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ABSTRACT. The present research deals with the two-dimensional knapsack problem by considering the
cutting of irregular items from a rectangular plate with defects. While the defects are only known at the time
of cutting (in the future), we need first to select which items to produce from cutting the plate. The final
items cannot have any defects and the goal is to maximize the profit from cutting the plate and producing the
items. We propose a two-stage stochastic optimization model that makes use of a discrete set of scenarios
with the realization of the plate defects. The first-stage decisions involve selecting items for cutting and
possible production. The second-stage decisions consider the positioning of items in the plate given the
scenarios with defects, and then the cancellation and non-production of some selected items, if any. We also
extend this model to include a measure of risk, aiming at robust solutions. We perform computational tests
on instances adapted from the literature that consider three types of defects, eight scenarios, and four cases
for determining each scenario’s probability. The tests evaluate the impact of uncertainties on the problem
by calculating the expected value of perfect information and the value of the stochastic solution. The results
indicate a percentage reduction in the profit of up to 27.7%, on average, when considering a fully risk-averse
decision-maker.

Keywords: two-dimensional knapsack problem, irregular shaped items, plate defects, two-stage stochastic
optimization.

1 INTRODUCTION

In companies concerned with the cutting of leather, cloth, and metal, among others, a plate (i.e.
a large piece of leather, cloth, or metal) is available to be cut to produce (irregularly shaped)
items. These items may be used for the production of clothing, bags, shoes, sporting goods, ma-
chines, etc. (Mundim et al., 2017; Peralta et al., 2018; Souza Queiroz & Andretta, 2020). In some
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cases, the plate presents defects in some parts, either from extraction, handling, or transportation,
making it impossible to obtain items on these parts (Baldacci et al., 2014).

In this paper, we consider the cutting of irregular items from a rectangular plate that may have
defects. We assume that the plate is purchased in advance, due to preparation and transportation
issues on the part of the supplier. The plate has dimensions and material characteristics known
in advance. However, defects in the plate are only identified after delivery and when it enters
the cutting stage. At this point, previously selected items may have their production canceled,
incurring a cancellation cost. This situation may appear, e.g., in the leather and metal-mechanic
industries. The industry confirms with its customers that their items are going to be produced,
expecting to obtain a certain profit from this. The industry orders the plate specifying its dimen-
sions and material characteristics based on a set of customers’ items to produce, knowing that the
plate may contain parts with defects (e.g., arising from extraction, handling, and/or transporta-
tion) that are not precisely known. When the plate arrives at the industry, it undergoes a control
check. If the plate has no defect, it is certain that all items selected initially will be produced.
On the other hand, in the presence of defects, the industry needs to reconfirm which items will
be produced, so that some selected items will be canceled and, in this case, there will be a cost
(contractual fine) for not producing these items (e.g., not be able to deliver them within the time
agreed with the customers). Clearly, the industry wants to minimize the impact that cancellation
costs bring on the profit from cutting the plate.

The objective is to obtain a production plan that gives the maximum net profit, which depends
on the profit obtained with the production of items minus the cancellation cost of selected items.
The production plan considers the selected items to be obtained from the plate and the realization
of possible defects through scenarios, so it may be necessary to cancel items when knowing the
defects. We treat the defects as uncertain data. We call this problem a Two-dimensional Irregular
Knapsack Problem with Defects Uncertainty (2IKP-DU).

The problem of optimizing the cutting of irregularly shaped items has been studied in the liter-
ature on cutting and packing problems, with a relatively smaller number of contributions com-
pared to problems that consider regular items, e.g., rectangles (Wäscher et al., 2007; Cherri et al.,
2016). Common constraints in these problems concern ensuring that items do not overlap each
other and items are entirely inside the plate. Due to the geometry of irregular items, it is necessary
to use additional tools to deal with these constraints. Some tools include discretizing items into
arrays of points (raster method), calculating the relative position between items using distance
functions (phi-functions), constructing polygons between pairs of items indicating if they are
overlapping (no-fit polygon), and checking the intersection between segments and the inclusion
of points (direct trigonometry method) (Bennell & Oliveira, 2008).

Regarding the knapsack problem with irregular items, Scheithauer & Terno (1993) developed
mixed-integer linear optimization models to deal with convex and non-convex polygons. Martins
& Tsuzuki (2010) proposed simulated annealing when the problem has rectangular and irregular
plates. The feasible regions to positioning items are obtained with the no-fit polygon. Valle et al.
(2012) developed heuristics based on the greedy randomized adaptive search procedure to solve
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the problem variants in which there is only one copy of each item and when there are unlimited
copies of each item. The authors calculated the no-fit polygon to better positioning items in the
plate. Mundim & Queiroz (2012) used simulated annealing as the local search in the algorithm
of Valle et al. (2012).

In Dalalah et al. (2014), the problem considers rectangular and irregular plates. These authors
proposed a constructive heuristic in which items are positioned according to the occupancy of
the plate. Baldacci et al. (2014) solved the problem with an irregular plate that arises in the
leather industry. The plate is discretized into a matrix, and the authors presented an integer lin-
ear optimization model, a Lagrangean relaxation, and heuristics obtained from the relaxation
they proposed. Mundim et al. (2018) developed a general heuristic for different irregular cut-
ting problems such as knapsack and cutting stock. The authors proposed many positioning rules,
some of them based on bottom-left, and were able to improve much of the solutions presented
by the previous literature, such as Valle et al. (2012). Souza Queiroz & Andretta (2020) pro-
posed two heuristics, the first based on a biased random key genetic algorithm. The other is a
variable neighborhood search. The heuristics consider the solution coded as a vector of numbers.
The positioning of items observes the no-fit polygons and three rules inspired on the bottom-left.
Román (2020) considered the positioning of a subset of items of maximum value and respecting
the maximum weight that can be cut from the plate. The author assumed that items could be
rotated and the plate could be irregular and with defects. The author developed several heuristics
for the problem, including an evolutionary algorithm. The non-overlap of items is guaranteed
with a Python library.

Some studies have considered defects and quality zones in plates in irregular cutting problems.
In Chung et al. (1990) there is a hybrid heuristic that allocates items to regions of the plate in
accordance with the position of the defects. Heistermann & Lengauer (1995) handled a real case
found in the leather industry, where the plate is irregular and contains both quality and defect
zones. Their heuristic considers a set of candidate items and tries to position them without gener-
ating overlap if it is possible; otherwise, it places only the item that results in the best occupancy
of the plate. Han & Na (1994) developed a two-stage approach, which initially positions items
by observing the plate and its defects. The plate occupancy is improved with a heuristic based on
simulated annealing. For problems involving irregular plates, Tay & Lee (2002) developed a ge-
netic algorithm, while Yuping et al. (2005) considered quality zones and used a penalty strategy
to find feasible positions. Crispin et al. (2005) developed genetic algorithms for a problem in the
footwear industry. The algorithms use the no-fit polygon to determine positions that maximize
the plate utilization or that let items touching each other. In Lee et al. (2008), the problem con-
siders multiple irregular and defective plates. Items are sorted by value and initially positioned
in such an order. To improve the solution, items can be rotated and/or translated from their initial
position.

Alves et al. (2012a) and Alves et al. (2012b) solved the problem of cutting leather parts for the
automotive industry. In Alves et al. (2012b), they searched for the maximization of the occupancy
of a single plate. A variable neighborhood search heuristic is developed and considers the search
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over the sequence of items. The authors developed four operators to move items in search of a
sequence that results in the better occupancy of the plate. Mundim & Andretta (2014) considered
the problem with multiple irregular plates, aiming to minimize the number of plates needed to
cut the demanded items. The authors presented two heuristics based on the bottom-left. The non-
overlapping between items and defects is guaranteed by the no-fit polygon. In Pinto et al. (2016)
there is an improvement over the results of Alves et al. (2012b), with the use of a constructive
heuristic. This heuristic simulates the positioning of items on points in the plate, selecting that
item and point which generate the best occupancy of the plate. To improve the solution, the
authors proposed a local search, where already positioned items are removed from their positions
and items not yet positioned are tested on those positions.

Reijntjes (2016) considered the plate with defects and quality zones, proposing constructive
heuristics based on the bottom-left. They were considered inside a branch-and-bound algorithm.
The non-overlapping between items is guaranteed by a collision-free algorithm based on the con-
cepts of the no-fit polygon. Chen et al. (2020) handled the knapsack problem where items are
rectangular and the plate is irregular and defective, with application to slate cutting. The objective
is to maximize the occupancy of the plate considering that items are obtained from guillotined
cuts. Their heuristic considers the plate subdivided by horizontal levels and items are positioned
on the sub-plates. Sequences of items are generated and controlled by a genetic algorithm.

There are few contributions in the literature for the treatment of uncertainties in irregular cutting
problems. Mundim (2017) considered uncertainties in the demand of items for the problem with
multiple plates, proposing a two-stage stochastic model. The model penalizes the lack or excess
of items produced more than needed, respecting a sampled set of scenarios. In Souza Queiroz
& Andretta (2022) there is a two-stage stochastic model for the strip packing problem with
uncertainties associated with the demand of items. The results obtained with the model indicated
that disregarding the uncertainties would lead to higher total cost solutions. We summarize
in Table 1 the cited literature, which is related to two-dimensional irregular cutting problems,
focusing on knapsack type problems, problems whose plate has quality zones or defects, and
problems with uncertainties. Each row contains information of the given contribution, including
the authors and the solution method used to solve the problem.

Differently from the authors in Table 1, we solve the knapsack problem with irregular items by
assuming that defects in the plate are uncertain, i.e., which defects and their position in the plate
are not known in advance. We propose a two-stage stochastic optimization model with recourse:
the first stage considers decisions about which items to select to get from the plate; the second
stage contains the scenarios with the realization of the defects in the plate and then some items
may be canceled because there is no longer a feasible positioning in the plate. To obtain a feasible
production plan in each scenario, we use the no-fit raster method, which is a combination of the
raster method and the no-fit polygon.

The initially proposed stochastic model is risk-neutral, i.e., it considers the optimization of the ex-
pected value of the net profit to take the best decisions. In this case, the net profit is optimized on
average, and for particular realizations of the uncertain data, the profit could be much smaller than
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Table 1 – Literature related to the investigated problem.

