Open-access Como a dexmedetomidina e a clonidina devem ser prescritas no ambiente de terapia intensiva?

RESUMO

O manejo cardíaco, ventilatório e renal no ambiente de terapia intensiva tem melhorado nas últimas décadas. Cognição e sedação representam dois dos últimos desafios a vencer. Como a sedação convencional não é ideal, e a sedação evocada por agonistas adrenérgicos alfa-2 (sedação “cooperativa” com dexmedetomidina, clonidina ou guanfacina) representa uma alternativa valiosa, este artigo abrange três tópicos práticos para os quais há lacunas na medicina baseada em evidência. O primeiro deles é a mudança de sedação convencional para sedação cooperativa (“mudança”): a resposta curta consiste em retirada abrupta de sedação convencional, implantação imediata de infusão de um agonista alfa-2 e uso de “sedação de resgate” (bolos de midazolam) ou “sedação agressiva” (haloperidol em bolos) para estabilizar a sedação cooperativa. O segundo tópico é a mudança de sedação convencional para sedação cooperativa em pacientes instáveis (por exemplo: delirium tremens refratário, choque séptico, síndrome do desconforto respiratório agudo etc.), pois, para evitar a hipotensão e a bradicardia provocadas por desativadores simpáticos, a resposta curta é manter o volume sistólico por administração de volume, vasopressores e inotrópicos. Por fim, para evitar essas mudanças e dificuldades associadas, os agonistas alfa-2 podem ser sedativos de primeira linha. A resposta curta é administrar agonistas alfa-2 lentamente desde a admissão ou intubação endotraqueal, até estabilização da sedação cooperativa. Dessa forma, conclui-se que os agonistas alfa-2 são, ao mesmo tempo, agentes desativadores simpáticos e sedativos, bem como a desativação simpática implica na manutenção do volume sistólico e na avaliação persistente da volemia. A medicina baseada em evidência deve documentar esta proposta.

Descritores: Cuidados críticos; Sedação; Anestesia geral; Agonistas de receptores adrenérgicos alfa 2; Clonidina; Dexmedetomidina; Guanfacina

ABSTRACT

Cardiac, ventilatory and kidney management in the critical care setting has been optimized over the past decades. Cognition and sedation represent one of the last remaning challenges. As conventional sedation is suboptimal and as the sedation evoked by alpha-2 adrenergic agonists (“cooperative” sedation with dexmedetomidine, clonidine or guanfacine) represents a valuable alternative, this manuscript covers three practical topics for which evidence-based medicine is lacking: a) Switching from conventional to cooperative sedation (“switching”): the short answer is the abrupt withdrawal of conventional sedation, immediate implementation of alpha-2 agonist infusion and the use of “rescue sedation” (midazolam bolus[es]) or “breakthrough sedation” (haloperidol bolus[es]) to stabilize cooperative sedation. b) Switching from conventional to cooperative sedation in unstable patients (e.g., refractory delirium tremens, septic shock, acute respiratory distress syndrome, etc.): to avoid hypotension and bradycardia evoked by sympathetic deactivation, the short answer is to maintain the stroke volume through volume loading, vasopressors and inotropes. c) To avoid these switches and associated difficulties, alpha-2 agonists may be considered first-line sedatives. The short answer is to administer alpha-2 agonists slowly from admission or endotracheal intubation up to stabilized cooperative sedation. The “take home” message is as follows: a) alpha-2 agonists are jointly sympathetic deactivators and sedative agents; b) sympathetic deactivation implies maintaining the stroke volume and iterative assessment of volemia. Evidence-based medicine should document our propositions.

Keywords: Critical care; Sedation; General anesthesia; Alpha-2 adrenergic agonists; Clonidine; Dexmedetomidine; Guanfacine

INTRODUÇÃO

O manejo circulatório, ventilatório, renal e metabólico tem progredido nas últimas décadas, mas, no que se refere à cognição e à sedação, ainda há um longo caminho. Nesse intervalo, ocorreram várias mudanças: de nenhuma sedação até anestesia geral (AG)/sedação convencional profunda,(1) sedação interrompida e volta(2) para sedação mínima.(3) É possível uma sedação mínima, dadas a tranquilização repetida pela enfermagem e uma provisão para sedação mais profunda.(3,4)

