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ABSTRACT. This work considers the strategic Supply Chain Network Design (SCND) problem, which
is to define the number and location of facilities, and the flow of products among them to fulfilling a
long-term deterministic demand. A two-phase heuristic approach was specially developed to solve large
scale problems in reasonable time, extending a previous algorithm introduced in Farias et al. (2017). In the
construction phase, a multi-start approach was developed to generate diversified initial solutions from each
new iteration of a layered-based rounding heuristic. In the second phase, a local search heuristic improves
the solution provided by the rounding method. The solution method is evaluated using randomly generated
instances, and a evaluated strategic of marketing in a real case study applied to a company to redesigning
the supply chain to two lines of products.The obtained results evidence the effectiveness and flexibility of
the developed approach for handling very large instances.

Keywords: strategic supply chain design, multi-start, layered-based.

1 INTRODUCTION

The supply chain (SC) management has attracted considerable attention in the last decades (der
Vaat & Donk, 2008). An effective and efficient management requires many decisions that can
be grouped in three levels, namely: strategic level (e.g., selection of suppliers, location, and
capacities of factories and warehouses, assignment of customers, raw materials and products
flows), tactical level (e.g., production, and distribution planning), and operational level (e.g.,
cargo sizes, cargo allocation to vessels, and vessel scheduling and routing (Farahani et al., 2014)).
Given the diversity and contexts of the decisions within the SC management, several models were
formulated to support the decision-making process, considering multi-period (Melo et al., 2014),
stochastic demand (Govindan et al., 2015), uncertain demand (Fattahi et al., 2018), sustainable
SCs (Eskandarpour et al., 2015), global logistic systems (Goetschalkx et al., 2002), and reverse
logistics (Keyvanshokooh et al., 2013).
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2 LARGE SCALE SUPPLY CHAIN NETWORK DESIGN: AN EFFECTIVE HEURISTIC APPROACH

In this paper, we focus on the strategic supply chain network design (SCND). In certain sense,
the tactical and operational decisions are highly dependent on the strategic SCND. The problem
consists in the following decisions: (i) the selection and location of suppliers, factories, and
distribution centers (DCs); (ii) the volume of each raw material from each selected supplier to
each open factory; (iii) the volume of each product from each factory to each DC; and (iv) the
assignment of the demand of each customer zone (CZ) to an open DC, considering deterministic
demand, multi-product, and a long single-period.

The strategic SCND was mainly formulated as a mixed integer linear programming (MILP) (Ja-
yaraman & Pirkul, 2001; Lee & Kwon, 2010), where the strategic aspects are usually represented
by integer variable decisions, while the material and product flows along the network are repre-
sented by continuous decision variables (Thanh et al., 2012). Due to the combinatorial nature of
the problem, several solution methods were developed. Some researchers used traditional meth-
ods to solve integer programming, such as Lagrangean relaxation (Wu & Golbasi, 2004; Kumar
& Tiwari, 2013), Benders decomposition (Keyvanshokooh et al., 2016), and column generation
(Romeijn et al., 2007). Metaheuristic techniques were also widely used, such as tabu search
(Lee & Kwon, 2010; Armentano et al., 2011; Melo et al., 2012), genetic algorithms (Altipar-
mak et al., 2006), particle swarm optimization (Khalifehzadeh et al., 2015), fuzzy logic (Pham &
Yenradee, 2017), and hybrid approaches (Soleimani & Kannan, 2015). Some approaches solved
the problem considering multi objectives (Ghasemian Zarini & Javadian, 2020; Gholami et al.,
2019).

However, due to the complexity of the problem, the previously mentioned solution methods were
only able to solve instances with very limited number of elements in the network, using artifices
such as product aggregation to solve real-world problems. Farias et al. (2017) pointed out this is-
sue and developed a multi-start based heuristic to solve large instances of the problem. Although
the results were quite impressive in terms of the dimensions of the solved instances, the developed
method requires intensive experiments to set up important parameters to obtain good solutions
for each different configurations of the problem instances, in terms of the number of products,
CZs, and DCs. Further, additional experiments demonstrated that the heuristics presents some
instabilities related to halt conditions.

The solution approach is an extension of the heuristic introduced in Farias et al. (2017), by
integrating a local search in the solution process, we present a two-stage heuristic framework for
efficiently solving the deterministic, four-echelon, multi-product, single-source strategic SCND
problem for very large-scale problems. The first stage is a constructive phase in which a multi-
start layered-based rounding algorithm proposal in Farias et al. (2017) to find several possible
feasible solutions. The second phase is based on a local search heuristic to improve the solutions
delivered by the previous phase. The two phases interact until a near optimal solution is obtained.
The effectiveness and efficacy of the developed approach is demonstrated in a computational
study, using randomly generated instances, with up to 25 suppliers, 25 raw materials, 20 factories,
50 DCs, 170 products, and 300 CZs. Further, the heuristic is evaluated in a real-world case, the
redesign of a large supply chain, considering a new distribution strategy for two product lines.
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In the real case, the flexibility of the solution approach to handle different design contexts is also
demonstrated.

The paper is organized as follows. Section 2 presents the mathematical formulation of the SCND.
In Section 3, the heuristic approach is explained with details. Section 4 presents the computa-
tional study carried out, comparing the numerical results with previous solution methods in the
literature. Section 5 described the heuristic application for solving a real world problem faced
by a Brazilian company. In Section 6, a summary of the results is presented, and areas of future
research are discussed.

