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1 Introduction
With global peanuts production reaching 50.63 million tons 

in 2021, a large number of peanuts are facing storage problems. 
In the storage process, with the change of climate, peanuts are 
prone to mildew due to humidity. Aflatoxin poisons (AFT) 
naturally formed after mildew include aflatoxin poisons B1, B2, 
G1 and G2 (Idris et al., 2010; Mutua et al., 2019), which are toxic 
secondary metabolites formed by aflatoxin (Gonçalves et al., 
2022) and parasitic aspergillus, among which AFB1 is the 
most commonly used toxic type. AFT is classified as a group 
I human carcinogen by the Global Organization for Scientific 
Research on Cancer (IARC) because it is toxic, teratogenic and 
genetically toxic to human and mammalian liver. In humans, 
AFB1 is metabolized by DNA-binding enzymes to form AFB1-
DNA adducts, causing acute poisoning and increasing the 
risk of hepatocellular carcinoma (HCC) (Yang  et  al., 2019). 
Therefore, many countries and organizations, such as the 
Codex Alimentarius Commission (CAC), the European Union 
(EU), the United States (US), Japan and South Korea, have 
established maximum levels (MLs) of aflatoxin in peanuts and 
peanuts products ranging from 4.0 μg/kg to 20.0 μg/kg to reduce 
AFT exposure (Gonçalves et al., 2017). The current National 
Food Safety Standard (GB 2761-2017) stipulates that the ML 
of AFB1 in peanuts and peanut products is only 20.0 μg/kg 
(Zhou et al., 2016). Although various chemical, physical and 
biological methods have been applied to control AFT in food, 

AFT contamination is still a major food safety issue of global 
concern (Kumar et al., 2017). In China, peanuts are one of the 
major oil crops and high-consumption agricultural products, 
and severe AFT pollution in peanuts poses a threat to human 
health and trade (Sun et al., 2017). Therefore, it is important to 
realize the rapid, nondestructive and effective identification of 
moldy peanuts for the safety of peanut food processing.

In recent years, the use of hyperspectral image processing 
technology for non-destructive testing of agricultural products 
has not been developed for a long time but has made rapid 
progress, and corresponding research results have been obtained 
(Guo et al., 2019; Zhang et al., 2019). Yuan et al. (2020) researched 
the identification of peanuts mildew using a small number of 
critical wavelength bands and an integrated classifier based on 
hyperspectral images. Simulating the natural process of peanuts 
fungal infection, three experiments were conducted on peanuts 
with different varieties of growing mold, and detailed hyperspectral 
images of healthy and moldy peanuts were captured in the 960-
2568 nm range. Based on the hyperspectral image, the peanuts 
spectral images were obtained by combining genetic algorithm 
and continuous algorithm, and the projection algorithm was used 
to select the key wavelengths. After that, EC was composed of 
support vector machine (SVM), partial least squares discriminant 
analysis was performed by clustering independent soft pattern 
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classifier (SIMCA), according to the selected key wavelengths 
(982 nm, 1180 nm, 1405 nm, 1540 nm, 1871 nm, 1938 nm, 
1999 nm). The overall classification accuracy of EC, SVM, PLS-
DA and SIMCA at pixel level was 97.66%, 97.53%, 95.31% and 
97.36%, respectively. Finally, the kernel scale classification diagram 
showed the effectiveness of the method and the distribution of 
moldy peanuts in healthy peanuts. This indicates that NIL-HSI 
is a reliable prediction method for analyzing peanut mildew 
(Liu et al., 2020). Liu et al. (2020) collected 16 hyperspectral 
images of healthy peanuts, damaged peanuts and moldy peanuts 
from 1066 peanut samples with a spectrometer. Deeplab V3+, 
Segnet and Unet Hypernet were constructed as control models 
for comparison. The proposed peanut recognition index (PRI) 
was fused to peanut recognition, in which hyperspectral images 
were used as pre-extraction of data features, and multi-feature 
fusion block (MF block) was constructed to be integrated into 
the control model as enhancement of model features to improve 
the accuracy of peanuts recognition (Borregaard et al., 2000; 
Yuan et al., 2020). Nakariyakul & Casasent (2011) developed a 
new method to detect internal damage of almonds, which only 
requires two sets of ratio features (response ratios of two different 
spectral bands are classified). The proposed method avoids the 
use of first-order search to thoroughly search the entire feature 
space. Firstly, the ratio feature set was sorted, and then the 
optimal ratio feature was selected according to the sorting set. 
It is feasible to use ratio feature to classify, which can be used 
in real time multispectral analysis sensor system. Experimental 
results showed that this method had a high classification rate, 
whether using the best feature of an independent band to select 
a subset or using feature extraction to use all wavelength data 
(Nakariyakul & Casasent, 2011).