Agonistas adrenérgicos alfa-2 (“agonistas alfa-2”: clonidina, dexmedetomidina e guanfacina) evocam sedação “cooperativa” e despertável#(5-7) e oferecem uma alternativa entre a AG e nenhuma sedação. A sedação cooperativa reduz o componente afetivo-motivacional da dor (indiferença à dor, “analgognosia”)(8) e evoca indiferença ao ambiente (“ataraxia”) sem depressão respiratória.(9-11) A mesma faixa posológica(12-14) de ativação parassimpática (ativação “vagal cardíaca”) e atenuação de uma atividade simpática cardíaca e vasomotora excessiva, observada na unidade de terapia intensiva (UTI), de volta ao nível basal (normalização para o basal: “desativação simpática”; supressão do fluxo excessivo de noradrenalina: “supressão de fluxo excessivo”). Dadas as desvantagens em pacientes hipovolêmicos, apenas nichos de indicação devem ser considerados (medicina “personalizada”), o que contradiz a abordagem do “tamanho único”. A circulação é uma preocupação importante. Em condições de insuficiência sistólica(15,16) ou diastólica,(17) ou edema pulmonar cardiogênico e baixa fração de ejeção ventricular esquerda (VE),(18) a desativação simpática de vasos de capacitância (veias) e resistência (artérias)(19,20) é benéfica. O retorno venoso é reduzido, e a ejeção melhora. No cenário de hipovolemia, agonistas alfa-2 reduzem ainda mais o retorno venoso (Figura 1(21)) e o volume sistólico (VS), piorando o desequilíbrio circulatório (bradicardia e hipotensão, até parada cardíaca).

Os benefícios incluem melhoras cognitivas(6,22-25) ou do sono,(26) da respiração espontânea,(9,11,27) da circulação,(15,28) da função renal(29,30) e da ação anti-inflamatória,$(31-35) além de um encurtamento da permanência na UTI.(36) Há melhora dos desfechos,(37-45) embora a qualidade dos dados sugira aguardar por melhor evidência.

Como os agonistas alfa-2 interferem no sistema nervoso autônomo e a cognição (propofol etc.), surgem problemas: como mudar de uma sedação convencional para agonistas alfa-2 (“mudança”), por exemplo, em pacientes agitados ou instáveis, com delirium tremens (DT) refratário, desconforto circulatório/ventilatório etc.; e como podem ser prescritos agonistas alfa-2 quando da admissão? Este artigo aborda os sistemas parassimpático e simpático, circulação e ventilação.

A medicina baseada em evidência tem escassez de dados com relação à prescrição de agonistas alfa-2. Deve ser reunido um grupo equilibrado de pessoas com abordagem rigorosa para o desenvolvimento de diretrizes de consenso, o que está além do alcance deste grupo de profissionais leigos. Apesar dos vieses, este artigo foi preparado para ajudar os médicos que não têm familiaridade com agonistas alfa-2. Presumivelmente, nunca será estabelecida uma diretriz formal e detalhada com relação a DT refratário, desconforto cardioventilatório etc. A literatura foi revisada (termos de busca no PubMed®: “alpha-2 agonist”, “cooperative sedation”, “critical care”, “clonidine”, dexmedetomidine” e “guanfacine”). Esta experiência clínica, que engloba o período de 1980 a 2020 em diversos países (Estados Unidos, Québec, Bélgica e França), é resumida na tabela 1. Antes, foram delineadas questões fisiológicas, farmacológicas e clínicas.(46-48)

Figura 1
Relação entre atividade da musculatura lisa e frequência do estímulo nervoso simpático nos vasos de capacitância e resistência: a curva de frequência-resposta é deduzida para resistência (linha interrompida) e capacitância (linha contínua) em músculos da pele de gato.

MUDANÇA DE SEDAÇÃO CONVENCIONAL PARA SEDAÇÃO COOPERATIVA

A sedação convencional combina benzodiazepínicos ou agentes de AG de curta duração com analgésicos opioides. Os relaxantes musculares são usados predominantemente em condições de síndrome do desconforto respiratório agudo (SDRA), traumatismo craniencefálico(49) etc. Contudo, observa-se o surgimento de delirium após sedação profunda. Entretanto, este delirium é relacionado à própria doença, ao ambiente da UTI, ou à sedação convencional? Mais ainda, a sedação profunda, próxima de AG,(1) é utilizada na prática clínica para SDRA ou aumento da pressão intracraniana(49) sem evidências.(50) Na verdade, ocorre redução da mortalidade com o uso de ventilação mecânica controlada (VMC), paralisação e posição pronada.(51,52) No entanto, não há uma comparação entre sedação profunda + VMC + paralisação com ventilação espontânea adequada.(50,53-56). Logo, esses avanços(51,52) ficam aquém, em termos de metodologia, considerando a ausência de um grupo controle sob respiração espontânea adequada(50) e a tendência a abreviar(57,58) a AG + VMC + paralisação. Uma prática estabelecida(51,52) desprovida de evidência forte(50) enfrenta uma prática não ortodoxa(59,60) ou uma prova de conceito recente.(53,61)

Tabela 1
Como prescrever agonistas alfa-2 em terapia intensiva

Como a maior parte dos grupos utiliza sedação cooperativa após sedação convencional, isto é, quando o paciente está se recuperando e pronto para a extubação traqueal (“extubação”), a mudança de sedação convencional para cooperativa é analisada antes.