2 FORMULATION

We consider a supply chain composed of four layers: suppliers, manufacturing centers (facto-
ries), DCs, and customers zones. Further, it is proposed a supply chain based on the following
assumptions: (i) the different customers are geographically grouped in customer zones (CZs);
(ii) the demand of the CZs for each product must be completely fulfilled in the planning period;
(iii) a single-source requirement is used, e.g., CZs are served from one and just one DC; (iv)
the suppliers capacities for each raw material are known; and (v) suppliers, factories and DCs
capacities must be respected.

We use the arc-flow MILP model from Farias et al. (2017), which is presented here for the sake
of completeness. Constraints are imposed on the raw materials supply, production capacity, DC
capacity, and demand of CZs. The objective is to minimize the fixed and variable costs of the
supply chain network. Based on the mathematical notation presented in Table 1, the determinis-
tic, single-period, multi-product strategic SCND can be formally defined through the following
MILP model:

Table 1 – Mathematical notation.

Symbol Definition
Sets
C the set of customer zones, indexed by c
W the set of DCs, indexed by w
F the set of factories, indexed by f
R the set of raw materials, indexed by r
V the set of suppliers, indexed by v
P the set of products, indexed by p
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Table 1 (cont.)
Symbol Definition
Parameters
dcp the demand for product p ∈ P at CZ c ∈C
Uw the maximum number of DCs that are opened
U f the maximum number of factories that are opened
urp the utilization rate of raw material r ∈ R per unit of finished product p ∈ P
up capacity utilization rate per unit of product p ∈ P
CAPw the annual throughput at DC w ∈W
CAPvr the supply capacity of raw material r ∈ R at vendor v ∈V
CAPf the capacity of factory f ∈ F
CT o

w the annual fixed cost of operating DC w ∈W
CT o

f the annual fixed cost of operating factory f ∈ F
CT g

wp the unit cost of throughput of product p ∈ P at DC w ∈W
CT p

f p the unit production cost of product p ∈ P at factory f ∈ F
CT t

f vr the unit transportation cost of raw material r ∈ R from supplier v ∈V to factory f ∈ F
CT t

f wp the unit transportation cost of product p ∈ P from factory f ∈ F to DC w ∈W
CT t

wcp the unit transportation cost of product p ∈ P from DC w ∈W to CZ c ∈C
Variables
aw a binary variable, and it is 1 if DC w ∈W is selected, and 0 otherwise
b f a binary variable, and it is 1 if factory f ∈ F is selected, and 0 otherwise
gwc a binary variable, and it is 1 if customer c ∈C is assigned to DC w ∈W , and 0 otherwise
zp

f w the amount of product p ∈ P shipped from factory F to DC w ∈W
yr

v f the amount of raw materials r ∈ R shipped from supplier v ∈V to factory f ∈ F

min ∑
w∈W

CT o
w aw + ∑

f∈F
CT o

f b f + ∑
w∈W

∑
c∈C

∑
p∈P

CT g
wpdcpgwc+

∑
f∈F

∑
w∈W

∑
p∈P

CT p
f pzp

f w + ∑
f∈F

∑
r∈R

∑
v∈V

CT t
f vry

r
v f+

∑
f∈F

∑
w∈W

∑
p∈P

CT t
f wpzp

f w + ∑
w∈W

∑
c∈C

∑
p∈P

CT t
wcpdcpgwc

(1)

st

∑
w∈W

gwc = 1 ∀c (2)

∑
c∈C

∑
p∈P

dcpgwc ≤CAPwaw ∀w (3)

∑
c∈C

dcpgwc ≤ ∑
f∈F

zp
f w ∀p,w (4)

∑
f∈F

yr
v f ≤CAPvr ∀r,v (5)
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∑
w∈W

∑
p∈P

urpzp
f w ≤ ∑

v∈V
yr

v f ∀r, f (6)

∑
w∈W

∑
p∈P

upzp
f w ≤CAPf b f ∀ f (7)

∑
w∈W

aw ≤Uw (8)

∑
f∈F

b f ≤U f (9)

zp
f w,y

r
v f ,≥ 0 ∀ f ,r, p,v,w (10)

aw,gwc,b f ∈ {0,1} ∀c, f ,w (11)

Objective (1) consists in minimizing the sum of the annual cost of DCs, the throughput costs
of DCs, the production costs of factories and transportation costs of materials to factories and
transportation costs of products from factories to CZs through the DCs. Constraints (2) ensure
that each CZ is assigned to one DC. Constraints (3) guarantee that the capacity of each DC is not
violated. Constraints (4) force that each DC has sufficient products for its associated customers.
Constraints (5) ensure the capacity of any raw material at any vendor is satisfied. Constraints (6)
limit the quantity of manufactured products to the amount of acquired raw materials. Constraints
(7) guarantee that the capacity of any factory is satisfied. Constraints (8) and (9) impose an upper
bound on the number of DCs and factories, respectively. Constraints (10) and (11) impose valid
values for the decision variables of the model.