Food microorganisms are affected by factors such as 
environment and time, and the detection cycle is long, so that 
the microbial detection data related to food quality and safety 

cannot relatively truly reflect the situation of food microorganisms. 
In recent years, near-infrared detection technology has attracted 
more and more attention in the field of food microbiological 
detection due to its high efficiency, non-destructiveness and 
rapidity. The spectrum of the sample has a certain correlation with 
the measured value of the composition and property parameters 
of the sample. The chemometrics method is used to correlate 
them, and the quantitative or qualitative relationship between 
the two is established. For biochemical detection, qualitative 
and quantitative analysis of microorganisms in the sample can 
be performed only by collecting the spectrum of the sample to 
be predicted.

Pranoto  et  al. (2022) used artificial neural network and 
fluorescence spectroscopy to identify food vegetable oils with an 
accuracy rate of 72% (Pranoto et al., 2022). Hou et al. (2022) used 
Fourier transform infrared spectroscopy and machine learning 
to predict the amino acid content of nine commercial insects 
with a coefficient of determination of 0.97 (Hou et al., 2022). 
Chen & Yu (2022) tested the food safety sampling inspection 
system based on deep learning, and applied various technical 
means such as image processing, speech recognition, and target 
detection (Chen & Yu, 2022). Using Differential Scanning 
Calorimetry (DSC) combined with machine learning tools 
to detect adulteration in raw milk, Farah et al. (2021) achieve 
100% identification and predictive power (Farah et al., 2021).

2 Materials and methods
2.1 The experimental materials

In recent years, major planting provinces (Shandong, Henan, 
Jiangsu, etc.) the main peanut varieties (Dabaisha, Huayu 16, 
Xiaobaisha, Haihua, Luhua) as the research object, as shown in 
Figure 1, and in each selected peanuts production phase is full 
of 120, a total of 600, each of the randomly selected 40 make 

Figure 1. Moldy peanuts.
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mold processing, a total of 200, put them in a closed box with 
cotton and a small amount of fresh water, and place them in an 
environment of 20 °C for 30 days. The remaining 400 peanuts, 
without any treatment, are also placed in a sterile and constant 
temperature condition of 20 °C for 30 days. After culture, spectral 
images were collected.

2.2 Hyperspectral image and data acquisition

The peanuts hyperspectral Images acquisition system adopts 
the image-λ “spectral Image” series hyperspectral machine of 
Zhuoli Hanguang Company, and SpacVIEW software is used to 
operate it. The system consists of a computer, a transmitter, a dot 
array camera and a halogen light source, as shown in Figure 2. 
The effective band range of its spectrum is 387-1034 nm, and 
the band resolution is 2.8 nm, with a total of 256 bands and 
1344*1024 pixels. The determination and display attributes R, 
G and B of each group of samples were set as 638.7, 551.58 and 
442.95, respectively, and the time was set as 10 s. The distance 
between the peanut sample and the camera lens was set as 
165 mm, the sample movement speed was set as 4.7 mm·s-1, 
the exposure time of the camera was 4 ms, and the scanning 
area of the spectrum was 150 mm (Hong et al., 2015). In the 
process of collection, due to the influence of noise caused by 
the surrounding environmental factors and the dark current of 
the instrument, it is necessary to collect black and white frames 
respectively before sample collection, and conduct black-and-
white correction in SpacVIEW according to the following 
formula (Equation 1) after sample collection (Yu et al., 2016). 
ENVI5.1 (The Environment for Visualizing Images) software 
was used to extract the areas required by the experiment in the 
peanut hyperspectral image after black and white correction, 
and then calculate the reflection average value of the spectral 
data in the extracted area as the characteristic reflection spectral 
curve of different peanut varieties.

0
1

B

w B

R R
R

R R
−

=
−

 (1)

Where, 0R  is the initial hyperspectral image (RAW), 1R  is the 
image after black-and-white correction, BR  is the black frame 
image collected after closing the lens, and wR  is the white frame 
image collected after correct collection and debugging without 
putting the sample.

