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1 Introduction
Tilapia is a freshwater fish distributed throughout the tropical 

zones around the world. It lives in fresh water and is sold in 
markets and is an important cultural fish because it reproduces 
very easily and does not have feeding problems (Kalay & Canli, 
2000). Tilapia can survive in poor environmental conditions 
because their resistance to disease is strong, and their respiratory 
demands are slight so that they can withstand low oxygen and 
high ammonia levels (Taweel et al., 2011). Fish are broadly used 
to biologically observer the degree of metal pollution in marine 
ecosystems and higher level of aquatic food chain. Toxic elemental 
contaminants are transmitted into human through ingesting 
of contaminated fish that leads to serious corrosion of human 
health standing (Mansour & Sidky, 2002). Metals are naturally 
occurring elements that become contaminants when human 
activities increase their concentrations above normal levels in the 
environment. Fish are the final organism in the aquatic food chain 
and a significant food source for many humans. Consequentially, 
heavy metals in aquatic environments are transferred throughout 
the food chain into humans (Taweel et al., 2011).

Tilapia is the most economically important farmed fish 
species (Ispir et al., 2011) and is an ideal species of organisms 
for an assessment study on effects of heavy metal contamination 
in aquaculture ponds (Taweel et al., 2011). So, the purpose of 
the present study was to determine the LC50 of cadmium and 
lead in O. niloticus.

2 Material and methods
2.1 Experimental animals

The study was carried out on 80 Oreochromis niloticus. The 
body weight and total body length of the fish ranged from 50-100 g 
and 10-15 cm, respectively. Fish were collected from El-Abbassa 
Fish Farm and transferred alive in a large plastic container to the 
laboratory where they were distributed in well-ventilated glass 
aquaria. The fish were acclimatized for 14 days before the onset 
of the experiment. Fish were fed commercial pellets and checked 
daily. The use of experimental animals in the study protocol 
was carried out in accordance with the ethical guidelines of the 
Medical Research Institute, Alexandria University.

2.2 Experimental design

The fish were classified into two groups as follows:

•	 Group 1. For the determination of 96-h LC50 (lethal 
concentration) of cadmium, 40 fish were used. Four 
concentrations of cadmium in the form of cadmium 
chloride (Cd Cl2) were used (10, 20, 30, 40 mg/L), and 
each concentration was added into an aquarium containing 
10 fish.

•	 Group 2. 40 fish were used for the determination of the 
96-h LC50 value for lead in the form of lead acetate Pb 
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(CH3COO)2. Four concentrations of lead acetate were 
used (50, 100, 150, 200 mg/L), and each concentration 
added into single aquarium containing 10 fish. Fish in 
each aquarium were continuously observed during the 
96 h experiment period. Mortalities and time of death 
were recorded during the experiment period. These data 
were entered into SPSS 8.0, and probit analysis was used 
to determine the 96-h LC50 value for cadmium and lead 
(Singh et al., 2010).

•	 Group 3. This group studied the effect of ½ LC50 of each 
cadmium and lead on 50 fishes, and consisted of two 
subgroups:

Subgroup 1 determined the effect of ½ LC50 of cadmium 
chloride on some biological parameters after 1, 2, 4, and 
6 days. The last aquarium served as control.

Subgroup 2 also determined the effect of ½ LC50 of lead 
acetate on the same parameters and for the same periods 
of exposure.

2.3 Tissue collection

Liver was weighed and homogenized immediately to give a 
50% (w/v) homogenate in ice-cold medium containing 50 mM 
Tris-HCl and 300 mM sucrose. The homogenate was centrifuged 
at 500 g for 10 min at 4 °C. The supernatant (10%) was used for 
biochemical determinations.

2.4 Statistical analysis

The results were expressed as the mean ± standard error of 
means (SEM). Data were statistically analyzed using Student’s 
t-test with the program Statistical Package for Social Sciences 

(SPSS) version 0.8. The means of the data were considered 
significantly different at p < 0.05.