3 SOLUTION METHOD

In order to overcome the computational difficulties associated with producing a good solution
for very large instances, we implemented an extension of the multi-start heuristic framework
introduced in Farias et al. (2017). A multi-start mechanism is conceived as a way to better exploit
new solution spaces by applying multiple random solutions, avoiding the stagnation in a local
optimum (Garcı́a-López et al., 2010).

The overall framework is outlined in Algorithm 1. The first stage is a constructive phase, which
applies the multi-start layered-based rounding algorithm proposed in Farias et al. (2017) to find
several possible feasible solutions. The main objective of the constructive phase is to find a lower
bound (LB) for the problem, and a set of feasible solutions with good upper bounds (UBs), e.g.,
with low gaps in relation to the defined LB. In order to generate solution diversity in the construc-
tive phase, the multi-start and the rounding algorithms generate several solutions, with different
configurations of factory, DCs, and different assignments of CZs to DCs. The perturbation pro-
cedure disables these decision elements in a previous solution to start a new solution in each
iteration. This strategy allows to explore different solution spaces for feasible and good solutions
found in the previous iterations. Next, a Local search is employed to find improvement solutions,
based on a solution obtained in the constructive phase. The local search employs two methods:

Pesquisa Operacional, Vol. 43, 2023: e269080



6 LARGE SCALE SUPPLY CHAIN NETWORK DESIGN: AN EFFECTIVE HEURISTIC APPROACH

distribution centers exchange and arc exchange at the CZ level, using a tabu list like strategy to
allow diversification, avoiding stagnation in a local optimum. If the best solution obtained by the
local search is not acceptable, this solution is send to the multi-start mechanism in the construc-
tive phase for the generation of new possible models, and a new iteration begins. The process is
repeated either until an optimal gap or a time limit is obtained.

The developed algorithm enhances the capabilities of the solution approach introduced in Farias
et al. (2017), by integrating a local search to the multi-start mechanism. Moreover, while in Farias
et al. (2017), the rounding algorithm was just responsible for finding good initial solutions, the
local search improves the solution obtained by the rounding algorithm at each iteration towards
improving a feasible solution using reasonable computing time in this new version. Both inte-
gration have not only allowed to define an objective halting criterion, but also has improved the
quality of the solution process.

One of the most important issues to contribute to the good performance of a multi-start frame-
work is the definition of a good set of perturbation parameters, since they allow to obtain a
greater variability during the exploration of different solution spaces. Our objective is to gener-
ate feasible solutions for each iteration with different sets of factory, DCs, and assignments DCs
to customers. As typical in heuristic development, tuning these parameters is a critical issue.
Based on a number of computational experiments, in Section 4 the parameter settings that best
contributed to a good performance of our multi-start procedure are presented.

3.1 Layered-based rounding heuristic

The main idea of our layered-based rounding heuristic is to solve the linear relaxation of the prob-
lem, rounding the fractional variables to recover integer feasible solutions Melo et al. (2012). We
used a slightly modified version of the algorithm presented in Farias et al. (2017), by integrating
a local search strategy after a rounding heuristic. The algorithm here is presented by complete-
ness. In our MILP formulation, it is possible to find three types of integer variables in the model:
the first type corresponds to determining factories and DC locations, while the three type refers
to assigning CZs to DCs. In general, the number of factories location candidates is much smaller
than the remaining variables. As a consequence, a natural layered structure arise in this problem:
we have to use the rounding to fix the DC locations first and then fix the assignment of CZs to
DCs. If we fix the CZ-DC assignment first, the corresponding DC is also fixed at the same time,
which may result in poor solutions. The developed layered-based rounding heuristic is outlined
in Algorithm 2.

The first steps of algorithm 2, specifically steps 2 and 3 apply certain criteria for obtained round-
ing values for decision variables aw, gwc. Once fixed the decision variables related with DCs and
CZs, which correspond to the third and fourth layers of model SCND, we solve the first two
layers with model RTM, presented below. RTM model is used to found values for the follow-
ing decision variables values of the first two layers, characterising a complete solution of model
SCND. Model RTM can be solved very fast using a contemporary optimization solver, since
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Algorithm 1 Multi-start heuristic framework

Step 1 (Construction phase): Find a good feasible solution

Step 1.1 (Initialization) Define the parameters for the multi-start mechanism, namely number of
factories, DCs, and assignment arcs to be disabled.

Step 1.2 (Initial Solution) Obtain a lower bound for the problem by solving model (1)-(11),
relaxing the binary condition on the decision variables in constraints (11).

Step 1.3 (Rounding Initial Solution) Run the rounding heuristic (Algorithm 2) for the current so-
lution for a feasible good solution. If no feasible solution is obtained, terminate. Otherwise, go
to Step 2.

Step 1.4 (Multi-start mechanism) Randomly disable factory, DCs and a percentage of assigned
arcs of CZs that appear in the current solution, obtaining a new model.

Step 1.5 (Rounding Solutions) Run the rounding heuristic (Algorithm 2) for the several instances
generated in the previous step. If no feasible solution is obtained, go to Step 1.4. Otherwise,
go to Step 2.

Step 2 (Improvement phase): Perform a Local Search, as follows:

Step 2.1 Apply the DC Exchange routine (Algorithm 3) in the current solution from Step 1.

Step 2.2 Apply the Arc Exchange routine (Algorithm 4) in the solution from Step 2.1.