Group Authors Solution method Group Authors Solution method
Scheithauer & Terno

(1993)
mixed-integer linear optimization

models
Chung et al. (1990) hybrid heuristic

Martins & Tsuzuki
(2010)

simulated annealing Heistermann &
Lengauer (1995)

constructive heuristic

Valle et al. (2012) greedy randomized adaptive search
procedure

Han & Na (1994) two-stage heuristic

Mundim & Queiroz
(2012)

greedy randomized adaptive search
procedure with simulated

annealing

Tay & Lee (2002) genetic algorithm

knapsack
type
problems

Dalalah et al. (2014) constructive heuristics Yuping et al. (2005) simulated annealing

Baldacci et al.
(2014)

mixed-integer linear optimization
models

quality
zones or
defects

Crispin et al. (2005) genetic algorithm

Mundim et al. (2018) general heuristic Lee et al. (2008) constructive heuristic
Souza Queiroz &
Andretta (2020)

biased random key genetic
algorithm and variable
neighborhood search

Alves et al. (2012a) constructive heuristic

Román (2020) evolutionary algorithm Alves et al. (2012b) variable neighborhood search
Mundim & Andretta

(2014)
hybrid heuristic

uncertainties
Mundim (2017) two-stage stochastic model Pinto et al. (2016) constructive heuristic

Souza Queiroz &
Andretta (2022)

two-stage stochastic model Reijntjes (2016) branch-and-bound algorithm

Chen et al. (2020) level based heuristic

their average values (Shapiro et al., 2013). Aiming to control the variability, which may occur
by the defect realizations, we consider a risk measure to find a compromise between maximiz-
ing the average profit and trying to control the variability of second-stage decisions (Ahmed &
Sahinidis, 1998), resulting in a risk-averse model. We perform computational experiments with
instances adapted from the literature on irregular cutting problems. For each instance, scenarios
are created observing the occurrence of each defect. Four probability cases for each scenario
are studied. The computational experiments assess the expected value of perfect information, the
value of the stochastic solution, and the risk-averse model, concluding on the need to consider
uncertainties to obtain profitable solutions to the problem.

This paper is organized as follows. The problem definition is given in Section 2. Section 3
presents the proposed model, discusses the analyses to evaluate the impact of uncertainties on
the problem, and introduces the risk-averse model. Section 4 contains the computational study
performed on the models, which are solved by a branch-and-cut algorithm. Instances adapted
from the literature are tested. Concluding remarks and directions for continuing this research are
given in Section 5.

2 PROBLEM DEFINITION

The two-dimensional knapsack problem (with irregular items) is NP-hard (Garey & Johnson,
1979). We define the problem over the Cartesian plane. The plate is positioned on the first quad-
rant and has the origin at (0,0). The x-axis is associated with the length dimension L, while
the y-axis is associated with the height/width dimension H. These dimensions have fixed and
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known values. There is a set I of items available for selection. Each item i ∈ I has area ai and a
rectangular envelope, which is the smallest rectangle, in terms of sides and without rotation, that
circumscribes the item. An item cannot be rotated and is positioned by its reference vertex, which
is the vertex of the smallest y-coordinate and, in the case of a tie, of the smallest x-coordinate.
Furthermore, each item i has profit vi, given its selection and production, and the cancellation
cost ci, given its selection but non-production.

The 2IKP-DU considers a set D of possible defects that the plate may have. Each defect d ∈ D
is modeled as a regular/irregular item of known dimensions, area, and reference vertex. On the
other hand, the defects and their position in the plate are not known and, thus, we assume them as
uncertain data. The goal is to determine a feasible production plan that results in the maximum
net profit when cutting the plate. A production plan is feasible when the items to be produced
can be positioned without overlapping, entirely inside the plate, and contain no defective parts.

Selection of items that can be part of the production plan occurs at an early moment A, when the
plate is ordered. At this time, items from the set I are selected to be produced from cutting the
rectangular plate of known dimensions. Since the plate may have defects that are only revealed
at moment B (when items are produced), some selected items may be canceled, incurring a
cancellation cost due to non-production. The production plan is only confirmed at the second
moment when defects are realized, and thus we can confirm which of the selected items can be
feasibly positioned, while others may be canceled. In this way, we look for a feasible production
plan that results in the maximum net profit. Figure 1 illustrates an example of the 2IKP-DU and
the decisions that need to be made at each moment.

Regarding the positioning of items, we employ the no-fit raster to ensure that items do not overlap
and the inner-fit raster to ensure that items are totally inside the plate (Toledo et al., 2013). The
no-fit raster NFRi j consists of computing the no-fit polygon for each pair of items i and j, one
item is fixed (i) and the other is orbiting ( j). The orbital item is translated around the fixed item,
always touching the fixed item but without overlapping it, forming a polygon whose interior
indicates the items are overlapping. This polygon is then discretized into a binary matrix, whose
cells with 1 indicate that items are overlapping; otherwise, cells have the value 0, as we can see
in Figure 2(a). On the other hand, the inner-fit raster IFRi consists of the polygon obtained by
translating each item i, internally, always touching one of the edges of the plate. This polygon
is then discretized into a binary matrix. The cells with values 0 indicate that the item can be
positioned without extrapolating the dimensions of the plate; otherwise, cells have the value 1,
as we can see in Figure 2(b).

3 STOCHASTIC OPTIMIZATION MODEL WITH RECOURSE

We develop a two-stage stochastic optimization model for the 2IKP-DU. The number and lo-
cation of the defects in the plate are considered random variables with discrete realizations
according to a known probability distribution. Let Ω = {1,2, . . . ,S} be the set of possible states,
i.e., scenarios (s ∈Ω) sampled with the realization of the defects in the plate.
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(a) Selection of items at moment A.

(b) Confirmation of the production plan at moment B.

Figure 1 – Decisions to take in the 2IKP-DU.

(a) No-fit raster of a rectangle (fixed item) and a
cross-shaped item (orbital item). (b) Inner-fit raster of a cross-shaped item.

Figure 2 – Example of the no-fit raster and inner-fit raster matrices.

In the proposed model, the first stage of the problem is related to decisions here-and-now involv-
ing the selection of items to be produced from cutting the plate. In the second stage, wait-and-see
decisions are made considering the positioning of the selected items. Due to the realization of the
random variables in this stage, i.e., the defects are revealed in the plate, there are also decisions
involving the possible cancellation of items. The production plan must be feasible and have the
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8 A STOCHASTIC OPTIMIZATION MODEL FOR THE IRREGULAR KNAPSACK PROBLEM

maximum net profit, which involves the profit from the selected and produced items minus the
expected cost of the canceled (i.e. selected but not produced) items.

We assume the plate is discretized over a mesh of points, and thus an item is positioned by
allocating its reference vertex to one point of this mesh. We use the no-fit raster and inner-fit
raster to obtain the feasible points for positioning items (Toledo et al., 2013). The parameters
and decision variables of the model are:

• I = {1,2, . . . ,n}: the set of irregular items available for selection;

• vi: profit associated with the selection of item i in the first stage;

• ci: the cost associated with canceling item i in the second stage;

• M: sufficiently large number.

• πs: the probability of occurrence of the scenario s ∈Ω;

• Ds: the set of defects in the plate, given the scenario s ∈Ω;

• NFR(p,q)
i j : the set of points (u,v) from the no-fit raster between items i and j (i.e., NFRi j).

Item i has its reference vertex positioned at (p,q), while item j is orbiting around i. The
points (u,v) are those where item j having its reference vertex positioned at them will
cause an overlap with i. In other words, this set contains all points that j positioned on any
of them will overlap i.

• IFRs
i : the set of points of the inner-fit raster of item i (i.e., IFRi). These points allow i to

be positioned without overlapping a defect of scenario s ∈Ω and entirely inside the plate.

• yi: a first-stage binary variable that receives the value 1 if item i ∈ I is selected for
production; otherwise, it receives the value 0;

• xs
ipq: a second-stage binary variable that receives the value 1 if item i has its reference

vertex positioned at point (p,q) of the mesh of points associated to the plate; otherwise, it
receives the value 0; for the scenario s ∈Ω;

• zs
i : a second-stage binary variable that receives the value 1 if item i is not canceled;

otherwise, it receives the value 0; for the scenario s ∈Ω;

We propose a two-stage, risk-neutral integer linear optimization model for the 2IKP-DU. The
objective is to optimize the expected value of the net profit, considering the selection of items
to produce (first stage) and the placement and possible cancellation of items according to plate
defects realization (second stage). The objective function (1) of the first stage considers the profit
by selecting items and the expected cost by cancelling items given by the recourse function
Q(y,ξ ). Let ξ = [ξs], with ξs = {xs

ipq,z
s
i}, be the random vector of the scenario s. Constraints
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(2) imposes that the selected items respect the total area of the rectangular plate. Constraints (3)
define the domain of the first-stage decision variables.

Maximize ∑
i∈I

viyi +Q(y,ξ ) (1)

∑
i∈I

aiyi ≤ LH, (2)

yi ∈ {0,1}, ∀ i ∈ I. (3)

The second-stage model has objective function (4), which looks for the minimization of the
expected cost of canceling items considering the probability of occurrence πs of each scenario
s ∈ Ω. Since canceled items cannot have their profit accounted for in the solution, we assume
that ci ≥ vi, for each item i ∈ I.

Q(y,ξ ) = Minimize ∑
s∈Ω

πs

(
∑
i∈I

ci(yi− zs
i )

)
(4)

zs
i ≤ yi, ∀ s ∈Ω, i ∈ I; (5)

∑
j∈I

∑
(u,v)∈NFR(p,q)

i j

xs
juv ≤ (1− xs

ipq)M, ∀ s ∈Ω, i ∈ I, (p,q) ∈ IFRs
i ; (6)

∑
(p,q)∈IFRs

i

xs
ipq = zs

i , ∀ s ∈Ω, i ∈ I; (7)

zs
i ∈ {0,1}, ∀ s ∈Ω, i ∈ I; (8)

xs
ipq ∈ {0,1}, ∀ s ∈Ω, i ∈ I, (p,q) ∈ IFRs

i . (9)

Constraints (5) of the second-stage model assure that an item not selected in the first stage must be
assigned with the same state as canceled items, given each scenario s∈Ω. Constraints (6) ensure,
for each scenario s ∈ Ω, that if item i is positioned at (p,q) in the plate, then item j cannot be
positioned at any of the points (u,v) of the set NFR(p,q)

i j . Constraints (7) ensure that only selected
and non-canceled items i are positioned in the plate, for each scenario s ∈Ω. Constraints (8) and
(9) define that the second-stage variables are binary.