2.3 Spectral data pre-processing

Because each ROI region of hyperspectral image extracted 
has 256 bands, corresponding to 256 data, the amount of data 
is large; And in hyperspectral data, weather, light, and the 
differences or artificial operation inevitable error, need to noise 
reduction of collected data, according to the strong correlations 
between the properties and spectral data band according to the 
amount of total high redundancy feature, so this research used 
a variety of data preprocessing algorithms, and compared their 
results, get the optimal modeling spectrum data, including: Min-
Max Standardization, Boxing Smoothing, Wavelet Threshold 
Denoising, Exponential Smoothing, Median Filtering, Logarithmic 
Transformation Normalization, Z-Score Standardization, Local 
Regression-weighted linear least squares + polynomial model, 
Savitzky-Golay to eliminate noise in Raw spectral data.

Smoothing algorithm

Brown gives an exponential smoothing algorithm. It holds 
that the change of time order is regular and can reasonably 
continue the time series. Index smoothing includes primary, 
secondary and multiple indices smoothing (Huang, 2014).

Logarithmic transformation normalization

Some of the data changes are designed to be consistent with 
the assumptions we make so that we can analyze them in theory. 
Log transformation is a special method of data transformation, 
which transforms some common problems that we have not 
solved theoretically into solvable problems (Wang et al., 2012).

Figure 2. Image-λ “spectral Image” series high spectrometers of Zhuoli Hanguang Company.
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Min-max standardization

0-1 standardization is mainly to change the data to the 
range of [0, 1] (Ji et al., 2016). Assuming that the sample is, the 
mathematical calculation formula of 0-1 standardization is as 
follows (Equation 2):

max( ) min( )
max( )

= i
i

x
x

x x
x∗
−
−

 (2)

Wavelet threshold denoising

Information using wavelet transform method (using Mallat 
algorithm), as a result of the information generated in the 
wavelet coefficient is important information, so the wavelet 
coefficient information will increase after decomposition via 
wavelet transform coefficient, and the SNR value will decrease, 
and because the signal-to-noise ratio is less than the wavelet 
coefficients of information, by selecting an appropriate threshold, 
When the wavelet coefficient exceeds the threshold point, it will 
be regarded as the emergence and retention of information; 
when the wavelet coefficient approaches the threshold, it will be 
regarded as the noise caused by the removal, so as to remove the 
data causing errors in the experiment (Zhou, 2015). Its essence 
is to control the part that is not in the information or increase 
the useful information part.

The basic steps are as follows:

1. Decomposition: carry out wavelet analysis on the information 
based on the pre-determined wavelet with a certain layer 
number of N;

2. Threshold processing process: select appropriate threshold 
after analysis and measure the coefficient of each layer by 
threshold function;

3. Reconstruction: signal reconstruction with the processed 
coefficients.

Median filtering

Median Filtering is a nonlinear data preprocessing method. 
It was in the 1970s that J W Jukey invented and applied the data 
processing technology in one-dimensional information for the 
first time, and later it was widely applied in two-dimensional 
information processing. It is now widely used in image enhancement 
and data processing (Liu et al., 2019). Median Filtering can also 
be used in data pre-processing. Median filters generally assume 
that the data itself is stable and undistorted, and that all sudden 
changes caused by noise can be eliminated. The median filter 
also produces fuzzy signals and is most suitable for processing 
very independent and prominent noise information. Because 
the median filter is usually sliding and has an odd number of 
Windows. The specific steps are: Create a window of length 2N 
+1 and move the window bit by bit across the data sequence. 
After each move, the sequence of data information in the window 
is rearranged. Replace the small number of positions in the 
window before permutation with the medium number obtained 
after permutation. After arranging the values of the m points 
according to the number size, the number in the middle of the 

serial number is selected as the filter output value. Expressed by 
the following mathematical formula (Equation 3):

e 1( , )y m dfit x n=  (3)

In this algorithm, y represents the reflectivity data corresponding 
to wavelength after one-dimensional median filtering, x represents 
the reflectivity data corresponding to original wavelength, and 
n represents the data width.

Z-score standardization

Zero-mean normalization is also called standard deviation 
normalization, which means that the average of the processed 
data is 0 and the standard deviation is 1 (Yang et al., 2022).

The transformation formula is (Equation 4):

x xx
σ

∗ =
−

 (4)

Where x  is the mean value of the original data, and σ  is the 
standard deviation of the original data.