Step 2.3 Update the overall upper bound if a better solution is found. Store this as the best overall
solution.

Step 3 (Termination checking): If the given time limit is reached or an acceptable gap is reached, output
the overall best solution and stop. Otherwise, go to Step 1.4.

only variables gwc = 1,∀w,c, previously computed by Algorithm 2, are considered in constraints
(4), significantly decreasing its complexity. Note that the demand in each DC is updated to con-
sider the current assignment, so the model RTM considers (i) sending materials from vendors to
plants; (ii) sending products from plants to DCs; and (iii) production costs at the plants. Through-
put costs at DCs, transportation costs from DCs to customer zones, and DC fixed costs are known
and determined by the rounding algorithm.

Model RTM:

min ∑
f∈F

CT o
f b f + ∑

f∈F
∑

w∈W
∑
p∈P

CT p
f pzp

f w+

∑
f∈F

∑
r∈R

∑
v∈V

CT t
f vry

r
v f + ∑

f∈F
∑

w∈W
∑
p∈P

CT t
f wpzp

f w

(12)

st

(4)− (7),(9)− (10) (13)

b f ∈ {0,1} ∀ f (14)
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Algorithm 2 Layered-based rounding

Step 1 (Initialization): Consider the linear relaxation solution of the model.

Step 2 (Locating the DCs): Let dc be the number of DC location variables. Set dc←0.

Step 2.1: Sort binary variables aw in a non-increasing order.

Step 2.2: For all aw do: If aw is almost 1 ( more than 0.95), fix it to 1, and set dc = dc+1. If dc >Uw, go to step 3.
If aw < 0.95 then exit the loop.

Step 2.3: If no aw was fixed in Step 2.2, set aw with the biggest value to 1.

Step 2.4: With fixed aw, solve the updated linear programming model again.

Step 3 (Assign customers to DCs): Let cz be the number of CZs that have been assigned. Set cz←0.

Step 3.1: Sort binary variables gwc in a non-increasing order.

Step 3.2: For all gwc do: If gwc is almost 1 (more than 0.95), fix it to 1, and set cz = cz+1. If all CZs are fixed, go
to step 4. If gwc < 0.95, exit the loop.

Step 3.3: If no gwc was fixed in Step 3.2, choose the CZ c
′

with the largest total demand. Choose then the DC w
′

with the largest remaining capacity. Fix gw′ c′ = 1.

Step 3.4: With fixed gwc in Steps 3.2 or 3.3, solve the updated linear programming model again.

Step 4 (Locate plants): If (b f =0,1,∀ f ∈ F), go to Step 5. Otherwise, solve model RTM, fixing the plants, DCs
locations, and DCs–CZs assignments of the current solution. Define the total costs.

Step 5 : Output the best solution.

3.2 Local Search

Local search is used in attempt to improve the solution obtained in the constructive phase, after
the multi-start mechanism is used and an integer solution is obtained by the rounding algorithm.
Local search attempts to find new better solutions using two neighborhood methods, distribution
centers exchange and arc exchange. In order to guide the neighborhood selection, two indexes
were used to prioritize the DCs and arcs to be exchanged, RDCw and RARa, respectively. Both
indexes use relevant costs in the selection of DCs or arcs to be exchanged following Lee &
Kwon (2010). After applying each method and if a better feasible solution is found, model RMT
is again employed to obtain a complete solution to the problem. Next both local search routines
are described.

3.2.1 DC exchange

The basic idea of routine DC exchange is to replace an open distribution center by a closed one,
in an attempt to improve the current solution. The open DCs are sorted in descending order of
their indexes RDC, while the closed ones are sorted in ascending order. The routine attempts to
replace an open DC with a larger value of RDC by a closed one with a smaller value of RDC.
Index RDCw for each distribution center w is computed as follows:
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RDCw =

∑
f∈F

∑
p∈P

CT t
f wp

NFw
+

∑
c∈C

∑
p∈P

CT t
wcp

NCw
+

CT o
w

Qw
(15)

where NFw denotes the number of plants from where the products are transported to DC w, NCw

denotes the number of CZs served by DC w, and Qw denotes the amount of products that uses DC
w. The first term of Equation (15) refers to the average transportation cost per unit of products
from plants to DC w, the second term determines the average transportation cost per unit of
products from DC w to all served CZs, and the last term defines the fixed cost of DC w per unit
of product.

The DC exchange procedure is outlined in Algorithm 3. Observe the RDCw for a closed DC w is
computed using values of NFo,NCo, and Qo, associated with the open DC o that is a candidate
to be exchanged with w.

Algorithm 3 DC Exchange

Step 1 Considering the current solution, compute RDC for open DCs.

Step 2 Set O as the sorted set of open DCs in decreasing order of RDCw.

Step 3 For all ow ∈ O do

Step 3.1 Compute RDCw for all closed DCs, using NFow,NCow, and Qow in Equation (15).

Step 3.2 Set C as the sorted set of closed DCs in increasing order of RDCw.

Step 3.3 For all cw ∈C do

Step 3.3.1 If (CAPcw > CAPow) then exchange the DCs in the current model, by closing ow and opening cw,
creating a temporary model. Adjust the flow of products to the new open DC in the temporary model.
Otherwise, go to Step 3.3.