The solution of the two-stage optimization model for the 2IKP-DU can be obtained by solving a
deterministic equivalent model (by any integer linear optimization solver). Such a model has
the objective function (1), with the recourse function Q(y,ξ ) given by the function (4), and
constraints (2), (3), and (5)-(9). It is also common to refer to this as Recourse Problem (RP),
or stochastic problem, obtaining the RP solution from solving the deterministic equivalent model
(Birge & Louveaux, 1997). This model has |I|+ |Ω| × |I| × |IFRs

i |+ |Ω| × |I| variables, and
1+2×|Ω|× |I|+ |Ω|× |I|× |IFRs

i | constraints, where |IFRs
i | is limited by O(L×H).
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3.1 Solution analysis of the stochastic problem

A solution to a deterministic problem contains a single production plan, while in the solution of
the stochastic problem there are |Ω| production plans. In this way, we apply two well-known
metrics to evaluate the solutions of the stochastic model for the 2IKP-DU, allowing us to con-
clude about the importance of considering (or not) the uncertainties in the problem (Birge &
Louveaux, 1997; Bakker et al., 2020). In other words, we calculate the Expected Value of Perfect
Information (EVPI) and the Value of Stochastic Solution (VSS) to measure the outcome of the
stochastic program in comparison to the outcome of an approximative, deterministic problem.

The Expected Value of Perfect Information (EVPI) indicates the maximum value a decision-
maker would pay to have complete and accurate information about the future. In other words,
the value that a decision-maker is not able to gain due to the imperfect information. For the
2IKP-DU, this information is related to the exact knowledge of the future number of defects and
their locations in the plate, making it possible to obtain a production plan with the maximum
possible profit.

To compute the EVPI of an instance of the problem: (i) we obtain the solution of the stochastic
problem (i.e., Recourse Problem - RP) by solving the model (1)-(9) with all scenarios in Ω,
resulting in the RP solution; (ii) we obtain the solution WS∗s of the wait-and-see problem for
each scenario s ∈Ω, i.e., we solve the model (1)-(9) considering only scenario s, so the variables
associated to the other scenarios are disregarded (this means that we need to solve |Ω| times
the model, each time for a different scenario s to obtain the respective WS∗s solution); (iii)
we compute the expected value WS of the solutions of the wait-and-see problems, i.e., WS =

∑s∈Ω πsWS∗s ; (iv) we compute EVPI as (WS - RP). A small value of EVPI indicates that the
uncertainties of the problem are not that impactful on the solution, and it is not worth solving
a stochastic problem. Thus, it is more timely/easier to use an approximate solution, e.g., to
consider the solutions of the wait-and-see problems.

While obtaining the EVPI may require solving several deterministic problems, another alterna-
tive for evaluating the solutions of the stochastic model is to calculate the Value of the Stochastic
Solution (VSS). It indicates the cost of ignoring uncertainty by using the solution of an expected
value problem. In other words, the advantage of solving a stochastic model over a deterministic
model where all stochastic parameters are replaced by their expected value. For 2IKP-DU, this
would correspond to making decisions based on a reference scenario whose random variables
values are known, i.e., assuming a given realization of the defects and their locations in the plate.

To obtain the VSS of an instance of the problem: (i) we obtain the RP solution of the model
(1)-(9) with all scenarios in Ω; (ii) we obtain the solution of an Expected Value problem (EV),
i.e., we assume a reference scenario, which among the available scenarios for the instance cor-
responds to the worst one in terms of defects realization. The solution of the EV is obtained by
solving the model (1)-(9) for this reference scenario, resulting in the values ȳ for variables yi;
(iii) we calculate the Expectation of the Expected Value Problem (EVV), i.e., the solution of
EVV is obtained from solving the model (1)-(9) with all scenarios in Ω, but with the yi (first-
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stage) variables fixed at the values in ȳ. (iv) we calculate VSS as (RP - EVV). A small value
of VSS indicates that the gain of the solution of the stochastic problem (RP) over the solution
of an expected value problem (EV) is small. Thus, it is more convenient/easier to consider an
approximate solution, e.g., to use the solution of EVV.

3.2 Risk aversion

In a risk-neutral model, we assume the solution has a long-term performance, so the scenarios
represent general trends for the random variables. This means that a dispersion of the random
variables that significantly impacts the obtained solution is not desirable. When there is variabil-
ity in the uncertain parameters, in turn causing dispersion of the random variables, the expected
value of the cost, which represents the second-stage objective function, can have high variability.
In situations of high risk (high variability of the parameters), the expected cost of the second
stage should be controlled/limited. One way to control the risk is to consider a risk-averse model
so that the expected cost of each scenario is close to the optimal expected cost when considering
all scenarios.

One risk measure to limit the variability of the second-stage variables, consequently obtaining
solutions that are less sensitive to scenario variability (i.e., risk-averse) is to minimize the vari-
ance of the total expected value, but this introduces nonlinearities into the model. On the other
hand, Ahmed & Sahinidis (1998) proposed a risk measure, called Upper Partial Mean (UPM),
which can be used as a “variance measure” defined over linear functions of the form:

∑
s∈Ω

πs∆s (10)

where ∆s is the difference between the expected value of the cost of scenario s and the total
expected value of the cost of all scenarios.

According to Ahmed & Sahinidis (1998), the measure (10) is added to the two-stage stochastic
optimization model as new constraints. In this case, we reduce the variability of the second-stage
solution (i.e., of the expected value of the cancellation cost) by imposing a maximum tolerance
∆max. Therefore, the risk-averse model for the 2IKP-DU is defined by the objective function (11)
and constraints (2), (3), (5)-(9), (12)-(14):

Maximize ∑
i∈I

viyi−∑
s∈Ω

πs

(
∑
i∈I

ci(yi− zs
i )

)
(11)

(2), (3), (5), (6), (7), (8), (9),

∆s ≥∑
i∈I

ci(yi− zs
i )−

(
∑
s̄∈Ω

πs̄

(
∑
i∈I

ci(yi− zs̄
i )

))
, ∀s ∈Ω; (12)

∑
s∈Ω

πs∆s ≤ α∆max, (13)

∆s ≥ 0, ∀s ∈Ω. (14)
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In constraint (13), when α∆max is small, the resulting solution is expected to be less sensitive
to scenario variations and thus the decision-maker is more conservative (or risk-averse). Small
values of this parameter can turn the model infeasible, while large values can result in a risk-
neutral solution. The idea is to construct a solution curve by varying the parameter α ∈ [0,1]. We
assume that ∆max = ∑s∈Ω πs∆s is obtained from the RP model (1)-(9) with all scenarios.

4 COMPUTATIONAL RESULTS

The risk-neutral (1)-(9) and risk-averse (11)-(14) models were implemented in the C++ language,
inside the branch-and-cut algorithm framework of the Gurobi Optimizer, version 9.1, using the
default settings. The computer used in the experiments has Linux Ubuntu 16.04.7 LTS as the
operating system, a 3.5 GHz Intel Xeon E3-1245v5 processor with 8 threads, and 32 GB of
RAM. We set a time limit of 7200 seconds per instance.

4.1 Instances

The instances used in the experiments were adapted from the literature of the two-dimensional
irregular knapsack problem, following the methodology of Souza Queiroz & Andretta (2020).
Some of these instances can be found in the EURO Special Interest Group on Cutting and Packing
(ESICUP1) and were made available by Souza Queiroz & Andretta (2020). The main data of
each instance are presented in Table 2, as the name, the total quantity of items available for
selection, the dimensions of the plate, the maximum area (in percentage) that it is possible to
occupy if defects are not present, i.e., Maxarea = 100× ∑i∈I ai

LH , and the best known solution (i.e.,
occupied area) (BKS) calculated by the heuristics of Souza Queiroz & Andretta (2020). We
adopt the scale of 1 point for every 1 unit of distance to obtain the no-fit raster and inner-fit
raster binary matrices. Regarding the first and second stage objective functions of the models, we
consider vi = ai, i.e., the profit corresponds to the item area, and ci = 1.5vi, for each item i ∈ I.

Observing Table 2, even if the total sum of the area of the irregular items is smaller than the total
area of the plate without defects, the irregular items bring additional complexity, such as the issue
of not having a perfect fit between them, differently from the positioning of rectangular items.
Applying the heuristics of Souza Queiroz & Andretta (2020) on these instances, we could observe
that the occupied area ranges from 52.88% (instance shirts1-2) to 95.40% (instance dagli1), and
the BKS is not equal to the Maxarea for 35 out of 40 instances.

The number of scenarios impacts on the models’ size and, thus, we assume the generation of the
scenarios considers a tree of possibilities (Ma et al., 2010). We consider there are three differ-
ent defect types (a triangle, a square, and a rhombus). Each scenario considers the presence or
absence of each of the defects, resulting in 8 scenarios per instance, which are the possibilities
between having no defect at all in the plate and having all defects in the plate. The position of
each defect in the plate was defined randomly using a uniform distribution. Besides that, each
instance is associated with four probability cases for the occurrence of the scenarios, which are:

1https://www.euro-online.org/websites/esicup/data-sets
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Table 2 – Instances used in the computational tests.