3 Results
These results study the effect of different concentrations 

of cadmium (Cd) and lead (Pb) individually administered to 
Oreochromis niloticus. Behavioral abnormalities were observed in 
fish exposed to different concentrations of Cd and Pb, including 
increases in breathing rate through increased movement of the 
operculum, increases in fish surfacing and panting for air, after 
which fish became lethargic, unconscious, and lost equilibrium. 
Finally, body activity and feeding decreased, resulting in bottom 
dwelling in the aquaria and death.

Table 1 shows the relationship between cadmium chloride 
concentrations (10, 20, 30, 40 mg/L) and mortality rates of 
Oreochromis niloticus. Mortality was virtually absent in the 
control, and found to be suitable for the LC50 upper and lower 
confidence limits.

According to analysis as shown in Table 2, the median lethal 
concentration (LC50) of Cadmium in Oreochromis niloticus for 
96 h of exposure was 28.01 ppm. The lower and upper lethal 
confidence limits for cadmium chloride indicate a wide range 
from 21.15 to 38.78 ppm, within which lies the concentration 
response for 96 h of exposure.

Table  3 shows the relationship between lead acetate 
concentrations (50, 100, 150, 200 mg/L) and mortality rates 
of Oreochromis niloticus. Mortality was virtually absent in the 
control and was found to be suitable for the LC50 upper and 
lower confidence limits.

According to the analysis as shown in Table 4, the median 
lethal concentration (LC50) of lead in Oreochromis niloticus for 

Table 1. Correlation between the Cadmium Chloride (Cd Cl2) concentration and the mortality rate of Oreochromis niloticus.

Log
Concentration Number of Subjects Observed Responses Expected

Responses Residual Prob

1.00 10.0 0.0 .219 -0.21 0.02
1.30 10.0 3.0 2.549 0.45 0.25
1.48 10.0 6.0 5.534 0.46 0.55
1.60 10.0 7.0 7.571 -0.57 0.75

Table 2. LC50 value of cadmium chloride (Cd Cl2) with lower and upper (95%) confidence limits.

95% Confidence Limits
Probit analysis Concentration Lower Upper

0.01 8.52 1.12 13.84
0.05 12.08 2.86 17.39
0.10 14.54 4.68 19.76
0.15 16.49 6.48 21.65
0.50 28.01 21.15 38.78
0.80 43.06 33.04 104.06
0.90 53.92 38.89 186.95
0.95 64.93 44.11 305.98
0.96 68.54 45.72 353.50
0.99 91.99 55.33 778.25
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96 h of exposure was 111.94 ppm. The lower and upper lethal 
confidence limits for cadmium chloride indicate a wide range 
of 66.13 to 183.28 ppm, within which likes the concentration 
response for 96 h of exposure.

Table 5 demonstrates the effects of individual administration 
of 1/2 LC50 of Cd and Pb on lipid peroxidation. Cd caused 
significant increases after the 4th day (+ 51.52%) and the 6th day 
(+ 93.18%), while the administration of 1/2 LC50 of Pb showed 
significant increase after 4th and 6th day (+ 68.94% and + 99.24%, 
respectively).

The individual administration of 1/2 LC50 of Cd and 1/2 
LC50 of Pb showed significant decrease after the 4th day (-14.96% 

and -24.83%, respectively) and the 6th day (-22.45%, -31.97%, 
respectively) Table 6.

4 Discussion
Heavy metal pollution is the focus of biological monitoring 

in environmental and occupational health studies because of 
their widespread use (Hunaiti & Soud, 2000). They become 
toxic when they are not metabolized by the body and are 
accumulated in the soft tissues. Heavy metals may enter the 
human body through water, food, air, or absorption through 
the skin when humans come in contact with them in agriculture 
and in manufacturing, industrial, pharmaceutical or residential 
locations (Suleman et al., 2011).

Table 3. Correlation between lead acetate (Pb (CH3COO) 2) concentration and mortality rate of Oreochromis niloticus.

Log Concentration Number of Subjects Observed Responses Expected Responses Residual Prob
1.70 10.0 2.0 1.72 0.27 0.17
2.00 10.0 4.0 4.47 -0.47 0.44
2.18 10.0 6.0 6.34 -0.34 0.63
2.30 10.0 8.0 7.51 0.48 0.75

Table 4. LC50 value of lead acetate (Pb (CH3COO) 2) with lower and upper (95%) confidence limits.