Step 3.3.2 Run RTM for the temporary model. If the total cost of the new model is smaller than the current
solution then update the current solution and the current model. Go to Step 3.

Step 4 Return the current solution and model.

3.2.2 Arc exchange

The arc exchange procedure is based on an intuitive idea of replacing an active arc with a high
value of index RA by another active arc with a smaller value of RA. Index RAwc is computed by
an arc a = (w,c)|w ∈W,c ∈C as follows:

RARwc =

∑
p∈P

CT t
wcp

NPwc
+

∑
p∈P

CT g
wp

QPwc
+

CT o
w

NCwQPwc
(16)

where NCw is the number of customer zones served by distribution center w, QPwc is the amount
of products transported from w to c, and NPwc is the number of products send from DC w to
CZ c. The first term of Equation 16 refers to the average unit cost transportation of arc (w,c).
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The second term refers to the product handling costs divided by the number of used arcs serving
product p through w. The last term considers the fixed cost of DC w divided by the number of
used out-going arcs from w. Algorithm 4 outlines the arc exchange procedure.

Algorithm 4 Arc Exchange

Step 1 Considering the current solution and model, for all used arcs (w,c),∀w,c in the current solution compute RAR.

Step 2 Set U as the sorted set of used arcs in decreasing order of RAR.

Step 3 For all u = (w,c) ∈U do

Step 3.1 Set n = (w′,c′)← the last element of set U

Step 3.1.1 If (CAPw′ >CAPw) then exchange the arcs in the current model, creating a temporary model. Adjust
the flow of products, transferring all product flows from arc (w,c) to arc (w′,c′), and vice-versa in
the temporary model. Otherwise, set u← Next(u) and go to Step 4.

Step 3.1.2 Run Model RTM with the new temporary model. If the total cost of the temporary model is smaller
than the current solution then update the current solution and current model.

Step 3.1.3 Set u← Next(u) and delete n from set U .

Step 4 Return the current solution and current model.

4 COMPUTATIONAL EXPERIMENTS

In this section, we report the results of the computational experience obtained over some ran-
domly generated instances. The algorithms were coded using C++, and the optimization en-
gine COIN-OR (Computational Infrastructure for Operations Research) to solve the MILPs
(Gassmann et al., 2016). The computational experiments were carried out on a Dell Precision
T3600 Server using Xeon CPU ES5-1603 with 2.80 GHz and 16 GB RAM in the LINUX
UBUNTU 14.04 LTS operational system. In the next paragraph, the computational tests and
the analysis of the results are introduced.

Several instances representing different number of suppliers (V), raw materials (R), plants (F),
DCs, CZs, and products (P) were generated for evaluating the developed solution method, a total-
ing of 25 instances. They are shown in Table 2. The instances were associated with a four-echelon
network similar or larger than instances researched in the literature about strategic SCND. The
cost structure of the instances has fixed costs, production, throughput costs and transportation
costs associated with the capacity of plants and DCs. Every instances has been checked as being
feasibles and solved independently in order to compare the performance of the proposed ap-
proach to solve it. Upper limits in the number of plants and DCs were not taken into account in
the experiments.

The settings of the required parameters of the constructive phase of the multi-start heuristic was
defined according to the size of each experimental instance, regarding following ranges. We
disabled 1 to 2 plants. The limited number of plants did not recommend making this parameter
very large. In contract, the number of DCs that should be disabled in the initial solution was
defined as between 2 and 3. The percentage arcs disabled in the experimental tests were from
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20% to 35%. Also, these percentages cannot be too large to preserve the main choices of the
initial solutions.

Table 2 compares the results of the developed method with the heuristic presented in Farias et al.
(2017), labeled Farias’ Algorithm, for 25 instances. The relaxed version of each instance solved
by COIN-OR was used as benchmark (column “B&B”) for computing the solution gap presented
in columns “Gap”. The values of time limit (TL) presented in the table refers to the CPU time
required to solve with gaps lower than 1% using this developed heuristic. This CPU limit was
defined as the stopping condition for the heuristic developed by Farias et al. (2017), given the
difficulties of defining a halting condition for this algorithm. The same CPU limit of 2 hours was
used as the halting criteria for the new algorithm. Note that this is not the best criterion for the
developed heuristic, but it was used to allow a fair comparison between the two algorithms.

Table 2 – Experiment results.

Developed Algorithm Farias’ Algorithm
I V R F DC P CZ TL(s) B&B Solution Gap Solution Gap
1 5 5 3 10 5 150 50 425108 427181 0.48% 435332 2.40%
2 5 5 3 20 5 150 70 158261 159772 0.95% 160637 1.50%
3 5 5 3 30 5 150 200 129608 130849 0.96% 133333 2.87%
4 5 5 3 40 5 150 300 19012505 19190346 0.93% 19226313 1.12%
5 5 5 3 20 10 170 150 1487115 1495372 0.56% 1495372 0.56%
6 5 5 3 10 10 150 100 292283 293185 0.30% 296266 1.36%
7 5 5 3 10 40 150 200 301464 298570 0.96% 297243 1.40%
8 5 5 3 10 100 150 200 25358151 25433384 0.29% 25476402 0.47%
9 5 5 3 20 10 150 100 319322 321423 0.65% 321476 0.67%