Instance #Items H L Maxarea BKS Instance #Items H L Maxarea BKS
blasz2 16 15 16 94.17 79.17 rco2 14 15 13 96.92 91.79
blazewicz1 7 15 6 90.00 77.78 rco3 21 15 19 99.47 92.46
blazewicz2 14 15 11 98.18 84.85 rco4 28 15 26 96.92 91.79
blazewicz3 21 15 17 95.29 86.67 rco5 35 15 32 98.44 91.77
blazewicz4 28 15 22 98.18 87.27 shapes2 8 40 14 57.14 57.14
blazewicz5 35 15 27 100.00 88.02 shapes4 16 40 16 100.00 74.38
dagli1 10 60 23 219.89 95.40 shapes5 20 40 20 100.00 73.00
fu 12 38 29 98.28 92.56 shapes7 28 40 28 100.00 77.50
fu5 5 38 14 82.33 73.12 shapes9 34 40 33 98.18 77.58
fu6 6 38 17 98.14 78.64 shapes15 43 40 40 99.75 76.50
fu7 7 38 19 97.51 87.81 shirts1-2 13 40 13 52.88 52.88
fu8 8 38 20 98.55 90.26 shirts2-4 26 40 14 98.21 81.61
fu9 9 38 23 96.91 89.70 shirts3-6 39 40 21 98.21 86.79
fu10 10 38 26 97.87 90.79 shirts4-8 52 40 28 98.21 88.62
poly1a 15 40 13 78.85 76.73 shirts5-10 65 40 35 98.21 87.75
poly1b 15 40 13 95.10 80.48 three 3 7 4 82.14 60.71
poly1c 15 40 13 60.67 60.67 threep2 6 7 7 93.88 69.39
poly1d 15 40 11 74.32 74.32 threep2w9 6 9 6 85.19 70.37
poly1e 15 40 10 72.25 72.25 threep3 9 7 10 98.57 70.00
rco1 7 15 7 90.00 76.67 threep3w9 9 9 8 95.83 76.39

pessimistic with the probability of 75% associated with having d in the board and the other 25%
for not having such a defect in the board; moderate, with the probability of 40% associated with
having d in the board and the other 60% for not having such a defect; equiprobable, with the
probability of 50% percent associated with having the defect d in the board and the other 50%
percent for not having such a defect in the board; and optimistic, with the probability of 25%
associated with having d in the board and the other 75% for not having such a defect. For exam-
ple, for the optimistic case, the scenario where there is no defect in the board has an occurrence
probability equal to 75%×75%×75% = 42.19%, given the 75% probability associated with the
event of not having the defect d in the board. On the other hand, in the scenario whose plate
contains all defects, its probability of occurrence is given by 25%×25%×25% = 1.56%, with
the probability of 25% associated with the event yes, that is, of having the defect d in the plate,
for d = 1,2,3. Figure 3 presents the scenario tree with the probability of occurrence of each
scenario.

4.2 Results of the risk-neutral model

Tables 3 to 6 contain the results obtained with the risk-neutral model (1)-(9) over the instances
of Table 2, considering the 8 scenarios and four cases (pessimistic, moderate, equiprobable, and
optimistic) presented in Figure 3. In general, it was possible to obtain the optimal solution for
42.5% of the instances within the time limit of 7200 seconds, with an average gap of 5.0% and an
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14 A STOCHASTIC OPTIMIZATION MODEL FOR THE IRREGULAR KNAPSACK PROBLEM

Figure 3 – Scenario tree for the instances used in the computational tests.

average computational time of 4284.1 seconds. The instances not optimally solved tend to have
a larger number of items for selection or a larger plate. This may also indicate that the model
could find it harder to solve instances with more scenarios.

Observing the results for the pessimistic case, in Table 3, the average gap and average time are
4.7% and 3919.1 seconds, respectively. The number of optimal solutions occurred for 47.5% of
the instances, with the largest gap of 20.6% for instance shirts4-8. There was no item cancel-
lation for 67.5% of the instances, including poly1c, shapes2, and shirts1-2, which also had all
items selected. The highest number of cancellations occurred for scenario #8, while instances
blazewicz1 and threep3 had the largest number of canceled items. Scenario #8 has all defects
and, thus, it would be expected to have more cancellations on it. Besides that, the location of the
defects in the scenarios of instances blazewicz1 and threep3 makes hard the positioning of the
selected items, resulting in more canceled items.

For the moderate case, in Table 4, the gap and average time are 5.0% and 4185.9 seconds, re-
spectively. In this case, the number of optimal solutions occurred for 45.0% of the instances,
while the instance with the largest gap is shapes15, with a value of 24.3%. There was no item
cancellation for 62.5% of the instances, including poly1c, shapes2, and shirts1-2, which also had
all items selected. The highest number of cancellations occurred in scenarios #4, #6, #7, and #8,
while instances rco1 and threep2w9 had the largest number of item cancellations. Compared to
the pessimistic case, we observe for the moderate case less instances solved to optimality, larger
gaps, larger computational times, and more canceled items per instance/scenario. On the other
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Table 3 – Results of the pessimistic case.

Instance Total #Items Objective Gap (%) Time (s) #Items canceled in scenario
of items selected #1 #2 #3 #4 #5 #6 #7 #8

blasz2 16 11 162.0 0.0 27.7 0 0 0 0 0 0 0 0
blazewicz1 7 5 42.6 0.0 0.7 0 0 0 1 0 0 1 1
blazewicz2 14 11 107.4 0.0 136.0 0 0 0 0 0 0 1 1
blazewicz3 21 17 196.4 0.8 7200.0 0 0 0 0 0 0 0 1
blazewicz4 28 23 262.0 1.7 7200.0 0 0 0 0 0 0 0 0
blazewicz5 35 28 328.2 4.4 7200.0 0 0 0 0 0 0 0 0
dagli1 30 14 1110.9 16.0 7200.0 0 0 0 0 0 0 0 1
fu 12 8 887.0 6.2 7200.0 0 0 0 0 0 0 0 0
fu5 5 4 296.7 0.0 1.5 0 0 0 0 0 0 1 1
fu6 6 4 434.0 0.0 6.9 0 0 0 0 0 0 0 0
fu7 7 4 441.0 0.0 212.4 0 0 0 0 0 0 0 0
fu8 8 6 515.7 0.0 612.1 0 0 0 0 0 0 0 1
fu9 9 8 651.0 0.0 796.8 0 0 0 0 0 0 0 0
fu10 10 8 775.0 5.3 7200.0 0 0 0 0 0 0 0 1
poly1a 15 10 304.0 19.4 7200.0 0 0 0 0 0 0 0 0
poly1b 15 10 321.5 18.0 7200.0 0 0 0 0 0 0 0 0
poly1c 15 15 315.5 0.0 355.1 0 0 0 0 0 0 0 0
poly1d 15 12 268.5 17.8 7200.0 0 0 0 0 0 0 0 0
poly1e 15 13 237.5 4.3 7200.0 0 0 0 0 0 0 0 0
rco1 7 5 50.9 0.0 3.8 0 0 0 1 0 0 0 1
rco2 14 12 157.0 0.0 19.2 0 0 0 0 0 0 0 0
rco3 21 18 234.0 0.1 7200.0 0 0 0 0 0 0 0 0
rco4 28 25 337.2 3.4 7200.0 0 0 0 0 0 0 0 0
rco5 35 31 414.3 6.3 7200.0 0 0 0 0 0 0 0 0
shapes2 8 8 315.8 0.0 20.8 0 0 0 0 0 0 0 0
shapes4 16 11 376.2 0.0 3362.6 0 0 0 0 0 0 0 0
shapes5 20 12 496.0 3.4 7200.0 0 0 0 0 0 0 0 0
shapes7 28 18 782.8 6.5 7200.0 0 0 0 0 0 1 0 0
shapes9 34 23 913.2 10.3 7200.0 0 0 0 0 0 0 0 0
shapes15 43 29 1062.3 20.3 7200.0 0 0 0 0 0 0 0 0
shirts1-2 13 13 275.0 0.0 6.0 0 0 0 0 0 0 0 0
shirts2-4 26 21 437.5 0.1 7200.0 0 0 0 0 0 0 0 0
shirts3-6 39 37 716.0 1.2 7200.0 0 0 0 0 0 0 0 0
shirts4-8 52 49 885.0 20.6 7200.0 0 0 0 0 0 0 0 0
shirts5-10 65 62 1138.5 20.2 7200.0 0 0 0 0 0 0 0 0
three 3 0 0.0 0.0 0.0 0 0 0 0 0 0 0 0
threep2 6 3 13.2 0.0 0.1 0 0 0 0 0 1 0 1
threep2w9 6 3 14.7 0.0 0.2 0 0 0 0 1 0 0 1
threep3 9 5 30.9 0.0 0.2 0 0 0 0 0 1 0 2
threep3w9 9 5 34.7 0.0 0.2 0 0 0 0 0 0 1 1
Average 19 15 408.5 4.7 3919.1 - - - - - - - -
Std. Dev. 14 13 323.3 7.1 3533.0 - - - - - - - -
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Table 4 – Results of the moderate case.

Instance Total #Items Objective Gap (%) Time (s) #Items canceled in scenario
of items selected #1 #2 #3 #4 #5 #6 #7 #8