Local regression-weight linear least squares

Original linear regression objective function (Equation 5):

( ) ( ) 2
1(1 ))( )

2
(m i i

iJ h x yθθ = −= Σ  (5)

Locally weighted linear regression objective function 
(Equation 6):

( ) ( ) ( ) 2
1( ( ( )1 ))

2
im i i

i hJ x yθθ ω= −= Σ  (6)

The difference between the two is that the latter has more 
weight ( )iω , which can control the influence of the prediction 
error of the i-th sample on the objective function. The idea of 
locally weighted linear regression is: when making prediction 
for a certain sample, focus on the nearby weights of the sample 
and give them higher ( )iω . Therefore, the specific form of ( )iω  is 
shown as follows (Zhang et al., 2013) (Equation 7):

( ) ( )2
2exp( )

2

i
i x x

ω
τ

−
= −  (7)

τ is the wavelength parameter. The larger τ is, the faster the 
distance sample falls, and the smaller the effect of distance sample.

Savitzky-Golay filtering

SG filter uses low order polynomial fitting of continuous 
subset of the same information point, and uses linear least 
square to predict the next time series data point. For example, 
if you specify a filter window consisting of five data points in the 
range 1 to 5, you can use linear least squares to derive n-order 
polynomial fits with those data points and use polynomials to 
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infer a sixth data point. Next, the filter moves forward in time 
to cover the five data points in the range 2 to 6 to infer a seventh 
data point. This process continues until all data in the original 
set is filtered out (Lu et al., 2019).

The solution of Savitzky-Golay convolution smoothing 
matrix operator is an important step.

The width of the filtering window is 2 1n m= + , and each measuring 
point ( , 1,0...0,1,... 1, )x m m m m= − − + −  uses 1k −  polynomial to fit the 
data points in the window (Equation 8):

2 1
0 1 2 1... k

ky a a x a x a x −
−= + + + +  (8)

So, you have n of these equations, which are subsumed 
into k linear equations. In order to make the equations have a 
solution, n should be greater than or equal to k, n k>  is generally 
selected, and the fitting parameter A is determined by least 
square fitting (Equation 9).

(2 1) 1 (2 1) 1 (2 1) 1m m k K mY X A E+ × + × × + ×= +  (9)

The least squares solution of A is (Equation 10):

1( )T TA X X X Y−=  (10)

The model prediction or filtering value Y  of Y  is (Equation 11):

1( )T TY XA X X X X Y BY−= = =  (11)

2.4 Feature extraction and modeling

Gradient Boosting Decision Tree (GBDT)

GDBT is the main method in our experiment. Gradient 
reinforcement: Gradient reinforcement is a machine learning 
technique that, when used for regression and analysis of problems, 
uses its weak estimation mode (generally decision tree) to obtain 
the result set in the form of estimation operator (Ni et al., 2009; 
Yu et al., 2021). Like other reinforcement algorithms, the model 
is built in the form of stages, and any separable loss function in 
the generalized model can be optimized (Equation 12).

0 ( , )1
( ) arg min

i

N
c y ci

f x L
=

= ∑  (12)

1. To 1,2,...,m M=

a. For each sample 1,2,...,i N= , calculate the negative 
gradient as the residual (Equation 13).

1( ) ( )
( , ( ))

[ ]
( ) m

i i
im f x f x

i

L y f x
f x

γ
−=

∂
= −

∂
 (13)

b. The residual obtained in the previous step is taken as 
the new true value of the sample, and the data ( , )i imx γ  and 

1,2,...,i N=  are taken as the training data of the next tree 
to obtain the regression tree ( )mf x  and its corresponding 
leaf node region , 1, 2,...,jmR j J= 。Where J is the number 
of leaf nodes of regression tree t.

c. Calculate the best fitting value for leaf region 1,2,...,j J=  
(Equation 14).

1arg min ( , ( ) )
i jm

jm i m ix R
r

L y f xγ γ−
∈

= +∑


 (14)

d. Update strong learner (Equation 15):

1 1
( ) ( ) ( )

J
m m jm jmj

f x f x I x Rγ−
=

= + ∈∑  (15)

2. Get the final learner (Equation 16):

0 1 1
( ) ( ) ( ) ( )

M J
M jm jmm j

f x f x f x I x Rγ
= =

= = + ∈∑ ∑  (16)

Extreme Gradient Boosting Decision Tree Algorithm (XGBoost)