10 5 5 3 30 10 150 300 227527 229360 0.80% 236082 3.75%
11 5 5 3 40 10 150 100 297083 297740 0.22% 298715 0.54%
12 5 5 3 50 10 150 200 141258 141668 0.29% 142030 0.55%
13 5 5 3 20 10 150 200 249768 252119 0.94% 255173 2.16%
14 5 5 3 20 50 150 200 1306830 1312622 0.44% 1327892 1.61%
15 10 10 5 10 40 150 200 132466656 133347168 0.66% 134070925 1.21%
16 10 10 5 10 150 250 500 10954463 11063021 0.99% 11110108 1.42%
17 10 10 5 20 150 250 500 64622125 64754133 0.20% 64796606 0.27%
18 10 10 5 10 5 150 200 132769 133759 0.74% 134277 1.13%
19 5 5 3 5 150 250 250 8382428 8448909 0.79% 8512811 1.56%
20 25 25 20 15 20 270 200 1585938 1597115 0.70% 1617470 1.98%
21 20 20 20 10 15 200 100 20129199 20214454 0.42% 20214454 0.42%
22 15 15 10 5 10 150 300 8685207 8761766 0.88% 8761766 0.88%
23 20 20 5 5 170 300 400 14036308 14174991 0.98% 14206526 1.21%
24 5 3 1 5 3 250 200 180509 181017 0.28% 181878 0.75%
25 5 5 3 30 5 100 60 262573 263224 0.24% 269622 2.63%

Given the same CPU time to solve the instances for the two algorithms, the developed method
outperformed Farias et al. (2017)’s algorithm in the quality of the solution. The developed ap-
proach obtained smaller or equal gaps, considering the optimal solution of the relaxed problem
as benchmark, for all tested instances. The developed approach and Farias et al. (2017) heuristic
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obtained average gaps of 0.63% and 1.36%, respectively. Thus, the developed heuristic reduced
on 115% the gap in comparison with the latter algorithm. In general, the CPU time increased
following the dimensions of the instances. The developed approach required an average CPU
time of 221.1s to solve the 25 instances with gaps smaller than 1%. The maximum required CPU
time was 500s (instances 16 and 17). Although instance 20 and 21 present large dimensions in
the number of suppliers, plants, and raw materials, they were solved very quickly. It seems that
the number of products, DCs, and CZs are the most influential parameters in terms of the effi-
ciency of the developed algorithm, see instances 15 and 16; and instances 2, 3, and 4. We could
not identify any pattern concerning the dimensions of the instances with the obtained gap values.
Additional experiments are required.

Table 3 compares the developed method with benchmark methods in the literature. It should be
noted that the performance values cited in the table were those reported by the authors in their
works, since the instances are not available for experimentation. In this table, it is possible to
identify the largest instance tested in each research study. The heuristic approach had an average
gap of 0.63% and a gap ranged between 0.20% and 0.99% for the 25 experimental instances.
Thus, considering the tests shown in Table 3, the heuristic approach obtained an average gap
less than the average gap of the literature review (0.63% versus 2.1%). When the results are
individually compared, some small disadvantage were found in terms of minimum gaps to Vidal
& Goetschalckx (1997) and Lee & Kwon (2010). However, it stands out that, except for Lee
& Kwon (2010), all authors used computational test instances with smaller dimensions, mainly
in the number of products. Moreover, some authors present experimental instances with three
echelons. Both issues imply in less complexity for solving the considered instances.

In summary, our heuristic shows satisfactory results with smallest average and maximum gaps
than previous developed methods.In particular, the new heuristic provides solutions within an
acceptable optimal range for large-scale instances in reasonable computational time.

Table 3 – Comparison with previous models in the literature.

Maximum Dimensions of the Instances
Author V R F DC P CZ #Inst Average Min Max

Gap Gap Gap
Vidal and Goetschalckx (2001) 50 35 8 10 12 80 5 1.53 0.02 3.78
Jayaraman and Pirkul (2001) 3 2 10 30 5 150 5 2.71 1.56 3.78
Lee and Kwon (2010) - - 10 20 80 30 12 3.95 0.00 15.06
Thanh et al. (2012) 27 27 22 13 18 270 15 0.96 0.20 3.00
Farias et al. (2017) 20 20 20 50 170 300 25 1.36 0.27 3.75
Developed Approach 20 20 20 50 170 300 25 0.63 0.20 0.99

5 CASE STUDY

Company X is one of the largest producer and distributor of tires in South America, but with
a small presence in the Brazilian market. To increase the penetration of its products in Brazil,
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the largest tire market in South America, the company has built a new plant in Brazil, capable
of producing not only the current line of products, but a new line of products customized to the
diverse Brazilian market. Currently, the company is responsible for producing and distributing
over 200 products. The set of products involved in this application consisted of 102 different
kinds of tires and divided into the following two categories: (i) Buses and Trucks (BT) - 53 cross-
ply or radial tires for trucks and buses; and (ii) Agricultural and OTR (AOTR) - 49 different tires
for agricultural tractors and Off-The-Road (OTR) vehicles such as road machinery and earth
movers.