blasz2 16 12 164.4 0.0 35.3 0 0 0 0 0 1 1 0
blazewicz1 7 5 46.9 0.0 1.5 0 0 0 1 0 0 1 1
blazewicz2 14 11 113.3 0.0 220.7 0 0 0 0 0 1 0 0
blazewicz3 21 18 198.9 1.6 7200.0 0 0 0 0 0 0 0 1
blazewicz4 28 23 263.2 3.4 7200.0 0 0 0 0 0 0 0 0
blazewicz5 35 28 320.5 7.4 7200.0 0 0 0 0 0 0 0 0
dagli1 30 14 1094.3 18.4 7200.0 1 0 0 0 0 1 1 0
fu 12 9 887.0 8.2 7200.0 0 0 0 0 0 0 0 0
fu5 5 4 314.4 0.0 2.2 0 0 0 0 0 1 1 0
fu6 6 4 434.0 0.0 6.5 0 0 0 0 0 0 0 0
fu7 7 4 441.0 0.0 272.6 0 0 0 0 0 0 0 0
fu8 8 6 537.3 0.0 3650.5 0 0 0 0 0 0 0 1
fu9 9 8 651.0 0.0 4336.4 0 0 0 0 0 0 0 0
fu10 10 8 790.1 5.6 7200.0 0 0 0 0 0 0 0 1
poly1a 15 11 310.8 18.7 7200.0 0 0 0 1 0 0 1 1
poly1b 15 10 313.0 20.6 7200.0 0 0 0 0 0 0 0 0
poly1c 15 15 315.5 0.0 328.7 0 0 0 0 0 0 0 0
poly1d 15 13 261.5 22.5 7200.0 0 0 0 0 0 0 0 0
poly1e 15 12 241.5 4.8 7200.0 0 0 0 0 0 0 0 0
rco1 7 6 57.0 0.0 10.8 0 0 0 1 0 1 1 2
rco2 14 12 157.0 0.0 126.8 0 0 0 0 0 0 0 0
rco3 21 19 236.5 1.3 7200.0 0 0 0 0 0 0 0 0
rco4 28 24 333.0 3.8 7200.0 0 0 0 0 0 0 0 0
rco5 35 30 411.3 7.8 7200.0 0 0 0 0 0 0 0 0
shapes2 8 8 315.7 0.0 36.3 0 0 0 0 0 0 0 0
shapes4 16 11 375.9 0.3 7200.0 0 0 0 0 0 0 0 0
shapes5 20 13 510.6 3.0 7200.0 0 0 0 0 0 0 0 0
shapes7 28 18 780.0 7.2 7200.0 0 0 0 0 0 0 0 0
shapes9 34 23 903.3 12.1 7200.0 0 0 0 0 0 0 0 0
shapes15 43 27 1032.0 24.3 7200.0 0 0 0 0 0 0 0 0
shirts1-2 13 13 275.0 0.0 6.1 0 0 0 0 0 0 0 0
shirts2-4 26 22 439.2 0.2 7200.0 0 0 0 0 0 0 0 0
shirts3-6 39 37 714.3 1.7 7200.0 0 0 0 0 0 0 0 0
shirts4-8 52 48 948.9 4.9 7200.0 0 0 0 0 0 0 0 0
shirts5-10 65 62 1117.0 23.1 7200.0 0 0 0 0 0 0 0 0
three 3 1 2.2 0.0 0.0 0 0 0 1 0 0 1 1
threep2 6 3 17.8 0.0 0.1 0 0 0 0 0 1 0 1
threep2w9 6 4 20.8 0.0 0.1 0 0 0 1 1 0 1 2
threep3 9 5 35.2 0.0 0.2 0 0 0 0 0 1 0 2
threep3w9 9 5 37.1 0.0 0.4 0 0 0 0 0 0 1 1
Average 19 15 410.5 5.0 4185.9 - - - - - - - -
Std. Dev. 14 13 321.2 7.6 3478.9 - - - - - - - -
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Table 5 – Results of the equiprobable case.

Instance Total #Items Objective Gap (%) Time (s) #Items canceled in scenario
of items selected #1 #2 #3 #4 #5 #6 #7 #8

blasz2 16 12 167.6 0.0 68.9 0 0 0 0 0 1 1 0
blazewicz1 7 5 49.1 0.0 2.1 0 0 0 1 0 0 1 1
blazewicz2 14 11 117.0 0.0 510.1 0 0 0 0 0 1 0 0
blazewicz3 21 18 201.6 1.6 7200.0 0 0 0 0 0 0 0 1
blazewicz4 28 23 263.6 4.2 7200.0 0 0 0 0 0 0 0 0
blazewicz5 35 28 328.5 5.2 7200.0 0 0 0 0 0 0 0 0
dagli1 30 14 1115.3 19.1 7200.0 0 0 0 1 0 1 0 0
fu 12 10 902.4 7.7 7200.0 0 1 1 1 0 1 1 1
fu5 5 4 328.7 0.0 1.9 0 0 0 0 0 1 1 0
fu6 6 4 434.0 0.0 7.4 0 0 0 0 0 0 0 0
fu7 7 5 443.9 0.0 343.0 0 0 0 0 1 0 0 1
fu8 8 6 549.1 1.4 7200.0 0 0 0 0 0 0 0 2
fu9 9 8 651.0 2.0 7200.0 0 0 0 0 0 0 0 0
fu10 10 8 796.8 5.5 7200.0 0 0 0 0 0 0 0 1
poly1a 15 11 317.9 16.7 7200.0 0 0 0 1 0 0 0 1
poly1b 15 10 319.5 18.5 7200.0 0 0 0 0 0 0 0 0
poly1c 15 15 315.5 0.0 350.5 0 0 0 0 0 0 0 0
poly1d 15 12 265.5 22.0 7200.0 0 0 0 0 0 0 0 0
poly1e 15 12 241.5 6.2 7200.0 0 0 0 0 0 0 0 0
rco1 7 6 62.1 0.0 7.5 0 0 0 1 0 1 1 2
rco2 14 13 157.6 0.0 2094.7 0 0 0 0 0 0 1 1
rco3 21 19 239.2 1.4 7200.0 0 0 0 0 0 0 0 0
rco4 28 25 337.5 2.7 7200.0 0 0 0 0 0 0 0 0
rco5 35 31 415.6 4.0 7200.0 0 0 0 0 0 0 0 0
shapes2 8 8 316.3 0.0 13.1 0 0 0 0 0 0 0 0
shapes4 16 11 377.5 1.4 7200.0 0 0 0 0 0 0 0 0
shapes5 20 12 514.5 4.3 7200.0 0 0 0 0 0 0 0 0
shapes7 28 19 789.3 6.6 7200.0 0 0 0 0 0 0 0 0
shapes9 34 23 904.0 12.8 7200.0 0 0 0 0 0 0 0 0
shapes15 43 29 1057.0 21.8 7200.0 0 0 0 0 0 0 0 0
shirts1-2 13 13 275.0 0.0 6.1 0 0 0 0 0 0 0 0
shirts2-4 26 22 440.4 0.2 7200.0 0 0 0 0 0 0 0 0
shirts3-6 39 37 716.0 1.7 7200.0 0 0 0 0 0 0 0 0
shirts4-8 52 49 863.5 25.7 7200.0 0 0 0 0 0 0 0 0
shirts5-10 65 61 1126.3 22.1 7200.0 0 0 0 0 0 0 0 0
three 3 1 3.9 0.0 0.0 0 0 0 1 0 0 1 1
threep2 6 4 20.2 0.0 0.1 0 1 1 1 0 2 1 2
threep2w9 6 4 23.9 0.0 0.1 0 0 0 1 1 0 1 2
threep3 9 5 37.3 0.0 0.4 0 0 0 0 0 1 0 2
threep3w9 9 5 38.4 0.0 0.4 0 0 0 0 0 0 1 1
Average 19 15 413.1 5.4 4405.2 - - - - - - - -
Std. Dev. 14 13 320.9 7.8 3482.0 - - - - - - - -
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hand, in the moderate case, the solutions, in general, have better objective function values and
more selected items.

Table 6 – Results of the optimistic case.

Instance Total #Items Objective Gap (%) Time (s) #Items canceled in scenario
of items selected #1 #2 #3 #4 #5 #6 #7 #8

blasz2 16 12 177.2 0.0 45.8 0 0 0 0 0 0 0 0
blazewicz1 7 5 53.1 0.0 5.4 0 0 0 1 0 1 1 1
blazewicz2 14 11 123.6 0.2 7200.0 0 0 0 0 0 1 0 0
blazewicz3 21 18 206.0 2.0 7200.0 0 0 0 0 0 0 0 0
blazewicz4 28 23 264.4 5.7 7200.0 0 0 0 0 0 0 0 0
blazewicz5 35 29 332.8 5.1 7200.0 0 0 0 0 0 0 0 0
dagli1 30 17 1090.6 23.5 7200.0 0 0 0 0 1 0 1 0
fu 12 10 923.9 7.3 7200.0 0 1 1 1 0 1 1 1
fu5 5 4 360.1 0.0 5.7 0 0 0 1 0 1 1 0
fu6 6 4 435.0 0.0 16.5 0 1 1 1 1 1 1 1
fu7 7 4 458.3 0.0 499.0 0 0 0 0 0 0 0 1
fu8 8 6 570.9 3.2 7200.0 0 0 0 0 0 0 0 2
fu9 9 7 680.1 0.0 4018.5 0 1 1 1 1 1 1 1
fu10 10 8 822.1 3.9 7200.0 0 0 0 0 1 1 1 1
poly1a 15 12 323.2 19.9 7200.0 1 0 0 1 1 1 1 2
poly1b 15 11 347.8 13.3 7200.0 0 1 1 0 0 1 1 1
poly1c 15 15 315.5 0.0 369.5 0 0 0 0 0 0 0 0
poly1d 15 14 280.6 16.1 7200.0 0 1 1 0 1 0 0 0
poly1e 15 13 252.3 5.1 7200.0 0 0 0 1 1 1 1 1
rco1 7 6 71.3 0.0 8.3 0 0 0 1 0 1 1 2
rco2 14 12 163.7 0.0 7200.0 0 0 0 0 0 0 0 0
rco3 21 19 245.6 1.5 7200.0 0 0 0 0 0 0 0 1
rco4 28 26 339.2 3.4 7200.0 0 0 0 0 0 0 0 0
rco5 35 31 416.1 9.0 7200.0 0 0 0 0 0 0 0 0
shapes2 8 8 318.6 0.0 69.0 0 0 0 0 0 0 0 0
shapes4 16 11 384.1 0.6 7200.0 0 0 0 0 0 0 0 0
shapes5 20 12 526.4 3.6 7200.0 0 0 0 0 0 0 0 2
shapes7 28 19 801.8 6.7 7200.0 0 0 0 0 0 0 0 0
shapes9 34 23 900.1 15.4 7200.0 0 0 0 0 0 0 0 0
shapes15 43 29 1065.8 21.8 7200.0 0 0 0 0 0 0 0 0
shirts1-2 13 13 275.0 0.0 6.0 0 0 0 0 0 0 0 0
shirts2-4 26 22 443.3 0.2 7200.0 0 0 0 0 0 0 0 0
shirts3-6 39 37 716.0 2.3 7200.0 0 0 0 0 0 0 0 0
shirts4-8 52 49 933.2 7.9 7200.0 0 0 0 0 0 0 0 0
shirts5-10 65 62 1117.0 23.1 7200.0 0 0 0 0 0 0 0 0
three 3 2 9.6 0.0 0.0 0 0 0 2 1 1 2 2
threep2 6 4 27.2 0.0 0.1 0 0 0 1 0 1 0 1
threep2w9 6 4 28.9 0.0 0.2 0 0 0 1 1 0 1 2
threep3 9 6 42.7 0.0 0.3 0 1 1 0 1 1 1 2
threep3w9 9 6 42.3 0.0 0.4 0 0 0 0 1 0 1 1
Average 19 16 422.1 5.0 4626.1 - - - - - - - -
Std. Dev. 14 13 322.3 7.2 3421.3 - - - - - - - -
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In Table 5, for the equiprobable case, we observe that the optimal solution was obtained for
40.0% of the instances, with an average gap of 5.4% and an average time of 4405.2 seconds. The
instance that presented the largest gap is shirts4-8, with a value of 25.7%. In instances poly1c,
shapes2, and shirts1-2, it was possible to select all items and no cancellation occurred for any
scenario. Overall, there was no cancellation of items in any scenario for 55.0% of the instances.
On the other hand, in the instances with canceled items, the cancellation occurred the most for
scenarios #4, #6, #7, and #8, which are scenarios having more defects. The instance with the
largest cancellation of items is threep2. Compared to the pessimistic case, we observe for the
equiprobable case fewer instances solved to optimality, larger gaps, larger computational times,
more canceled items per instance/scenario. On the other hand, in the equiprobable case, the
solutions, in general, have better objective function values and more selected items, justified by
the equal probability of occurrence of scenarios.