XGBoost is an analysis and regression algorithm based 
on gradient boosting decision tree (GBDT). XGBoost firstly 
constructs a considerable number of weak learners, mainly 
classified regression trees, to train weak learners. It also completed 
the weighted calculation and summation after training to get the 
final regression model. During the construction process, start 
adding new educators based on the residual errors obtained 
in the last weak educator iteration. The new pedagogues are 
positioned on gradients to ensure that overall model deviation 
is reduced. Finally, a model with more important functions 
of regression and prediction is constructed. Compared with 
GBDT algorithm, XGBoost has many advances. XGBoost 
also introduces regularization terms for L1 and L2. In GBDT 
optimization modeling process, only the first derivative is used. 
XGBoost uses a second-order Taylor expansion for the loss 
function. XGBoost also supports column sampling to avoid 
computational workload reduction due to over-fitting. After 
each iteration, XGBoost allocates learning speed to leaf nodes, 
reducing the weight of each tree and providing better space for 
subsequent learning (Chen et al., 2016; Liu et al., 2021).

XGBoost’s prediction model can be expressed as (Equation 17):



1
( )

K
l k iK

y f x
=

=∑  (17)

Where K  is the total number of all trees, kf  is the k-th tree, and 


ly  is the predicted result of sample ix .

The XGBoost objective function is defined as (Equation 18):



1 1
( ) ( , ) ( )

n K
i l ki K

Obj l y y fθ
= =

+ Ω∑ ∑  (18)

Where ( , )i ll y y  is the training error of sample ix , and ( )kfΩ  is the 
regular term of the k-th tree.

Two parts constitute the objective function. The first part 
measures the difference between predicted and true scores, and 
the other part is the regularization term. The regularization term 
also contains two parts, T represents the number of leaf nodes, 
w  represents the score of leaf nodes. γ  can control the number 
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of leaf nodes, and λ  can control the fraction of leaf nodes not 
to be too large to prevent over-fitting.

The newly generated tree is to fit the residual of the last 
prediction, that is, when t trees are generated, the predicted 
score can be written as (Equation 19):

 

( ) ( 1)
( )

t t
i i t iy y f x

−
= +  (19)

Meanwhile, the objective function can be written as 
(Equation 20):



( 1)( )
( )1

( , ( )) ( )
n tt

i i t i ti
L l y y f x f

−

=
= + +Ω∑  (20)

Obviously, the next step is to find a tf  that minimizes the target 
function. The basic idea of XGBoost is to approach it using its 
Taylor second order expansion at 0tf = . Then, the objective 
function is approximately (Equation 21):



( 1)( ) 2
( )1

1[ ( , ( ) ( )] ( )
2

n tt
i i i t i i t i ti

L l y y g f x h f x f
−

=
+ + +Ω∑  (21)

Where ig  is the first derivative and ih  is the second derivative 
(Equation 22):





( 1)

( 1)2 ( , )
t

yi

t
i i ih l y y

−

−
= ∂  (22)

Since the predicted scores of the first 1t −  trees and the residual 
difference of y have no negative impact on the objective 
function, it can be removed. The simplified objective function 
is (Equation 23):



( ) 2
( )1

1[ ( ) ( )] ( )
2

nt
i t i i t i ti

L g f x h f x f
=

+ +Ω∑  (23)

The above formula is to add up the loss function values of each 
sample, because we already know that all the data will eventually 
fall into a leaf node, so we should reorganize all the data blocks 
of the same leaf node. The steps are as follows (Equation 24):

( ) 2
( )1

2 2
1 1

2
1

1[ ( ) ( )] ( )
2

1 1[ ( ) ( )]
2 2

1[( ) ( ) ]
2j j
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i t i i t i ti
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i q i i q i ji j

T
i j i jj i I i I

Obj g f x h f x f

g x h x T

g h T

ω ω γ λ ω

ω λ ω γ

=

= =
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+ +Ω

= + + +

= + + +

∑
∑ ∑
∑ ∑ ∑



 (24)

Therefore, by modifying the above formula, we can rewrite 
the objective function as a quadratic function about the leaf node 
fraction ω, and solve the optimal ω and objective function value 
becomes very simple, directly using the vertex formula can be.

Therefore, the optimal ω and objective function formula 
is (Equation 25):

2
*

1
1,
2

jTj
j jj j

GG
Obj T

H H
ω λ

λ λ=
= − = − +

+ +∑  (25)

CategoricalBoost (CatBoost)

CatBoost is an algorithm based on gradient lifting. It has 
few optimization parameters and allows for faster training and 
testing. It uses the ordered boosting algorithm, which improves 
the generalization of the model.

CatBoost shows better results than random forest and other 
database-like gradient lifting algorithms. It is very suitable for 
categorizing data structures and avoids the need for intermediate 
data conversion (Al-Duwairi et al., 2020; Devi & Priya, 2021).