A marketing research carried out by an independent consultancy revealed that inventory cen-
tralization in large warehouses was not working well for the replacement market of these two
lines. The customers were complaining about the excessive replacement lead-time, making the
vehicles either being out of operation or in dangerous operational conditions, waiting for a spare
tire. Brazil is a huge country with some infra-structure problems in the countryside, where these
two line of products are in high demand, mainly during the different harvest periods. Based on
successive complaints, the marketing department of the company suggested a redesigning of the
supply chain for these two lines, based both on a decentralization of the inventories and creating
a space for customers to better interact with the company. The marketing department proposed a
service center (SC) like concept. The idea is to have a space that can simultaneously act as a store,
a warehouse, and a repair center for buses, farm tractors, and heavy construction vehicles. The
resources of the SCs will be shared by selected partners to expand the services offered. However,
the SCs will be located, constructed, and managed by the company. In the SCs, the customer will
find several advantages either to repair or receive guidance on using the company and partners’
branded products, as follows:

• Guaranteed to use original or certified parts by the company and partners when repairing
their vehicle, which can increase the life of the vehicle after repair.

• Quality assurance of the repair carried out during some months, dependent on the product.
offering more peace of mind about the quality of the technical assistance service received.

• Greater comfort: they have air-conditioned space, kids area, free use of tablet and free wi-fi
while waiting to be attended.

• Experts at service, getting access to the best professionals, all trained and certified by on
the domain when repairing products.

The idea is to have standardized SCs in several locations, close to high demand areas with easy
access for customers of BT and AOTR products. The company wants to use an incremental
strategy, initially implementing a limited number of SCs. If the concept is well accepted by
customers, the company will slowly increase the number of SCs. Our problem is to determine
the number, location, ans size of the first SCs to be build. A specialized construction company
was hired to design the SCs, offering all required facilities of sales and storage in the same
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spot. The company has defined 35 possible SC locations, based on current operations and in
the areas pointed out by the logistics department. Four options were presented to the logistics
department of the company, as follows: tiny (with storage capacity of around 3600 tyres/year,
small (with storage capacity of around 6000 tyres/year), medium (with storage capacity of around
9000 tyres/year), and large (with storage capacity of around 12000 tyres/year). The capacity is
defined based on an weighted average size tyre, where the weights are the estimated demand of
each tyre in the portfolio. The storage and fixed costs for the SCs were estimated by the logistic
department based on historical data. Note that due to confidentiality issues, several data and
information were intentionally disclosed.

The transportation costs from factories to possible SC locations, and from them to CZs were com-
puted using geographical information systems. The fixed and variable costs of the warehouses
and SCs were based on historical data from the company. In order to prioritize the most prof-
itable markets, CZs have been established in a way that a major consumer city incorporated the
demand of surrounding smaller cities, towns, or rural zones. Note that some small cities, in terms
of population, have a large demand for a specific type of tire for being located in very important
agricultural or mining zones. In addition, it was decided that only CZs with demand exceeding
1,000 units per year will be considered in the analysis. Considering the location criteria, 270
customer zones were identified. The specific problem to be solved has involved three levels, as
follows: (i) one factory (already constructed); (ii) 4 large warehouses (already constructed) +
35 possible SC locations (to be defined); and (iii) and 270 CZs. Figure 1 illustrates the specific
network to be designed.

Figure 1 – Supply chain network lay-out for the case study.
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The following parameters of the algorithm were used in the case study. A gap of less than 1%
was defined as the halting condition. In general, the algorithm has obtained such gap in less than
200s of CPU time. In the multi-start mechanism, two warehouses and 25% of the assigned arcs
between warehouses and CZs were disabled at each iteration. A planning horizon of one year
was chosen.

Table 4 presents the main results concerning the investigated scenarios, combining the number
of initial SCs to be implemented (column ’#SCs’) and the estimated annual capacity designed by
the construction company (column ’Capacity’). These scenarios were defined by the company
managers. The next columns show the models results in terms of the objective function (column
’Solution’), and service centers’ performance measures, namely: the percentage of total CZs
assigned to the SCs (column ’CZ(%)’), the percentage of the total demand that will pass through
SCs (column ’Flow(%)’), instead of the large warehouse, and the average percentage of the
capacity utilization of all SCs (column ’AU(%)’). The first line of the table refers to a scenario
without SCs.

Table 4 – Service center results of the initially analyzed scenarios.

Scenario #SCs Capacity Solution CZ (%) Flow(%) AU (%)
1 – – 296597 – – –
2 5 3600 287563 8.15 8.14 100.00
3 5 6000 273536 15.93 14.3 95.34
4 5 9000 287681 10.37 16.02 74.78
5 5 12000 289169 22.22 27.73 95.67
6 10 3600 442257 18.52 15.81 91.17
7 10 6000 413694 27.41 27.82 97.42
8 10 9000 416767 21.48 23.71 54.07
9 10 12000 1319856 55.18 56.29 97.59

10 15 3600 438304 25.55 21.80 84.25
11 15 6000 413952 31.11 30.89 70.71
12 15 9000 470563 49.26 50.55 78.67
13 15 12000 1784654 84.44 84.82 97.48

