícola, Jaboticabal, v.43, n.2, e20220170, 2023 

As the perturbation of inputs leads to variance in 
the difference equation, instead of the state itself, the 
uncertainty ascribed to observations should take this into 
account so that they will not be disproportionately larger. 
Therefore, while errors in measurements are supposed     
to correspond to fractions of 10%, 30%, and 50% of       
the simulated observations, the uncertainty associated   
with them will refer to the difference between the 
observation and the previous value multiplied by the 
respective fractions. 

An additional random perturbation — N(1, 0.09) — 
was included in the observations, thus accounting for     
the variability of sampling the noise. The outcomes of    
the assimilation of different observations with different 
noise levels were compared to simulations using the 
calibrated model. 

All data used for this study is available at Oliveira 
et al. (2021) and all code developed for model 
implementation and analyses is published in Oliveira 
(2023). 

 

RESULTS AND DISCUSSION 

Weather data 

The curves in Figure 1 show the summaries of daily 
environmental data in the greenhouses. They correspond to 
the final value ascribed to the instruments, after 
processing, which were used in the simulations. In all three 
growth cycles, measurements of temperatures are 
reasonably close, except for maximum temperatures in 
Cycle 3. On the other hand, solar radiation integrals show 
visible differences across cycles. External solar radiation 
suggests there may have been additional noise in measured 
values, especially in Cycle 1, but possibly in Cycle 2, 
indicated by the different trends of the measurements. The 
differences may be ascribed to interference, such as the 
height in which the sensor was placed being lower than the 
plant maximum height, subjecting the sensors to shadows, 
or to the conversions of PAR and global radiation not 
being very precise and relying on more information than 
the approximations used allowed for. 

 

FIGURE 1. Summary of environmental data. Different line types refer to the different sensor types, scientific grade (SG) for 
quantum sensor and transducers and low-cost (LC) for the capacitive sensors connected to Raspberry. 

 
Since quantum sensors for measuring PAR and 

lux meters are not equivalent, Figure 2 shows the 
relationship between the raw measurements from both. 
Both et al. (2015) reports nominal accuracy for quantum 
sensors of ± 10% and the technical note for the BH1750 
lux meter, of 20%. While possible, the detection of the 
BH1750 was not adjusted, so the maximum value 
detected was of 65,535 lx, which corresponds to the 

horizontal lines at the maximum value of 1,000 on 
Figure 2. 

The average ratio between the measurements of the 
quantum sensor and the lux meter were calculated as 0.8, 
0.7, and 0.8 for cycles 1, 2, and 3, respectively, with 
standard deviations of 0.3, 0.3, and 0.4. These values were 
used as reference for determining the 30% of perturbation 
in the ensembles (item 4.4). 
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FIGURE 2. Characterization of relationships between measurements of PAR converted from data obtained by BH1750 lux 
meters and measurements of PAR obtained by LI190SA quantum sensors. The metric r refers to the correlation coefficient and 
the metric D, to the two-sided Kolmogorov-Smirnov test. 

 
Simulations 

Overall, the different set of sensors led to 
differences only in photosynthesis and biomass variables, 
while leaf area and the number of nodes outcomes were 
the same regardless of the set of sensors used (Figure 3). 
The differences can be ascribed to the solar radiation 
inputs, since the measurements are generally similar 
between the temperature sensors, as noted in Figure 1, as 
well as leaf area and number of nodes relying exclusively 
on mean hourly temperature. However, even when there 
are differences in simulations, they are not high, except 
for Experiment 2, in which the differences in 
measurements were also higher (Figure 1). In this case, 
photosynthesis is more gravely affected, even if the leaf 
area is not, which also points to the impact of the 
radiation inputs. Although the ratios between sensor 
measurements were in general similar across cycles, the 

higher radiation magnitude in Cycle 2 may have led to 
the higher differences. 