CatBoost has five main features:

1. High model accuracy can be obtained without adjusting 
parameters;

2. Classification variables can be supported without pre-
processing of non-numerical class features;

3. GPU runs fast and expandable, which can be realized by 
gradient enhanced computing of one GPU during training 
model, supporting parallel computing;

4. In order to reduce overfitting, a new gradient lifting 
mechanism model is constructed;

5. Fast prediction speed.

Light Gradient Boosting Machine (LightGBM)

LightGBM (Ji et al., 2021; Zhao & Khushi, 2021) has three 
major optimizations on XGBoost:

1. Histogram algorithm: histogram algorithm;

2. GOSS algorithm: gradient unilateral sampling algorithm;

3. EFB algorithm: mutually exclusive feature binding algorithm.

The relationship between LightGBM and XGBoost can be 
shown using the following formula (Equation 26):

LightGBM XGBoost Histogram GOSS EFB= + + +  (26)

Due to the introduction of these three methods, the complexity 
required to produce leaf diagrams in LightGBM is greatly 
reduced and the computation time is greatly saved, while the 
calculation of histogram also converts functions from floating 
point to any integer from 0 to 255 bits for storage, thus greatly 
saving the internal reserve.

LightGBM is compared to XGBoost as follows:

LightGBM can also be considered an improved version of 
XGBoost, which is lighter to run on large data sets than XGBoost.

1. XGBoost’s model accuracy is comparable to LightGBM;

2. LightGBM trains much faster than XGBoost;

3. LightGBM has much less memory consumption than 
XGBoost;
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4. Both XGBoost and LightGBM can handle feature missing 
values automatically;

5. Classification features: XGBoost does not support category 
features, requiring OneHot coding preprocessing. LightGBM 
directly supports category features.

2.5 Model optimization

As a parameter tuning tool, optuna is suitable for most 
machine learning frameworks, sklearn, xgb, lgb, pytorch, etc. 
Using a record of suggested parameter values and evaluated 
objective values, the sampler basically keeps narrowing the 
search space until it finds an optimal search space that produces 
parameters that lead to better objective function values.

Optuna is a tool that automatically helps us debug 
parameters. Optuna is much easier to use than sklearn’s 
gridsearchcv. One is that optuna can quickly adjust parameters 
compared to sklearn, and the other is that it can visualize 
the process of debugging parameters. At the same time, if 
you haven’t finished training, you can continue training next 
time. And optuna uses the mechanism of Bayesian debugging 
parameters internally, which can give us a relatively good 
result in the shortest time, and may even get an optimal result 
(Akiba et al., 2019).

3 Results and discussion
3.1 Analysis of raw spectral data

After SpacVIEW black and white correction treatment, 
ENVI5.1 was used to intercept each peanut’s region of interest 
and calculate its average reflection value. The spectral reflection 
value curve of the obtained data was drawn as shown in Figure 3. 
It can be seen that starting from the initial band of 387 nm, there 
was an absorption peak state, and the first wave peak appeared 
in the vicinity of 392 nm. Moldy Dabaisha’s peak value is the 
maximum, health peanuts is the minimum, then reflectance 
declined precipitously, near 410 nm, 6 kinds of peanuts in 
decline after the first small peaks, near 440 nm, healthy peanut 
appeared a peak, 5 kinds of mildew of peanuts in the troughs, 

since spectrum curve showed a trend of rise, Xiaobaisha’s rising 
trend is the smallest, while Dabaisha is the most high, from the 
above analysis, it can be seen that the difference between healthy 
peanuts and moldy peanuts in the initial band is large and easy to 
distinguish, indicating that it is feasible to detect moldy peanuts 
based on hyperspectral image technology.

3.2 Spectral data preprocessing

In order to eliminate the influence of non-quality factor 
information in hyperspectral spectral data, 10 spectral pretreatment 
methods were used to eliminate noise in the original spectral 
data, and each algorithm was evaluated, as shown in the table 
below. As can be seen from Table 1, the accuracy of LR1, SG 
and ZSS algorithms after processing is equal to the original data, 
which is 95.8%. The accuracy of WTD and MMS algorithms 
after processing is not as good as the original data and is 
initially eliminated. The accuracy of other algorithms is above 
the original data, among which MF algorithm is the highest, 
which is 97.7%. LR2 algorithm is the best in healthy peanuts, 
reaching 1. MF algorithm is the best in all 5 kinds of moldy-
growing peanuts. In addition, MF algorithm is the best in Log 
Loss, Hamming Loss and Fit Time. Therefore, the pre-processed 
data are used for modeling detection. The five types of peanuts 
in the table below are all moldy peanuts.