The results in Table 4 indicate that the use of a small number of SCs can lead to an effective
process of decentralization, including with reduction in the value of the total cost of the network.
With 5 SCs, and for all SCs’ capacities, the total costs have been slightly decreased. The variable
costs has compensated the increase in the fixed costs of implementing SCs. The transportation
costs are quite high for the tyres in these two lines. As the number of SCs increase, the fixed
costs overcame the variable costs, significantly increasing costs for 10 and 15 SCs. The company
managers expect that this increase of costs might be compensated by an increase in the sales,
justifying the expansion of the pilot project. Unfortunately, it is difficult to compute profit due to
the lack of reliable data on sales.
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Clearly, scenarios 9 and 13, with capacities above 9000 tyre/year, significantly increased the
costs and were immediately discarded. As the implementation of SCs was mainly motivated by
the ATOR line, the company managers have found average utilization of SCs above 90% very
risky in terms of properly answering the peak demands caused by harvesting different crops
seasonality, additionally discarding scenarios 2, 3, 5, 6, and 7. Also, the low average utilization
of scenario 8 was considered inappropriate in terms of an effective decentralization. Finally,
the high costs associated with scenarios 10, 11, and 12 led the decision to scenario 4, which
combines an acceptable cost, a reasonable average utilization, and a service to CZs consistent
with the incremental strategy of the SCs implementation.

The analysts have proposed the evaluation of additional scenarios to the company managers,
taking scenario 4 as basis. Several new scenarios were interactively analyzed, since the running
time was around 4 minutes, considering different number of SCs and capacities. However, there
were a consensus that an increase in the number of SCs was problematic due to the effects in the
total costs of the supply chain. For economy’s sake, we present a limited number of additional
scenarios. Table 5 presents the results of some interesting elected additional scenarios by the
company managers towards making an effective decision making process.

Table 5 – Service center results of some extra analyzed scenarios.

Scenario #SCs Capacity Solution CZ (%) Flow(%) AU (%)
14 4 9000 290177 7.04 10.56 61.62
15 5 7000 287866 4.67 6.29 87.06
16 5 8000 287960 13.70 15.87 97.93
17 5 10000 297507 17.78 17.08 71.76
18 5 11000 299829 20.37 20.38 77.84

On the one hand, scenario 14 presents a very low average utilization of the SCs, indicating that
4 SCs might be a low number in terms of the objectives to the company. On the other hand,
scenario 16 has a very high average utilization. Scenario 15 presents a low percentage of both
served CZs and storage products, having a little impact in the decentralization strategy. Scenarios
18 dominates scenario 17, presenting better average percentages of served CZs, manipulated
products by the SCs, and a similar average utilization, but with a lower total costs. Scenarios 4
and 18 present similar results. The former presents a slightly smaller cost, while the percentage
of CZs and products using the SCs is higher. However, in case of future expansion, the high
capacity of scenario 18 can lead to high costs and excessive use of SCs, as indicated by the
results of scenarios 9 and 13. Based on the analysis process, the managers have defined scenario
4 as the most appropriate one to be implemented following the incremental strategy. Figure 2
illustrates the case study solution.

The company managers have positively responded to the modeling approach. The main advan-
tage of applying such approach is the quick generation and solution of possible several scenarios.
Particularly, the analysis and evaluation of possible SCND different configurations, have pro-
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Figure 2 – Scenario 4 solution.

vided a means to perform a complete study, resulting in a better and quicker decision making
process. The flexibility of the optimization approach, allowing the incorporation of peculiarities
of a specific problem, and the efficiency and efficacy of the optimization approach were highly
praised by the managers.

6 CONCLUSIONS

This paper presents a heuristic approach to solve very large instances of the strategic SCND, con-
sisting of a four-echelon system. The main objective is to minimize the total costs in the network.
The heuristic is a two-step iterative algorithm based on a multi-start/layered-based rounding con-
structive approach, and a local search for solution improvement. The heuristic was first evaluated
using 25 randomly generated instances of different dimensions, some of them quite large, in
terms of the number of products, DCs, and CZs. The heuristic has obtained very good optimal
gaps for all tested instances, within acceptable CPU times. Particularly, the heuristic was able
to solve very large instances with similar gaps than the ones found for smaller ones. Next, we
describe the application of the developed algorithm for a case study, illustrating the flexibility
of the optimization approach in helping managers to solve large real world problems concerning
the supply chain network design.

Considering the contributions of the heuristic approach developed in this study for the SCND, fu-
ture studies could include the following: (i) extension of the model and solution approach to con-
sider a multi-period horizon; (ii) integration of strategic inventory decisions and stochastic data
(e.g. demand uncertainty); and (iii) extension of the model to consider multimodal transportation.

Pesquisa Operacional, Vol. 43, 2023: e269080



18 LARGE SCALE SUPPLY CHAIN NETWORK DESIGN: AN EFFECTIVE HEURISTIC APPROACH

References

ALTIPARMAK F, GEN M & NAD T PARKSAY LL. 2006. A genetic algorithm approach for
multi-objective optimization of supply chain networks. Computers and Industrial Engineering,
51: 196–215.

ARMENTANO VA, SHIGUEMOTO A & LØKKETANGEN A. 2011. Tabu search with path relink-
ing for an integrated production–distribution problem. Computers & Operations Research, 38(8):
1199–1209.

DER VAAT TV & DONK DPV. 2008. A critical review of survey-based research in supply chain
integration. International Journal of Production Economics, 111: 42–55.

ESKANDARPOUR M, DEJAX P, MIEMCZYK J & PÉTON O. 2015. Sustainable supply chain
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