Contraindicações

A dexmedetomidina e a clonidina são inibidores simpáticos em voluntários saudáveis em repouso. Na UTI, considerando-se o aumento da atividade simpática, esses agentes levam a hiperatividade simpática de volta os níveis basais, ou seja, são desativadores simpáticos, com as seguintes contraindicações:
  • - Hipovolemia.

  • - Bradicardia (espontânea ou induzida por fármacos, por exemplo, bletabloqueadores),& síndrome do nó sinusal e bloqueio atrioventricular II ou III sem marca-passo.

  • - Insuficiência hepática (Child-Pugh C): a clonidina e a dexmedetomidina são, respectivamente, excretadas pelos rins e fígado. Mais ainda, a clonidina e a dexmedetomidina são úteis nos cenários de insuficiência hepática e renal, respectivamente. Porém, a clonidina pode ser administrada em situações de insuficiência renal se sob utilização de terapia de substituição renal (TSR), e a dexmedetomidina pode ser utilizada em condições de cirrose hepática.(62)

Clonidina versus dexmedetomidina

A maior seletividade alfa-2/alfa-1 da dexmedetomidina não tem relevância clínica, mas é unicamente um achado in vitro.(63) A dexmedetomidina está também disponível por via oral,(64) o que torna sua utilização pela enfermagem mais fácil do que a da clonidina (Simonet e de Kock, comunicação pessoal). Contrastantemente, a clonidina por via oral permite administração oral conveniente (pacientes com DT não intubados), possibilitando a transição do agonista alfa-2 da administração endovenosa de dexmedetomidina para administração oral de clonidina, para evitar abstinência de agonista alfa-2. Em voluntários saudáveis, após administração de clonidina 300μg por via oral, a sedação é obtida dentro de 30 a 60 minutos.(5,12)

Mudança progressiva versus abrupta

Retirada abrupta: A retirada abrupta da sedação convencional para obter escala de agitação e sedação de Richmond (RASS - Richmond Agitation Sedation Scale) entre-2 e +1 ocorre imediatamente após iniciar a infusão de dexmedetomidina(23) (0,8μg.kg-1.h-1; bolo de ataque de 1μg.kg-1 se necessário; faixa de infusão: 0,15 - 1,5μg.kg-1.h-1).(22) Utiliza-se sedação de resgate para obter RASS-2 a +1(23) utilizando infusão de fentanila, seguida por um bolo de propofol (25 - 50mg),(22) ou midazolam (0,01 - 0,05mg.kg-1 por intervalos de 10 minutos até um total de 4mg/8 horas) e fentanila.(23)

Mudança progressiva: A retirada da sedação convencional é estabelecida para ocorrer em 2 horas. Enquanto isso, a introdução da sedação cooperativa é implantada no mesmo período (dexmedetomidina: 0,4μg.kg-1.h-1, aumentando progressivamente até obter o efeito, conforme figura 2(65); foi colocado um aviso “não aplicar em bolo” no injetor elétrico e no equipo de infusão).(65) Foi relatado um “teto” de efeito com dexmedetomidina >1,5μg.kg-1.h-1.(7) A dose alta de clonidina é 2μg.kg-1.h-1;(66) não há relato de teto de efeito. Durante a mudança, antes de obter o estado estável da sedação cooperativa, administra-se sedação de resgate em bolos de midazolam (1mg) ou propofol (25mg), repetidos conforme necessário.(65) A mudança progressiva exige intensivistas experientes e enfermagem treinada em terapia intensiva.(65) As desvantagens da mudança progressiva ou da administração combinada de dexmedetomidina e sedação convencional são:
  1. Mudança progressiva e circulação: a administração simultânea de sedação convencional e cooperativa combina a desativação simpática provocada pelos agonistas alfa-2,(67) a inibição simpática evocada pelo propofol(68) e a ativação parassimpática evocada pelos opioides. Isso leva a uma baixa frequência cardíaca (FC), pressão arterial (PA) e baixo débito cardíaco (DC).(69) Se o pacientes em uso de infusão de agonista alfa-2 se tornar agitado ou inquieto, pode receber inadequadamente um bolo adicional de propofol em alta dose (50 - 100mg), ou um bolo de clonidina/dexmedetomidina. Consequentemente, podem ocorrer bradicardia e hipotensão grave. Para evitar esses efeitos colaterais, utiliza-se a retirada abrupta, realizada unicamente durante o turno diurno, com início logo de manhã. A prescrição especifica o alvo (RAAS-2 a 0), a faixa posológica de dexmedetomidina (≤ 1,5μg.kg-1.h-1), o resgate versus sedação de rompimento (resgate: midazolam 3 - 5mg repetido a cada 5 - 10 minutos até obter RASS-2 a 0; sem propofol ou tiopentona, exceto em caso de agitação com agudização rápida e uma ordem expressa do intensivista junto ao leito; sedação de rompimento: bolo de haloperidol 5-10mg) e suplementação (neurolépticos: vide DT refratário).