Observing Table 6, for the optimistic case, the optimal solution was obtained for 40.0% of the
instances, with an average gap of 5.0% and an average time of 4626.1 seconds. The instance with
the largest gap is dagli1, with 23.5%. In instances poly1c, shapes2, and shirts1-2, it was possible
to select all items and there was no item cancellation. Besides, there was no item cancellation for
45.0% of the instances. On the other hand, in the instances with canceled items, the cancellation
occurred the most for the scenarios from #4 to #8. The instance with the highest item cancellation
is three. When comparing the values of the optimistic case with the pessimistic case, we notice
for the optimistic case that fewer instances are solved to optimality, the computational times
are larger, and there are more canceled items per instance/scenario. On the other hand, in the
optimistic case, the solutions, in general, have better objective function values and more selected
items, justified by the lower probability of occurrence of the scenarios with more defects.

The EVPI and VSS analyses consider 14 instances for which it was possible to obtain the optimal
solution, in all cases, within the imposed time limit, as reported in Tables 3 to 6. The results for
the EVPI are given in Tables 7 and 8, for the four cases: moderate, equiprobable, optimistic, and
pessimistic. All reported solutions, including those for the wait-and-see problems, are optimal.
The calculation of the relative EVPI (%) is given by 100× (EVPI/WS).

The results of Tables 7 and 8 show relative EVPI values greater than 5% for instances blazewicz1,
three, threep2, threep2w9, threep3 and threep3w9 (in all cases), fu5 (except in the optimistic
case), fu6 (only in the optimistic case), and rco1 (except in the pessimistic case). The least im-
pacted instances in terms of EVPI are those whose defects have little influence on the scenarios,
such as poly1c, shapes2, and shirts1-2, resulting in no difference between solving the wait-and-
see problems or the two-stage stochastic model. On the other hand, the highest relative EVPI
values occurred for instances three, threep2, and threep2w9, with an overall average value of
56.3%, 18.0%, and 15.0%, respectively. In general, the values of EVPI are higher for the cases
whose scenarios with more defects are more likely to occur. We observed this especially for the
pessimistic, moderate, and equiprobable cases. In other words, the relative average value of the
EVPI is 14.2% for the pessimistic case (with the standard deviation of 25.4%), 10.9% (with the
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Table 7 – EVPI for instances with an optimal solution in all cases - part I.

Pessimistic Moderate Equiprobable Optimistic Pessimistic Moderate Equiprobable Optimistic
Scenario WS∗s for blasz2 WS∗s for blazewicz1
1 2.8 11.7 22.8 76.8 1.0 4.1 8.0 27.0
2 8.5 17.5 22.8 25.6 2.6 5.4 7.0 7.9
3 8.5 17.5 22.8 25.6 2.6 5.4 7.0 7.9
4 22.8 23.3 20.3 7.6 6.8 6.9 6.0 2.3
5 8.5 17.5 22.8 25.6 2.8 5.7 7.4 8.4
6 23.4 24.0 20.8 7.8 7.7 7.9 6.8 2.6
7 23.4 24.0 20.8 7.8 6.8 7.0 6.1 2.3
8 68.3 35.0 20.3 2.5 17.1 8.8 5.1 0.6
WS 166.4 170.3 173.1 179.3 47.4 51.1 53.4 58.8
RP 162.0 164.4 167.6 177.2 42.6 46.9 49.1 53.1
EVPI 4.4 6.0 5.6 2.1 4.7 4.2 4.3 5.7
EVPI (%) 2.6 3.5 3.2 1.2 10.0 8.2 8.0 9.7

WS∗s for fu5 WS∗s for fu6
1 6.1 24.9 48.6 164.1 7.6 31.0 60.6 204.6
2 18.2 37.3 48.6 54.7 20.3 41.7 54.3 61.0
3 15.8 32.5 42.3 47.5 22.7 46.6 60.6 68.2
4 52.7 54.0 46.9 17.6 61.0 62.5 54.3 20.3
5 18.2 37.3 48.6 54.7 20.3 41.7 54.3 61.0
6 47.5 48.7 42.3 15.8 61.0 62.5 54.3 20.3
7 45.8 46.9 40.8 15.3 61.0 62.5 54.3 20.3
8 121.9 62.4 36.1 4.5 183.1 93.7 54.3 6.8
WS 326.4 344.1 354.1 374.3 437.2 442.2 446.7 462.7
RP 296.7 314.4 328.7 360.1 434.0 434.0 434.0 435.0
EVPI 29.7 29.7 25.4 14.2 3.2 8.2 12.7 27.7
EVPI (%) 9.1 8.6 7.2 3.8 0.7 1.8 2.9 6.0

WS∗s for fu7 WS∗s for poly1c
1 7.6 31.0 60.6 204.6 4.9 20.2 39.4 133.1
2 22.7 46.6 60.6 68.2 14.8 30.3 39.4 44.4
3 20.7 42.3 55.1 62.0 14.8 30.3 39.4 44.4
4 68.2 69.8 60.6 22.7 44.4 45.4 39.4 14.8
5 22.1 45.2 58.9 66.2 14.8 30.3 39.4 44.4
6 68.2 69.8 60.6 22.7 44.4 45.4 39.4 14.8
7 68.2 69.8 60.6 22.7 44.4 45.4 39.4 14.8
8 186.1 95.3 55.1 6.9 133.1 68.2 39.4 4.9
WS 463.7 469.9 472.2 476.1 315.5 315.5 315.5 315.5
RP 441.0 441.0 443.9 458.3 315.5 315.5 315.5 315.5
EVPI 22.7 28.9 28.3 17.8 0.0 0.0 0.0 0.0
EVPI (%) 4.9 6.2 6.0 3.7 0.0 0.0 0.0 0.0

standard deviation of 15.4%) for the moderate case, 9.2% (with the standard deviation of 11.8%)
for the equiprobable case, and 5.5% for the optimistic case (with the standard deviation of 5.6%).

Overall, the EVPI values in Tables 7 and 8 indicate that future knowledge of plate defects would
be advantageous for making accurate decisions about which items to select and produce. Thus,
solving the two-stage stochastic model is important to the problem, since the EVPI values are
relatively high for the majority of the instances and also in the overall average for the cases.
The lower EVPI values observed for the optimistic case are justified by the low probability of
occurrence of the scenarios with more defects.
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Table 8 – EVPI for instances with an optimal solution in all cases - part II.

Pessimistic Moderate Equiprobable Optimistic Pessimistic Moderate Equiprobable Optimistic
Scenario WS∗s for rco1 WS∗s for shapes2
1 1.2 5.0 9.8 33.1 5.0 20.5 40.0 135.0
2 3.5 7.2 9.3 10.5 15.0 30.7 40.0 45.0
3 3.5 7.2 9.3 10.5 15.0 30.7 40.0 45.0
4 8.2 8.4 7.3 2.7 45.0 46.1 40.0 15.0
5 3.7 7.5 9.8 11.0 15.0 30.7 40.0 45.0
6 9.1 9.3 8.1 3.0 42.2 43.2 37.5 14.1
7 10.2 10.4 9.1 3.4 45.0 46.1 40.0 15.0
8 20.0 10.3 5.9 0.7 135.0 69.1 40.0 5.0
WS 59.4 65.3 68.6 75.0 317.2 317.1 317.5 319.1
RP 59.0 57.0 62.1 71.3 315.8 315.7 316.3 318.6
EVPI 0.4 8.3 6.5 3.7 1.4 1.4 1.2 0.5
EVPI (%) 0.7 12.7 9.5 5.0 0.4 0.4 0.4 0.1

WS∗s for shirts1-2 WS∗s for three
1 4.3 17.6 34.4 116.0 0.3 1.1 2.1 7.2
2 12.9 26.4 34.4 38.7 0.7 1.4 1.9 2.1
3 12.9 26.4 34.4 38.7 0.4 0.9 1.1 1.3
4 38.7 39.6 34.4 12.9 0.0 0.0 0.0 0.0
5 12.9 26.4 34.4 38.7 0.4 0.9 1.1 1.3
6 38.7 39.6 34.4 12.9 1.3 1.3 1.1 0.4
7 38.7 39.6 34.4 12.9 0.0 0.0 0.0 0.0
8 116.0 59.4 34.4 4.3 0.0 0.0 0.0 0.0
WS 275.0 275.0 275.0 275.0 3.1 5.6 7.4 12.2
RP 275.0 275.0 275.0 275.0 0.0 2.2 3.9 9.6
EVPI 0.0 0.0 0.0 0.0 3.1 3.4 3.4 2.7
EVPI (%) 0.0 0.0 0.0 0.0 96.8 60.4 46.5 21.7