95% Confidence Limits
Probit analysis Concentration Lower Upper

0.01 15.38 0.087 37.08
0.05 27.51 0.681 52.91
0.10 37.51 2.02 64.40
0.15 46.23 4.19 73.96
0.50 111.94 66.13 183.28
0.80 229.54 152.17 1563.00
0.90 334.10 196.71 5730.59
0.95 455.51 239.61 17004.71
0.99 814.74 342.10 132658.82

Table 6. Effect of 1/2 LC50 of cadmium (Cd) or lead (Pb) on Glutathione (GSH) in liver tissue of Oreochromis  niloticus.

Concentration
mg/L

Day of exposure
1 day 2 day 4 day 6 day

nmol/g ± SE nmol/g ± SE nmol/g ± SE nmol/g ± SE
Control 5.88 ± 0.14 5.88 ± 0.14 5.88 ± 0.14 5.88 ± 0.14
1/2 LC50 Cd % Change 5.62 ± 0.21 -4.42 5.56 ± 0.22 -5.44 5.00 ± 0.19 -14.96* 4.56 ± 0.13 -22.45*
1/2 LC50 Pb % Change 5.52 ± 0.25 -6.12 5.02 ± 0.36 -14.63 4.42 ± 0.17 -24.83* 4.00 ± 0.14 -31.97*
Statistical analyses of results were performed between control (5) and treated (5). *Significant (P < 0.05). %: change from control.

Table 5. Effect of 1/2 LC50 of cadmium (Cd) or lead (Pb) on lipid peroxidation (LPO) in liver tissue of Oreochromis niloticus.

Concentration
mg/L

Day of exposure
1 day 2 day 4 day 6 day

nmol/g ± SE nmol/g ± SE nmol/g ± SE nmol/g ± SE
Control 1.32 ± 0.11 1.32 ± 0.11 1.32 ± 0.11 1.32 ± 0.11

1/2 LC50 Cd %  
Change

1.55 ± 0.10
17.42

1.33 ± 0.15
0.75

2.00 ± 0.09
51.52.*

2.55 ± 0.09
93.18*

1/2 LC50 Pb%  
Change

1.39 ± 0.03
5.30

1.45 ± 0.08
9.85

2.23 ± 0.33
68.94*

2.63 ± 0.13
99.24*
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The 96-h LC50 values of fish differ from metal to metal and 
from species to species (Gill & Pant, 1985; Shah & Altindağ, 2005; 
Alkahemal-Balawi et al., 2011).

Fish that are highly susceptible to the toxicity of one metal 
may be less or non-susceptible to the toxicity of another metal 
at the same concentration of that metal in the environment. 
Similarly, a metal which is highly toxic to one organism at low 
concentration may be less or non-toxic to other organisms at the 
same or even higher concentrations (Alkahemal-Balawi et al., 
2011).

The heavy metals Cd, Pb, Al, and Zn are known to produce 
ROS and induce oxidative stress in certain plant species (Verma 
& Dubey, 2003). The production and accumulation of ROS 
inhibit the electron transfer chain in mitochondria. In general, 
the accumulated ROS consists of various amounts of hydrogen 
peroxide, hydroxyl ions, singlet oxygen, superoxide anions, lipid 
hydroperoxides, phospholipid hydroperoxides, etc. Excessive 
production of ROS disturbs the balance between the ROS and 
antioxidant agents (enzymes and antioxidant substances) in the 
cells (Latinwo et al., 2006).

Free radicals are created in normal and pathological cell 
metabolism. Oxidation is essential to many living organisms for 
the production of energy to fuel biological processes. Though, 
the uncontrolled production of oxygen-derived is involved in 
generating many diseases such as rheumatoid arthritis, cancer,and 
arteriosclerosis, as well as in degenerative manners associated 
with aging. Exogenous chemical and endogenous metabolic 
processes in the human body or in the digestive system might 
produce highly reactive free radicals, particularly oxygen-derived 
radicals, which are capable of oxidizing biomolecules, resulting 
in cell death and tissue damage. Almost all organisms are well 
protected against free radical damage by oxidative enzymes 
such as superoxide dismutase (SOD) and catalase (CAT), or by 
chemicals (non-enzymatic) such as ascorbic acid, a-tocopherol, 
carotenoids, polyphenols (Saleh et al., 2010).