  2. Sedação cooperativa e convencional combinadas: foi delineado um efeito aditivo entre opioides e agonistas alfa-2, com bradicardia e DC reduzido.(69) A administração de clonidina no pré- e pós-operatório de pacientes que receberam a mesma dose de AG convencional levou à bradicardia, hipotensão e parada cardíaca(70) sem sequelas.(71) Na UTI, a dexmedetomidina (1 - 1,5µg.kg-1.h-1, até obter-2 < RASS < 1), não levou à modificação da mortalidade (SPICE III).(72) Observaram-se mais bradicardia e hipotensão com a combinação de sedação cooperativa e convencional do que com a sedação convencional isoladamente.(72) Contudo, a sedação profunda foi utilizada em cerca de 60% dos pacientes com sedação convencional (Dia 1), enquanto cerca de 75% dos pacientes tratados com dexmedetomidina receberam propofol, midazolam ou ambos.(72,73) Assim, qualquer diferença fica obscurecida, e este ensaio(72) é inútil.(73) É necessária uma análise post hoc comparando dexmedetomidina isoladamente com sedação convencional isoladamente(73,74) para reavaliar os desfechos e tornar útil essa grande série.(72)

Figura 2
Repetida elevação passiva das pernas para lidar com a hipovolemia antes da administração de um agonista alfa-2 em pacientes com instabilidade circulatória.

Em resumo, mesclar sedação convencional com sedação cooperativa na sala cirúrgica(69,70,75) ou na UTI(72) leva a graves efeitos colaterais circulatórios.

Mudança no ambiente pré-operatório, intraoperatório e pós-operatório da administração de agonistas alfa-2

Podem ser consideradas duas situações:
  1. Foi administrada anestesia intraoperatória sem opioides:(76) o agonista alfa-2 é administrado até o efeito.

  2. AG convencional intraoperatória foi administrada: foi dada pré-medicação com um agonista alfa-2(13) ou administração intraoperatória de um agonista alfa-2,(76) se a administração intraoperatória de opioides e anestésicos gerais tiver sido reduzida em 50-75%,(13,77-79) de modo que a sedação cooperativa seja administrada ao se chegar à UTI, se for previsto um tempo de permanência na UTI maior que 2 dias. A dose do agonista alfa-2 (por exemplo: clonidina 900µg pré- e intraoperatoriamente para cirurgia aórtica,(80) 4µg.kg-1/15 minutos durante a indução de anestesia para transplante de fígado(28)) é, em geral, suficiente para cobrir o primeiro dia pós-operatório, com provisão de analgossedação sem opioides e nicardipina (0,5mg repetida se necessário). A tecnologia cuida do volume (índice de variabilidade do enchimento, elevação passiva dos membros inferiores e ecocardiografia) ou perfusão (monitoramento do segmento ST e oxigenação cerebral). Se, após ajuste do volume, a pressão de perfusão for uma preocupação, tratamento auxiliar (dose muito baixa de noradrenalina 0,01 - 0,03µg.kg-1.min-1,(81) meias de compressão e elevação de membros inferiores) é utilizado para contrabalançar a desativação simpática. Deve ser eliminado um efeito aditivo entre o alfa-2 agonista iniciando e o opioide.(69) Se foi administrada AG, baixas doses de agonistas alfa-2 são introduzidas lentamente (por exemplo: dexmedetomidina 0,4 - 0,7µg.kg-1.h-1) até o efeito.

Titulação até o efeito

O nível-2 < RASS < 0 escolhido merece comentários.
  1. Não usamos-2 < RASS < +1.(23) Exige-se rigorosa ausência de inquietação sem qualquer movimento subido de membro regular ou repetido. Em nossa prática, um paciente apresentando rara ocorrência de movimentos súbitos dos membros pode ter agitação súbita, assumir a posição ereta e remover cateteres e acessos no meio da noite. Primeiro, para obter rigorosa inquietação, os agonistas alfa-2 são administrados até o teto de efeito(7) (dexmedetomidina: 1,5μg.kg-1.h-1 por ≥ 3 horas; clonidina: 2μg.kg-1.h-1 por ≥ 6 horas). Segundo, caso necessário, após esse intervalo, são administrados neurolépticos. Isso evita os efeitos colaterais cognitivos dos benzodiazepínicos (abaixo: DT refratário). Só se utiliza midazolam como sedação de resgate durante a mudança, por exemplo, para facilitar o trabalho da enfermagem.