Table 1. Spectral data preprocessing results.

Method ACC 
(Accuracy) Health Dabaisha Haihua Huayu Luhua Xiaobaisha Log

Loss
Hamming

Loss
Fit

Time
MF 97.7% 0.9957 0.9310 0.8525 0.9459 0.9844 0.9000 6312 0.0226 0.88
LR2 96.1% 1.0000 0.8983 0.7241 0.8933 0.9147 0.8254 6796 0.0393 1.00
LTN 96.1% 0.9991 0.8983 0.7119 0.8919 0.9231 0.8387 6796 0.0393 0.92
BS 96.0% 0.9991 0.8908 0.7119 0.8933 0.9231 0.8197 6830 0.0405 0.96
ES 96.0% 0.9983 0.8814 0.7333 0.9007 0.9231 0.8197 6830 0.0405 0.99

LR1 95.8% 0.9983 0.8833 0.6897 0.9007 0.9231 0.8197 6865 0.0417 0.96
SG 95.8% 0.9991 0.8983 0.6780 0.8859 0.9147 0.8387 6865 0.0417 0.99

ORG 95.8% 0.9991 0.8983 0.6780 0.8859 0.9147 0.8387 6865 0.0417 1.01
ZSS 95.8% 0.9991 0.8983 0.6780 0.8859 0.9147 0.8387 6865 0.0417 1.01

WTD 95.7% 0.9991 0.9000 0.6667 0.8874 0.9063 0.8197 6899 0.0429 0.98
MMS 90.1% 0.9915 0.6812 0.5862 0.7286 0.8480 0.3404 8523 0.0988 1.17

Figure 3. Spectral reflection curve.
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3.3 Feature band extraction

GBDT, LightGBM, CatBoost and XGBoost algorithms are 
used to extract the top 30 feature bands. As shown in Figure 4, 
1034.9899 nm is ranked in the top three in GBDT, LightGBM 
and CatBoost algorithms, indicating that among these three 
algorithms, In LightGBM and CatBoost algorithms, the top 
bands are the head-to-tail bands, which is consistent with the 
spectral curve analysis, indicating that in these two algorithms, 
the head-to-tail bands have better performance in mildew 
detection, while in XGBoost, the bands at 800 nm occupy the 
top five. From the extracted feature bands, it can be seen that 
the four algorithms have similarities and differences in mildew 
detection, indicating that each algorithm has its own special 
judgment for peanut mildew detection when it has common 
characteristics.

3.4 Modeling and optimization

Modeling and result analysis

In Table  2, GBDT, LightGBM, CatBoost and XGBoost 
algorithms were used to model the obtained feature bands. 
According to the results, the modeling accuracy of these features 
using GBDT is the lowest, 98%, and the operation time is the 
longest, all around 10 s. Among all the algorithms, the modeling 
accuracy of characteristic bands obtained by LightGBM is the 

highest, 99.1%, indicating that the first and last bands are the 
most effective for detection of peanut mildew. LightGBM takes 
the least time to model its characteristic bands, only 0.59 s, so in 
the model optimization, The LightGBM algorithm is selected for 
parameter tuning. The five types of peanuts in the table below 
are all moldy peanuts.

LightGBM optimization

Optuna algorithm was used to optimize LightGBM 
parameters (max_depth, n_estimator, num_leaves, subsample). 
The optimization process is shown in Figure 5. It can be seen 
from the isoline map that in the 300-time optimization process, 
the algorithm uses multi-fusion mode to select three parameters 
that are most suitable for a parameter. The four parameters are 
optimized in turn for 12 times, and the optimal parameter is 
obtained when the Objective Value reaches 1. The five types of 
peanuts in the table below are all moldy peanuts.

The optimized parameters are used for modeling, and the 
comparison with the original results is shown in the following 
Table 3:

As can be seen from the above table, from the perspective 
of accuracy, the optimization did not improve, but from the 
perspective of refinement, after optimization, the F-score 
of Haihua and Dabaisha decreased, and the Huayu and 

Figure 4. Extraction of important feature bands using (a) GBDT, (b) LightGBM, (c) CatBoost and (d) XGBoost.
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Xiaobaisha increased. In the performance of fit time, the 
improvement was more obvious, with an increase of 42%. 
After optimization, the algorithm can improve the detection 
of mildew to a certain extent, especially in the running time, 
greatly reduce the time.