Glutathione is a ubiquitous thiol-containing tripeptide that 
is involved in numerous processes that are essential for normal 
biological function, such as DNA and protein synthesis. It is 
predominantly present in cells in its reduced form (GSH), which 
is the active state. Among the several important functions of 
GSH, it contributes to the removal of reactive electrophiles (such 
as many metabolites formed by the cytochrome P-450 system) 
through conjugation by means of glutathione S-transferases 
(GSTs). GSH also scavenges ROS directly or in a reaction 
catalyzed by glutathione peroxidase (GPx) through the oxidation 
of two molecules of GSH to a molecule of glutathione disulphide 
(GSSG). The relationship between the reduced and oxidized state 
of glutathione, the GSH/GSSG ratio or glutathione redox status, 
is then considered as an index of the cellular redox status and a 
biomarker of oxidative damage because glutathione maintains 
the thiol-disulphide status of proteins, acting as a redox buffer 
(Peña-Llopis et al., 2003).

In agreement with a previous study, the level of GSH was 
significantly decreased in the liver tissue of the cadmium treated 
group compared to the control group. This decrease in GSH levels 
may be due to its consumption in the prevention of free radical-

mediated lipid peroxidation (Koyuturk et al., 2006) Additionally, 
GSH may be consumed in the detoxification of heavy metals 
(Thévenod, 2003). Furthermore, it has been suggested that the 
decrease in GSH levels upon cadmium exposure might impair the 
degradation of lipid peroxides, thereby leading to its accumulation 
in the target organs (Sarkar et al., 1997). In contradiction to the 
current results, Kamiyama et al. (1995) reported an increase in 
GSH level in liver and kidney tissues after Cd injection, which 
could be explained as a protective mechanism.

The mechanisms of cadmium-induced damage include the 
production of free radicals that alter mitochondrial activity and 
genetic information (Burbure et al., 2006). In the current study, 
lipid peroxidation level (LPO) was significantly elevated in liver 
tissue of O. niloticus treated with cadmium compared to the control 
group, thus suggesting increased oxidative stress. These results 
were supported by Manca et al. (1991), who reported that LPO is 
an early and sensitive consequence of Cd exposure. Additionally, 
Hassoun & Stohs (1996), demonstrated that oxidative stress was 
induced following oral administration of cadmium chloride to 
rats. A similar results had been reported by Jurczuk et al. (2004). 
In addition, Jahangir et al. (2005) and Eybl et al. (2006) reported 
that cadmium is thought to induce lipid peroxidation, and this 
has often been considered to be the main cause of its deleterious 
influence on membrane-dependent function.

In this study, lead acetate induced decreases in glutathione 
and elevations in lipid peroxidation product in all fish under 
investigation and. This result is supported by Jahangir et al. 
(2005) and Eybl  et  al. (2006), who reported that lead is a 
ubiquitous environmental metal which can induce a broad 
range of physiological, biochemical and behavioral dysfunctions 
in fish. Oxidative stress has been proposed as a possible 
pathogenesis of lead toxicity. Previous studies reported that 
lead either decreased in antioxidant status, such as with GSH, 
or elevated LPO in lead-exposed animals. Lead showed the 
inhibition of several enzymes with functional SH groups. 
Reduced glutathione is tripeptide containing cysteine that has 
a reactive SH group. Normally, GSH plays a key role in cellular 
protection against oxidative stress by direct interaction of the 
SH group with reactive oxygen species (ROS), or involvement 
in the enzymatic detoxification reactions of ROS as a cofactor 
or a coenzyme.

The effects of lead might be attributed to its ability to generate 
reactive toxic action oxygen species. The Lead induce oxidative 
damage in several tissues by enhancing lipid peroxidation that 
occurs readily in the tissues, due to presence of membranes 
rich in polyunsaturated fatty acids (Mahmuda  et  al., 2020; 
Yacoub et al., 2021; Simukoko et al., 2022).

5 Conclusions
This investigation indicates that different doses of cadmium 

chloride and lead acetate elevate the level of lipid peroxidation, 
and decrease the level of glutathione content in fish.
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