  2. Pacientes idosos parecem ser menos sensíveis à sedação causada pelos agonistas alfa-2 do que pacientes jovens, musculosos, combativos e viciados.(82) De fato, o sono é induzido em indivíduos jovens por massagem carotídea,(83) ou seja, possivelmente por ativação colinérgica. Em contraste, o envelhecimento e a perda de receptores colinérgicos do cérebro anterior são compatíveis com a redução dos efeitos sedativos em pacientes idosos. A sedação adequada em pacientes idosos demanda ou doses muito altas de agonistas alfa-2 (clonidina: 4μg.kg-1.h-1; dexmedetomidina: 2,5μg.kg-1.h-1) ou adição aos agonistas alfa-2 de neurolépticos em baixa dose (clonidina: 2μg.kg-1.h-1; dexmedetomidina: 1,5μg.kg-1.h-1).

Antinocicepção

Uma vez alcançado o estado estável de sedação cooperativa, é considerada antinocicepção. Pacientes com condições clínicas exigem pouca antinocicepção(7) apenas analgognosia(8) e ataraxia, abordados pelo agonista alfa-2. Em contraste, pacientes cirúrgicos apresentam maiores necessidades antinociceptivas.(7) Após avaliação do escore de dor pela Escala Visual Analógica (EVA) ou pela Escala Comportamental de Dor (BPS - Behavioral Pain Scale), opioides(22,23) (fentanila: 0,5 - 1μg.kg-1 a cada 15 minutos) ou analgésicos não opioides podem ser escolhidos. Contudo, os agonistas alfa-2 evocam analgognosia(8) e preservam a gênese respiratória.(9-11) Analgésicos não opioides fornecem antinocicepção e preservam a respiração espontânea. Assim, nosso protocolo é o seguinte:
  1. Nefopam (100mg.d-1), quetamina em baixa dose (50mg.d-1) e tramadol (opioide fraco: 400mg.d-1). Essas doses são reduzidas em 50 - 75% após 24 a 72 horas. Isso pode ser uma consequência do acúmulo ou da indiferença à dor evocadas pelo agonista alfa-2 após se atingir o estado estável de sedação cooperativa OU

  2. ou lidocaína 0.5mg.kg-1.h-1 em infusão (dose de ataque: 1mg.kg-1.h-1) ou quetamina (0,25mgkg-1.h-1) em infusão ou gabapentina (Neurontin®, 100 - 900mg.dia-1 [d-1]) ou pregabalina (Lyrica®, 150 - 600mg.d-1) ou carbamazepina (Tegretol®, 200 - 400mg.d-1) ou amitriptilina (Laroxyl®, 12.5 - 25mg por via intravenosa, especialmente em condições de pós-operatório). Empregam-se opioides em baixa dose como analgésico de resgate, quando necessário.

Overdose de agonistas alfa-2

Nas condições ambulatoriais de cardiologia, doses muito altas de agonistas alfa-2 levam à hipertensão resistente (clonidina: 5.400 - 6.000µg.d-1).(84,85) Dexmedetomidina em alta dose (4µg.kg-1.h-1 por várias horas) leva à hipertensão e à baixa FC (60 - 70 batimentos por minuto em uma criança com 2 anos de idade) sem sequelas com diminuição da administração de dexmedetomidina.(86) Uma overdose intencional ou acidental leva a mínimos efeitos colaterais: sedação, hipotensão e bradicardia, sem depressão respiratória.(87-89) Naloxona não reverte a sedação.(89) Essa margem de segurança não deve nos permitir esquecer de considerar as contraindicações.

MUDANÇA EM PACIENTES INSTÁVEIS

Delirium tremens refratário

Agonistas alfa-2 têm sido bem utilizados em condições de DT refratário para suplementar a sedação convencional.(90-92) Recentemente,(93) dexmedetomidina em baixa dose (0,7μg.kg-1.h-1) foi suplementada com sucesso com haloperidol em pacientes não intubados (objetivo: RASS = 0; dose máxima de haloperidol: 30mg.dia-1 [d-1]). A dexmedetomidina alcança cerca de 93% de níveis satisfatórios de sedação (haloperidol cerca de 60%) e diminui pela metade o tempo de permanência na UTI.(93)

As justificativas para utilizar agonistas alfa-2 como agentes de primeira linha até o efeito teto,(7) com neurolépticos como agentes de segunda linha, em uma base ad hoc, são:
  1. O DT envolve hiperatividade ou hipoatividade de diversas vias centrais (noradrenalina via receptores alfa-2, dopamina, glutamato versus GABA). Assim, uma combinação de fármacos trata de um padrão neuroquímico complexo.

  2. Os agonistas alfa-2 diminuem a atividade basal dos neurônios noradrenérgicos, porém aumentam sua reatividade(94) (atividade “tônica” de fundo diminuída, ou seja, supressão do fluxo excessivo versus aumento da atividade “fásica”). A proporção sinal-ruído(95) e do ganho do sistema noradrenérgico central dorsal aumentam.(96) Clinicamente, o paciente se encontra calmo e sedado (estágio 2 do sono;(26,97)-2 ≤ RASS ≤ 0) porém razoavelmente alerta(5) ou com melhora cognitiva(24) sob estímulo.