WS∗s for threep2 WS∗s for threep2w9
1 0.5 2.2 4.3 14.3 0.5 2.2 4.3 14.3
2 1.2 2.5 3.3 3.7 1.5 3.1 4.0 4.5
3 1.2 2.5 3.3 3.7 1.5 3.1 4.0 4.5
4 3.4 3.5 3.0 1.1 3.7 3.7 3.3 1.2
5 1.6 3.3 4.3 4.8 1.1 2.3 3.0 3.4
6 2.5 2.6 2.3 0.8 4.5 4.6 4.0 1.5
7 3.7 3.7 3.3 1.2 3.7 3.7 3.3 1.2
8 3.8 1.9 1.1 0.1 3.8 1.9 1.1 0.1
WS 17.9 22.2 24.6 29.8 20.3 24.7 26.9 30.8
RP 13.2 17.8 20.2 27.2 14.7 20.8 23.9 28.9
EVPI 4.7 4.3 4.4 2.5 5.6 3.9 2.9 1.9
EVPI (%) 26.1 19.5 18.0 8.5 27.6 15.6 10.9 6.0

WS∗s for threep3 WS∗s for threep3w9
1 0.8 3.1 6.1 20.7 0.8 3.1 6.1 20.7
2 2.0 4.1 5.4 6.1 1.9 3.9 5.1 5.8
3 2.1 4.3 5.6 6.3 2.0 4.1 5.4 6.1
4 5.8 5.9 5.1 1.9 5.8 5.9 5.1 1.9
5 2.0 4.1 5.4 6.1 2.1 4.3 5.6 6.3
6 4.9 5.0 4.4 1.6 5.8 5.9 5.1 1.9
7 6.3 6.5 5.6 2.1 4.9 5.0 4.4 1.6
8 11.4 5.8 3.4 0.4 14.3 7.3 4.3 0.5
WS 35.3 39.0 41.0 45.2 37.6 39.7 41.1 44.8
RP 30.9 35.2 37.3 42.7 34.7 37.1 38.4 42.3
EVPI 4.5 3.8 3.8 2.5 3.0 2.6 2.7 2.5
EVPI (%) 12.6 9.8 9.1 5.5 7.8 6.5 6.6 5.6
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The results for the VSS are presented in Table 9 considering the four cases under study (pes-
simistic, moderate, equiprobable, and optimistic). All solutions reported in the table are optimal.
In the expected value problem, the reference scenario consists of scenario #8 in Figure 3, which
is the one with the largest number of defects and would represent the worst situation. In general,
the VSS values show that solving the two-stage stochastic model for the problem is more advan-
tageous than solving an expected value problem, especially for the optimistic, equiprobable, and
moderate cases. In other words, the cost of ignoring the uncertainties in the problem is high and
this is reflected in the low objective value of the expected value problem.

In the results of Table 9, the instances with higher VSS values that consequently have higher rela-
tive differences (i.e., percentage increase) of the RP solutions over the EVV ones are blazewicz1,
fu5, rco1, threep2, threep2w9, threep3, and threep3w9, for all cases. For example, in all cases,
in instances rco1 and threep2, the relative differences are greater than 30%, while in instance
threep2w9, the values exceed 60%. On the other hand, there is no difference for some instances,
such as poly1c, shapes2, and shirts1-2, because they are instances whose effect of defects has
little influence on the item cancellation (i.e., there are few defects or they are in positions that
allow the selected items to be repositioned inside the plate to avoid cancellation).

Analyzing the values of the EVV between the cases, in Table 9, we notice that the optimistic case
presents the highest average relative difference, of 45.0%, followed by the equiprobable case,
with an average value of 30.1%, then the moderate case, with an average value of 23.2%, and
finally the pessimistic case, with an average value of 12.1%. The lower values for the pessimistic
case are justified by the EVV considering the solution from solving the expected value problem
with the worst-case scenario (i.e., scenario #8, which has more defects). Therefore, the tendency
is to select fewer items and thus cancel fewer items in the scenarios. This results in a smaller
difference between the RP and EVV solutions in the pessimistic case compared to the other
ones.

We summarize in Table 10 the results of the risk-neutral model. Each line of this table has a case;
the results for all instances in Tables 3 to 6: the percentage number of optimal solutions, the aver-
age gap in percentage, the average computational time in seconds, and the percentage of instances
with no item cancellation; the average relative EVPI for the instances in Tables 7 and 8; and the
average relative difference of the RP solutions over the EVV ones for the instances in Table 9,
for the VSS results. These results evidence the importance of solving a stochastic optimization
model to obtain profitable solutions and, at the same time, the considerable computational effort
that is required to obtain optimal solutions.

4.3 Results of the risk-averse model

We start solving the risk-averse model (11)-(14) with the parameter α = 1, for ∆max obtained
from the solution of the risk-neutral model. The results presented in Table 11 consider the same
14 instances used in the experiments for the EVPI and VSS analyses, over the four cases under
study. The table contains the objective value of the optimal solution of the risk-averse model for
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Table 9 – VSS for the 14 instances with optimal solutions in all cases.

RP EVV VSS Diff. (%) RP EVV VSS Diff. (%)
Instance Pessimist Moderate
blasz2 162.0 162.0 0.0 0.0 164.4 162.0 2.4 1.47
blazewicz1 42.6 40.5 2.1 5.2 46.9 40.5 6.4 15.7
fu5 296.7 289.0 7.7 2.7 314.4 289.0 25.4 8.8
fu6 434.0 434.0 0.0 0.0 434.0 434.0 0.0 0.0
fu7 441.0 441.0 0.0 0.0 441.0 441.0 0.0 0.0
poly1c 315.5 315.5 0.0 0.0 315.5 315.5 0.0 0.0
rco1 59.0 43.8 15.2 34.7 57.0 43.7 13.3 30.4
shapes2 315.8 315.8 0.0 0.0 315.7 315.7 0.0 0.0
shirts1-2 275.0 275.0 0.0 0.0 275.0 275.0 0.0 0.0
three 0.0 0.0 0.0 0.0 2.2 0.0 2.2 0.0
threep2 13.2 9.0 4.2 47.1 17.8 9.0 8.8 98.2
threep2w9 14.7 9.0 5.7 63.1 20.8 9.0 11.8 131.1
threep3 30.9 27.0 3.9 14.3 35.2 27.0 8.2 30.3
threep3w9 34.7 34.0 0.7 2.0 37.1 34.0 3.1 9.1
Average - - - 12.1 - - - 23.2
Std. Dev. - - - 20.8 - - - 40.7

Equiprobable Optimistic
blasz2 167.6 162.0 5.6 3.4 177.2 162.0 15.2 9.4
blazewicz1 49.1 40.5 8.6 21.3 53.1 40.5 12.6 31.1
fu5 328.7 289.0 39.7 13.7 360.1 289.0 71.1 24.6
fu6 434.0 434.0 0.0 0.0 435.0 434.0 1.0 0.2
fu7 443.9 441.0 2.9 0.7 458.3 441.0 17.3 3.9
poly1c 315.5 315.5 0.0 0.0 315.5 315.5 0.0 0.0
rco1 62.1 44.2 17.9 40.4 71.3 46.3 25.0 54.1
shapes2 316.3 316.3 0.0 0.0 318.6 318.6 0.0 0.0
shirts1-2 275.0 275.0 0.0 0.0 275.0 275.0 0.0 0.0
three 3.9 0.0 3.9 0.0 9.6 0.0 9.6 0.0
threep2 20.2 9.0 11.2 124.3 27.2 9.0 18.2 202.6
threep2w9 23.9 9.0 14.9 166.0 28.9 9.0 19.9 221.4
threep3 37.3 27.0 10.3 38.0 42.7 27.0 15.7 58.2
threep3w9 38.4 34.0 4.4 12.9 42.3 34.0 8.3 24.5
Average - - - 30.1 - - - 45.0
Std. Dev. - - - 51.3 - - - 73.5
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Table 10 – Summary of the results obtained with the risk-neutral model.

Results for all instances EVPI VSS
Case Opt. sol. (%) Gap (%) Time (s) No canceling (%) results (%) results (%)

Pessimistic 47.5 4.7 3919.1 67.5 16.2 12.1
Moderate 45.0 5.0 4185.9 62.5 18.4 23.2

Equiprobable 40.0 5.4 4405.2 55.0 12.7 30.1
Optimistic 40.0 5.0 4626.1 45.0 6.2 45.0

α ∈ {1;0.75;0.5;0.25;0.0}. In addition, we present the relative difference (i.e., percent decrease)
of the objective value for a given α compared to the value obtained for α = 1, which corresponds
to the risk-neutral model solution (i.e., the RP solution presented in the previous tables).

The results in Table 11 show that the solution gets worse (i.e., the profit from cutting the plate
decreases) as α is reduced (i.e., as the aversion to risk increases). Observing all cases, the in-
stances most affected by the α reduction are blazewicz1, fu5, rco1, three, threep2, threep2w9,
and threep3. For example, for instances threep2 and threep3, the reduction in the objective value
was over 7% (for α = 0.75) and 23% (for α = 0.25) in the moderate case. On the other hand,
instances such as fu6, poly1c, and shirts1-2 had little or no worsening in the objective value while
increasing the risk aversion, justified by the little or no influence of defects on the selection and
positioning of items in the plate.

Observing Table 11, in general, the case with the largest reduction in the objective value is the
optimistic one, with an average relative difference of 27.7% when α = 0 (i.e., assuming a fully
risk-averse problem), followed by the equiprobable case whose average relative difference is
22.8%, and the moderate case, with an average relative difference of 20.3%. The pessimistic
case presents the smallest reductions in the objective value as the risk aversion increases (i.e., as
the value of α is reduced), with an average relative difference of 7.5% when α = 0. We notice
that in the pessimistic case there is a higher probability of occurrence of the scenarios with more
defects, resulting in solutions with the selection of fewer items to avoid cancellations. This is
also observed in the results of the risk-neutral model. On the other hand, when considering a
25% or 50% reduction in ∆max, i.e., α = 0.75 or α = 0.5, the largest reductions occur for the
equiprobable and moderate cases, followed by the optimistic case.