Result visualization

Modeling get confusion matrix using the optimized model 
as shown in Figure 6, in the confusion matrix can visually 

see that health has not been identified as the moldy peanuts, 
peanut moldy peanuts has not been mistakenly identified as 
health peanuts, prove model can accurately to mildew from 
health peanuts, but moldy Haihua have a was mistakenly 
identified the moldy Huayu, One was identified as moldy 
Luhua and another was identified as moldy Dabaisha; A 
moldy Huayu was mistakenly identified as a moldy Haihua; 
A small moldy Xiaobaisha was mistakenly identified as a 
moldy Huayu; There was no misidentification of moldy 
Luhua and Dabaisha.

Table 2. CatBoost, XGBoost, LightGBM and GBDT algorithms model performance metrics.

Model Character ACC Health Dabaisha Haihua Huayu Luhua Xiaobaisha Log
Loss

Hamming
Loss

Fit
Time

GBDT xgb 98.9% 0.999 0.988 0.944 0.949 0.979 0.976 3751 0.011 0.98
lgb 99.1% 1.000 1.000 0.941 0.951 0.989 0.950 3716 0.009 0.62
cat 97.1% 0.996 0.953 0.750 0.911 0.957 0.900 4096 0.029 3.53

gbdt 98.0% 0.997 0.976 0.872 0.917 0.979 0.927 3924 0.020 10.16
lgb xgb 98.9% 0.999 0.988 0.944 0.949 0.979 0.976 3751 0.011 0.99

lgb 99.1% 1.000 1.000 0.941 0.951 0.989 0.950 3716 0.009 0.59
cat 97.1% 0.996 0.953 0.750 0.911 0.957 0.900 4096 0.029 3.67

gbdt 98.0% 0.997 0.976 0.872 0.917 0.979 0.927 3924 0.020 10.20
cat xgb 98.9% 0.999 0.988 0.944 0.949 0.979 0.976 3751 0.011 0.98

lgb 99.1% 1.000 1.000 0.941 0.951 0.989 0.950 3716 0.009 0.64
cat 97.1% 0.996 0.953 0.750 0.911 0.957 0.900 4096 0.029 3.54

gbdt 98.0% 0.997 0.976 0.872 0.917 0.979 0.927 3924 0.020 10.17
xgb xgb 98.9% 0.999 0.988 0.944 0.949 0.979 0.976 3751 0.011 0.96

lgb 99.1% 1.000 1.000 0.941 0.951 0.989 0.950 3716 0.009 0.64
cat 97.1% 0.996 0.953 0.750 0.911 0.957 0.900 4096 0.029 3.51

gbdt 98.0% 0.997 0.976 0.872 0.917 0.979 0.927 3924 0.020 9.88

Figure 5. LightGBM optimization process.
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4 Conclusion
Hyperspectral imaging (387 nm-1034 nm) was used to study 

the mildew detection model of peanut during storage. Firstly, 
120 peanuts of each type were selected, a total of 600 peanuts, and 
40 peanuts of each type were randomly selected, and a total of 
200 peanuts were treated with mildew. The remaining 400 peanuts 
were stored aseptically. After 30 days, the spectral images of peanuts 
were collected by Zhuoli Hanguang hyperspectral instrument, and 
the black-and-white correction was conducted by SpacVIEW. Then, 
the spectral image reflection data was extracted by ENVI5.1, and 
10 pre-processing algorithms were used for denoising. Comprehensive 
comparison showed that Median Filtering (MF) had the best effect, 
and the recognition rate reached 97.7%. GBDT, LightGBM, CatBoost 
and XGBoost algorithms were used to extract the top 30 important 
feature bands in the spectral data after MF pretreatment. The feature 
bands extracted by the four algorithms were different from each 
other, but the top bands were all concentrated in the first and last 
bands, which proved that the first and last bands were of great 
significance to identify peanut mildew. GBDT, LightGBM, CatBoost 
and XGBoost algorithms were used to model the extracted feature 
bands. From the running results of the model, it can be seen that 
LightGBM is the optimal feature band extraction algorithm and 
model, and its detection rate can reach 99.1%. Optuna algorithm is 
used to tune its parameters. Compared with the traditional model, 
the operation error is greatly reduced and the operation time is also 
saved. Therefore, the optimal detection algorithm MF-LightGBM-
LightGBM-Optuna-LightGBM was obtained, which provided 
theoretical and practical support for peanut mildew detection in 
the storage process.
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