  3. O tremor muscular é diminuído,(98,99) e a temperatura(100) e consumo de oxigênio (VO2)(101-103) são reduzidos.

Quando doses altas de agonistas alfa-2 (dexmedetomidina: 1,5μg.kg-1.h-1; clonidina: 2μg.kg-1.h-1) são insuficientes para obter-2 ≤ RASS ≤ 0 (rigorosa ausência de inquietação) sem tremor, empregam-se neurolépticos como agentes de segunda linha. Quando as alucinações são proeminentes, administra-se haloperidol (bolo de 5 mg quatro vezes ao dia; 5mg x 4 por via intravenosa ou infusão: 50mg/48mL/24 horas: 2mL.h-1, a ser reduzido logo que possível). Em contraste, quando há agitação proeminente, escolhe-se loxapina (100mg x 4 p.o. ou via tubo nasogástrico). Os neurolépticos e, depois, os agonistas alfa-2 são gradualmente reduzidos logo que se determine a ausência por 24 horas de inquietação e tremor.

Pacientes de DT refratária com doença de Gayet-Wernicke necessitaram uma dose de clonidina de 4μg.kg-1.h-1 + loxapina 400mg x 4 para obter RASS entre-2 e 0 e ausência de tremor. Para suplementar uma combinação de alta dose de agonista alfa-2 com neuroléptico (dexmedetomidina: 1,5μg.kg-1.h-1 + haloperidol até 50mg.d-1; clonidina: 2μg.kg-1.h-1 + loxapina 100mg x 4) e evitar a administração de doses mais altas de agonista alfa-2 mais neurolépticos, pode ser considerado utilizar baclofeno (50 - 150mg segundo a função renal)(104) ou midazolam em baixa dose (0,5mg.h-1).

O DT refratário em pacientes não intubados(93) é um problema. Eles requerem intubação + AG? Tais pacientes apresentam curtos episódios sem agitação ou inquietação. Assim, pacientes jovens, combativos e viciados conseguem ingerir clonidina (7,5 - 10μg.kg-1.h-1; comprimidos triturados ou ampolas com mínima quantidade de água) e obter tranquilidade dentro de 30 a 60 minutos. Um regime semelhante pode ser utilizado na transição de dexmedetomidina por via endovenosa para clonidina por via oral (300μg a cada 6 horas, então a cada 9 horas, e depois a cada 12 horas etc.),(105) até a descontinuação.(105) A esse respeito, guanfacina (Estulic®; meia-vida: 10 a 30 horas, ou guanfacina de liberação prolongada: Intuniv®) pode ser considerada para iniciar o tratamento oral ou para a transição a partir de dexmedetomidina para um agonista alfa-2 oral.

Desconforto circulatório

Considerando-se as contraindicações, a administração de agonistas alfa-2 é desaconselhável em condições de hemorragia não controlada e choque séptico ou cardiogênico etc. Na verdade, por um curto período, a ativação simpática é um salva-vidas com relação ao controle da patologia e os vasopressores exógenos e/ou inotrópicos são necessários para manter a pressão de perfusão e/ou contratilidade VE, além de ativação do sistema nervoso simpático endógeno. APÓS o controle da crise cardioventilatória aguda, agonistas alfa-2 desativam a prolongada hiperatividade simpática observada na UTI. Após otimização circulatória, a hiperatividade simpática normalizada de volta às condições basais pode beneficiar a síndrome metabólica, a imunoparalisia etc., por exemplo, nas seguintes condições: insuficiência circulatória após cirurgia cardíaca(106,107) ou baixa fração de ejeção no ambiente clínico;(18) Sepse;(39) choque séptico leve,(108) grave(109,110) ou refratário;(111) ou abertura do clamp de um transplante hepático,(28) com necessidade diminuída de noradrenalina.

A hiperatividade simpática é normalizada, retornando aos níveis basais, com uso de agonistas alfa-2; a atividade de fundo é reduzida. Um overflow reduzido de noradrenalina na fenda sináptica leva à reativação dos receptores alfa-1: os receptores dessensibilizados retornam aos níveis basais de atividade (“subregulação”;(108-110,112-114) “hipersensibilidade de desnervação”(112,115)). Segue-se volta aos níveis basais do aumento de responsividade pressórica à noradrenalina.(113,114) Presumivelmente, a melhora da microcirculação(28,116) estende essa suprarregulação aos capilares periféricos. A progressiva desativação motora simpática nos vasos de capacitância (veias)(21,117) se combina com a carga de volume, o que mantém o retorno venoso.(109) O aumento da complacência VE(17) e a desativação vasomotora simpática nos vasos de resistência (artérias)(15,16,118) e redução da impedância VE(19,20) mantêm o volume sistólico. Qualquer hipotensão, bradicardia ou arritmia supraventricular é relacionada ao retorno venoso diminuído, pressão de perfusão coronária ou complacência.