Figure 4 illustrates the percentage reduction in the objective value of instances blazewicz1, fu5,
rco1, threep2, threep2w9, and threep3 for all cases (pessimistic, moderate, equiprobable, and
optimistic). The construction of the objective value curve for each case considers solving the
risk-averse model to α varying in intervals from 5% until reaching α = 0. We observe in this
figure that the curves decrease as the values of α decrease. As the risk-averse problem controls
the variability that exists among scenarios, the largest impact occurs in the optimistic case, which
considers a low probability of occurrence for the scenarios with more defects. On the other hand,
the pessimistic case is the one with the smallest reduction in the objective function, ranging from
-2.6% (fu5) to -38.7% (threep2w9) when α = 0. In instances blazewicz1 and fu5, the optimistic
case presents a reduction of -23.7% and -19.7%, for α = 0. This same situation, in instances rco1
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Table 11 – Solutions of the risk-averse model for the 14 instances with optimal solutions.

1.0×∆max 0.75×∆max 0.5×∆max 0.25×∆max 0.0×∆max

Instance Objective Objective Diff. (%) Objective Diff. (%) Objective Diff. (%) Objective Diff. (%)
Pessimistic

blasz2 162.0 162.0 0.0 162.0 0.0 162.0 0.0 162.0 0.0
blazewicz1 42.6 40.7 -4.4 40.5 -5.0 40.5 -5.0 40.5 -5.0
fu5 296.7 289.0 -2.6 289.0 -2.6 289.0 -2.6 289.0 -2.6
fu6 434.0 434.0 0.0 434.0 0.0 434.0 0.0 434.0 0.0
fu7 441.0 441.0 0.0 441.0 0.0 441.0 0.0 441.0 0.0
poly1c 315.5 315.5 0.0 315.5 0.0 315.5 0.0 315.5 0.0
rco1 50.9 48.1 -5.4 47.0 -7.6 47.0 -7.6 47.0 -7.6
shapes2 315.8 300.0 -5.0 300.0 -5.0 300.0 -5.0 300.0 -5.0
shirts1-2 275.0 275.0 0.0 275.0 0.0 275.0 0.0 275.0 0.0
three 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
threep2 13.2 12.3 -7.1 11.2 -15.4 9.0 -32.0 9.0 -32.0
threep2w9 14.7 12.5 -15.2 11.9 -18.7 9.0 -38.7 9.0 -38.7
threep3 30.9 29.9 -3.0 29.2 -5.4 27.0 -12.5 27.0 -12.5
threep3w9 34.7 34.0 -1.9 34.0 -1.9 34.0 -1.9 34.0 -1.9
Average - - -3.2 - -4.4 - -7.5 - -7.5
Std. Dev. - - 4.2 - 6.0 - 12.4 - 12.4

Moderate
blasz2 164.4 162.0 -1.4 162.0 -1.4 162.0 -1.4 162.0 -1.4
blazewicz1 46.9 45.1 -3.9 40.8 -13.1 40.5 -13.6 40.5 -13.6
fu5 314.4 311.5 -0.9 291.6 -7.3 289.0 -8.1 289.0 -8.1
fu6 434.0 434.0 0.0 434.0 0.0 434.0 0.0 434.0 0.0
fu7 441.0 441.0 0.0 441.0 0.0 441.0 0.0 441.0 0.0
poly1c 315.5 315.5 0.0 315.5 0.0 315.5 0.0 315.5 0.0
rco1 57.0 55.2 -3.2 54.8 -3.9 47.0 -17.5 47.0 -17.5
shapes2 315.7 300.0 -5.0 300.0 -5.0 300.0 -5.0 300.0 -5.0
shirts1-2 275.0 275.0 0.0 275.0 0.0 275.0 0.0 275.0 0.0
three 2.2 1.5 -33.6 0.0 -100.0 0.0 -100.0 0.0 -100.0
threep2 17.8 15.1 -15.5 13.1 -26.8 9.0 -49.6 9.0 -49.6
threep2w9 20.8 19.1 -8.0 15.1 -27.5 9.0 -56.7 9.0 -56.7
threep3 35.2 32.4 -7.8 31.1 -11.7 27.0 -23.2 27.0 -23.2
threep3w9 37.1 34.0 -8.4 34.0 -8.4 34.0 -8.4 34.0 -8.4
Average - - -6.3 - -14.6 - -20.3 - -20.3
Std. Dev. - - 9.1 - 26.2 - 29.3 - 29.3

Equiprobable
blasz2 167.6 163.4 -2.5 162.0 -3.3 162.0 -3.3 162.0 -3.3
blazewicz1 49.1 46.9 -4.6 45.0 -8.4 40.5 -17.5 40.5 -17.5
fu5 328.7 319.6 -2.8 301.1 -8.4 289.0 -12.1 289.0 -12.1
fu6 434.0 434.0 0.0 434.0 0.0 434.0 0.0 434.0 0.0
fu7 443.9 441.0 -0.6 441.0 -0.6 441.0 -0.6 441.0 -0.6
poly1c 315.5 315.5 0.0 315.5 0.0 315.5 0.0 315.5 0.0
rco1 62.1 58.4 -5.9 57.3 -7.8 52.4 -15.7 47.0 -24.3
shapes2 316.3 300.0 -5.1 300.0 -5.1 300.0 -5.1 300.0 -5.1
shirts1-2 275.0 275.0 0.0 275.0 0.0 275.0 0.0 275.0 0.0
three 3.9 2.6 -33.5 0.0 -100.0 0.0 -100.0 0.0 -100.0
threep2 20.2 20.1 -0.6 16.3 -19.2 13.9 -31.3 9.0 -55.4
threep2w9 23.9 21.2 -11.5 16.3 -31.9 13.9 -42.0 9.0 -62.4
threep3 37.3 33.5 -10.1 33.5 -10.1 27.0 -27.5 27.0 -27.5
threep3w9 38.4 34.0 -11.4 34.0 -11.4 34.0 -11.4 34.0 -11.4
Average - - -6.3 - -14.7 - -19.0 - -22.8
Std. Dev. - - 8.9 - 26.0 - 26.7 - 29.9

Optimistic
blasz2 177.2 174.5 -1.5 165.5 -6.6 162.0 -8.6 162.0 -8.6
blazewicz1 53.1 52.8 -0.5 52.8 -0.5 47.8 -10.1 40.5 -23.7
fu5 360.1 355.4 -1.3 333.4 -7.4 333.4 -7.4 289.0 -19.7
fu6 435.0 434.0 -0.2 434.0 -0.2 434.0 -0.2 434.0 -0.2
fu7 458.3 441.0 -3.8 441.0 -3.8 441.0 -3.8 441.0 -3.8
poly1c 315.5 315.5 0.0 315.5 0.0 315.5 0.0 315.5 0.0
rco1 71.3 66.2 -7.1 60.3 -15.5 58.2 -18.4 47.0 -34.1
shapes2 318.6 300.0 -5.8 300.0 -5.8 300.0 -5.8 300.0 -5.8
shirts1-2 275.0 275.0 0.0 275.0 0.0 275.0 0.0 275.0 0.0
three 9.6 7.5 -21.6 7.5 -21.6 0.0 -100.0 0.0 -100.0
threep2 27.2 27.0 -1.0 24.5 -10.1 23.2 -14.7 9.0 -66.9
threep2w9 28.9 23.9 -17.5 23.7 -18.3 23.7 -18.3 9.0 -68.9
threep3 42.7 41.5 -2.9 40.3 -5.8 37.3 -12.7 27.0 -36.8
threep3w9 42.3 40.4 -4.6 40.4 -4.6 40.4 -4.6 34.0 -19.7
Average - - -4.8 - -7.2 - -14.6 - -27.7
Std. Dev. - - 6.7 - 6.9 - 25.4 - 30.9
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(a) blazewicz1 (b) fu5

(c) rco1 (d) threep3

(e) threep2 (f) threep2w9

Figure 4 – Percentage reduction of the objective value of instances from Table 11 considering α reducing
from 5% to 5%.

and threep3, results in a reduction of -34.1% and -36.8%, while in the threep2 and threep2w9, the
reduction is even larger, of -66.9% and -68.9%, respectively. The equiprobable case presents the
second largest reductions in the objective value, especially when α approaches zero. We notice
also that the reductions in the objective function in the equiprobable case are compatible with
those in the optimistic case when α varies in the interval [0.15; 0.55].

5 CONCLUDING REMARKS

We present a two-stage stochastic optimization model for the two-dimensional irregular knapsack
problem with uncertainties associated with the plate defects. The first stage of the model decides
which items to select, while the second stage handles the decisions to define a feasible production
plan as the plate defects are realized. While this model is risk-neutral, we have extended it to
consider a risk aversion measure that limits the variability of the second-stage decisions. The
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models are solved with a branch-and-cut algorithm, using the no-fit raster and inner-fit raster
methods to ensure a feasible positioning of items in the plate.

Computational tests with the risk-neutral model show that the cases where the probability of
occurrence of the scenarios with fewer defects is higher tend to have better objective values (i.e.,
result in higher profit when cutting the plate), as in the optimistic case. The solutions in the
pessimistic case consider selecting fewer items to avoid cancellation costs since the scenarios
with more defects have higher chances of occurring. Besides that, the analyses of the expected
value of perfect information and the stochastic solution value show that the uncertainties about
defects directly impact the profit when cutting the plate. They indicate it is advantageous to solve
the stochastic optimization model instead of considering an approximate solution by solving
wait-and-see problems or an expected value problem. On the other hand, when evaluating the
solutions of the risk-averse model, we observe a significant deterioration of the objective value
when having a conservative decision-maker, in particular, for the optimistic case, since this case
considers a low probability of occurrence for the scenarios with more defects. We note it is
possible to control the reduction of the objective value by adjusting the risk aversion parameter.

As a way of continuing this research, future directions may consider having more items, more
defects, different dimensions for the plate, and/or more scenarios. Concerning the number of
items and dimensions of the plate, we could investigate how the decisions related to selecting
and positioning of items impact on the final solution. Regarding the number of defects and sce-
narios, we could evaluate the models’ scalability and the trade-off between solution quality and
computational effort. These may demand more computational effort to have an optimal solution,
creating opportunities for the proposal of heuristics and their integration with the proposed mod-
els. Another line of research seeking to accelerate the resolution of the models is related to the
development of valid inequalities related to the positioning of items and the proposal of methods
based on Benders decomposition (Almeida & Conceição, 2021).
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