These impacts could have been captured by a 
sensitivity analysis, in which several thousand simulations 
would be run with the inputs being slightly modified, 
leading to differences in the outcomes that would be 
higher, the higher the importance of that input. 
Nevertheless, these analyses have two relevant 
requirements: calibration that would ensure the parameters 
are suitable for those multiple conditions, and plausible 
weather time-series, which would not include impossible 
combinations of the meteorological factors. There are few 
studies that meet these requirements in tomato modeling. 
Cooman & Schrevens (2007) assessed the sensitivity to the 
inputs of the second version of the Tomgro model. For this 
version of the model, while dry fruit biomass was very 
sensitive to solar radiation, temperature was the most 
important factor for total biomass. 
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FIGURE 3. Truth curves, i. e., simulations obtained with the scientific grade sensors, compared to the simulations that used the 
low-cost sensors as sources of input data. 

 
Assimilation of observations 

To fulfill the premise of the study, assimilation 
should lead to estimates that are close to the ones obtained 
by the simulations with inputs from scientific grade 
sensors. However, the results in a data assimilation study 
depend on the quality of observations. In Cycles 1 and 3, 
in which the model estimates obtained using low-cost 
sensors only slightly overestimated fruit and mature fruit 
weights, assimilation of fruit observations with low errors  

led to estimates that while close to the simulated truth, do 
not differ as much from the original estimates. In Cycle 2, 
in which the difference was higher, the effect of low-error 
observations is more pronounced and up to the added noise 
of 30% of the observation value, estimates are close to the 
ones obtained by the scientific grade sensors. In all cases, 
when observations had errors that were higher than 50%, 
the benefits disappeared. 
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FIGURE 4. Mature fruit biomass estimates given different input sources: lux meters and assimilation, lux meters without 
assimilation, and scientific grade sensors as simulated truth. 
 

Another premise of this discussion is the existence 
of observations that would satisfy these low errors 
requirements. Observations of fruits could be obtained 
from pictures; for instance, Fonteijn et al. (2021) obtained 
reasonable correlations between fruit weight and the radius 
measured in pixels, but with increased variance for higher 
fruit weights. If the premise is satisfied, the observed 
improvement in simulation outcomes suggests that with 
low-cost equipment such as cameras and lux meters it is 
possible to obtain a simulation that relies on solar radiation 
inputs in a greenhouse without depending on 
characterization of the cover material. 

There are different approaches that would not rely 
on assimilation of observations. If the goal is to improve 
environmental observations themselves, instead of only 
obtaining better yield estimates, it could be possible to 
assimilate data from the environment into a process-based 
greenhouse model. van Mourik et al. (2019) used this 
approach, but the filters did not lead to improvement        
in monitoring. Furthermore, recently published greenhouse  

climate models were reviewed by Katzin et al. (2022), and 
the authors noted there is still a lot of progress to be made 
on them, including regarding the assessment of their 
performances. Nevertheless, this is a case in which, 
differently from the assimilation of environmental 
measurements, assimilation of fruit observations would 
directly impact uncertainties in estimates, since they 
include external information regarding the state of the 
desired variable. 

As the magnitudes increase through the cycle, so do 
the values of the uncertainty hyperparameters used in the 
Ensemble Kalman Filter (Figure 5). When the observation 
covariance increases, the gain becomes lower, leading 
estimates to rely less on observations. The difference in 
the state’s covariance also points to how much the 
estimates’ uncertainties obtained by the perturbation in the 
inputs, ascribed to the expected uncertainty caused by 
accuracy of the observations, are reduced after the 
assimilation of observations. 
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FIGURE 5. Evolution of filter hyperparameters on the assimilation of fruit biomass with different noise levels for the 
observations using the low-cost sensor as source of solar radiation input, as well as in the difference in the state covariance 
caused by the assimilation. 

 
CONCLUSIONS 

Sensors of different precision and accuracy levels 
as sources of solar radiation inputs in a tomato growth 
model led to different estimates of photosynthesis, which 
impacted estimates of biomass and yield. These 
differences, particularly regarding yield estimates, were 
mitigated by assimilation of observations of fruits. Our 
simulated data led us to observe that, often, noise levels of 
10 and 30% in observations yielded outcomes similar to 
the ones obtained by scientific-grade sensors. This 
assimilation also reduces uncertainties in model estimates 
when low-cost sensors are used to provide weather inputs. 
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