Fármacos que combinam sedação e desativação simpática modificam a circulação e demandam:
  1. Retirada abrupta da sedação convencional com sedação de resgate segundo necessário, até o estado estável da sedação cooperativa. Entretanto, em condições de baixo fluxo ou pressão, as necessidades de sedação de resgate, convencional ou cooperativa, são geralmente mínimas.

  2. Não ter hipovolemia: após a administração de agonistas alfa-2, é necessário a manter o VS:(109) aumento da carga de volume não evocará qualquer aumento adicional do DC ou da PA após elevação passiva dos membros inferiores. Para obter a manutenção do VS, utilizaram-se diferentes protocolos: 1500mL de fluido;(109) 10mL.kg-1(65) e uma combinação dos seguintes:
    • - Primeiro, após cada bolo (1.000mL/70kg) ou cada incremento do agonista alfa-2, ausência ou mínima colapsabilidade da veia cava(119,120) e/ou amento do DC ou PA após adequada elevação passiva de membros inferiores (Figura 3(121,122)): a elevação passiva do membros inferiores distingue entre os pacientes responsivos e os não responsivos a volume; os pacientes não responsivos a volume não estão necessariamente em um estado hipovolêmico e não necessariamente precisam de mais volume. A administração de volume é minimizada para prevenir aumento de água nos pulmões.(122,123) Entretanto, após administração de dexmedetomidina, cinco em cada 20 pacientes com choque séptico tiveram mudança de independência e pré-carga para dependência de pré-carga.(124) Isso pode levar à hipotensão dentro das primeiras 3 horas após a administração(125) e sugere uma otimização circulatória iterativa.

    • - Segundo, a adequação do DC e da microcirculação é atendida: diurese, reenchimento capilar, livedo (mottling), lactato,(28,116,126) diferença arteriovenosa de oxigênio(127) ou saturação de oxigênio na veia cava superior (SsvcO2) e gap de dióxido de carbono.

  3. A administração lenta de um agonista alfa-2 em baixa dose dexmedetomidina 0,125μg.kg-1.h-1 por via intravenosa com aumento progressivo até 1,5μg.kg-1.h-1 em 3 - 12 horas). Propõe-se essa abordagem claramente precavida, a qual é chamada de “começar lento, prosseguir devagar”, termo emprestado da administração de betabloqueadores na insuficiência cardíaca(128) (Figura 3). Não se administra qualquer bolo de agonista alfa-2. Na verdade, uma dose alta de um agonista alfa-2 (bolo) primeiramente estimulará os receptores alfa-2 vasculares, levando à hipertensão paradoxal. Após a diluição do bolo, os receptores alfa-2 no tronco cerebral são estimulados, desativando a hiperatividade simpática vasomotora, aumentando a capacitância venosa e reduzindo o retorno venoso(124) (Figura 1(21)).

Em resumo, a administração de bolos de agonista alfa-2 com administração simultânea de sedação convencional, ou sem avaliação iterativa da volemia, leva à bradicardia e à hipertensão graves.

Figura 3
“Começar lento, prosseguir devagar” com a administração de agonistas alfa-2 em pacientes com instabilidade circulatória.

Desconforto ventilatório

A prática estabelecida(51,52) apresenta deficiências.(50) As práticas alternativas(53,59,61) ainda estão na infância.

A mudança de sedação convencional para cooperativa em condições de hipovolemia e administração de vasopressores só cuida da questão circulatória. Nas condições de desconforto ventilatório, este é mesclado com o desconforto ventilatório:(129) a parada respiratória geralmente ocorre antes da parada cardíaca e demanda cuidar antes do desconforto ventilatório; a ventilação com pressão positiva com pressão expiratória positiva final (PEEP) imposta sobre hipovolemia piora o desconforto circulatório.

Mudança em um paciente estável

A mudança é considerada para um paciente que se recuperou do desconforto respiratório agudo, ou seja, antes de mudar para respiração espontânea. A sedação convencional é abruptamente retirada. Introduz-se dexmedetomidina (até 1,5μg.kg-1.h-1 aumentando em 2 - 3 horas ou, melhor, até um efeito de-2 ≤ RASS ≤ 0). Administra-se sedação de resgate, se necessário. Os relaxantes musculares são retirados imediatamente antes de se estabelecer o estado estável de sedação cooperativa, com tranquilização. A respiração espontânea é estabelecida logo que(130) se controlam os fatores que evocam atividade respiratória aumentada (“drive respiratório”, taquipneia e hiperpneia): controle da febre,(131-133) agitação,(103,134) inflamação,(135,136) água pulmonar,(123) acidose sistêmica(136-138) e microcirculação, leve hipercapnia permissiva (40 < PaCO2 ≤ 50mmHg)(10,61) e posição ereta.(139) Isso foi delineado(53,54,56,61,137) na tabela 1 da referência.(55) O drive respiratório não deve ser farmacologicamente suprimido com AG, opioides ou relaxantes musculares, mas é usado fisiologicamente. O centro respiratório não é afetado pelos agonistas alfa-2.(11) Em contraste, anestésicos gerais, benzodiazepínicos ou opioides suprimem a atividade do centro respiratório. Cada um dos fatores enumerados gera taquipneia e hiperpneia, sendo tratado separadamente - uma diferenciação impossível sob AG. O controle fisiológico do aumento da atividade inspiratória leva à ausência de lesão pulmonar autoinflingida pelo paciente (P-SILI).(140,141) Então, o paciente lida apenas com o último fator de aumento da atividade respiratória, ou seja, apenas hipoxemia sob baixa PS e alta PEEP,(53-56,142) além de sedação cooperativa. Observaram-se baixas pressão driving,(143-147) pressão platô, mínima atividade dos músculos acessórios inspiratórios e sem retração de esterno.

Quando aceitável, dado-2 ≤ RASS ≤ 0, a extubação traqueal é obtida sem retirada dos agonistas alfa-2: como os agonistas alfa-2 não deprimem os reflexos das vias aéreas mesmo em uso de altas doses,(84,148) a questão não se refere à dose de agonista alfa-2 administrada, mas ao grau de alerta em comparação com a sedação profunda para permitir extubação. Mantêm-se ventilação não invasiva (VNI) + PEEP contínua sob administração contínua de agonista alfa-2 titulado para obter-2 ≤ RASS ≤ 0 até o desmame.

Em resumo, o manejo se torna analítico: a administração de um agonista alfa-2 nos permite distinguir os fatores fisiológicos dos farmacológicos que envolvem o manejo do desconforto ventilatório (aumento da atividade inspiratória versus centro respiratório deprimido ou preservado; ataraxia(8,149) versus sedação profunda).

Mudança em um paciente instável

Mudar um paciente com desconforto cardioventilatório agudo sob sedação convencional na UTI envolve a priorização entre questões simultâneas além do escopo deste artigo, como circulação estabilizada, desconforto ventilatório estabilizado (fluxo de oxigênio muito alto, VNI versus ventilação controlada mandatória(150)), e mudança de sedação convencional para sedação cooperativa.

INÍCIO DE NOVA SEDAÇÃO COOPERATIVA

A administração antecipada de sedação cooperativa é mais simples do que mudar: a respiração espontânea(9-11) e a cognição(24,25) não são deterioradas com o uso de agonistas alfa-2 como primeira linha.

Desconforto ventilatório isolado

Dexmedetomidina (infusão: 0,7μg.kg-1.h-1) trata da agitação em pacientes com VNI apresentando quadro de insuficiência ventilatória.(151) A RASS se normaliza em-3 < RASS < 0 em 3 horas.(151) Simultaneamente, a frequência respiratória (FR), a relação entre pressão parcial de oxigênio/fração inspirada de oxigênio (PaO2/FiO2), a FC e a PA sistólica se normalizam. O paciente recebe alta sem intubação.(151) Coerentemente, dexmedetomidina 0,7μg.kg-1.h-1 facilita a adaptação à VNI em situações de traumatismo torácico.(152) Esses relatos precisam ser replicados.

Um desfecho positivo similar foi observado em condições de broncoespasmo grave (dexmedetomidina: 0,25 - 0,8μg.kg-1.h-1)(153-155) ou estado de mal asmático (dexmedetomidina: 0,2 - 0,7μg.kg-1.h-1).(156) A clonidina (4μg.kg-1 p.o.) obtém o mesmo efeito.(157) A dose de agonistas alfa-2 deve ser aumentada, por exemplo, até uma dose elevada (dexmedetomidina: 1,5μg.kg-1.h-1, ou clonidina: 2μg.kg-1.h-1), e titulada até obtenção do efeito. Rigorosa ataraxia é necessária quando estão presentes estímulos psicogênicos.

Desconforto cardioventilatório agudo

Choque séptico(158) ou SDRA difusa precoce(150) se encontram além da abrangência desta seção. A SDRA do coronavírus da síndrome respiratória agida grave 2 (SARS-CoV-2) é uma doença inflamatória que leva a alto drive respiratório, além de doença vascular inflamatória dos capilares pulmonares. É necessária PEEP baixa ou média, com estrito controle da temperatura, agitação e inflamação.

Ventilação não invasiva (baixa PS,(143,159-161) alta FiO2 e alta PEEP) ou fluxo de oxigênio muito alto nos permitem ganhar tempo, acelerar a pré-oxigenação(162) e minimizar o trabalho respiratório. Simultaneamente, a carga de volume (por exemplo: bolo de 1.000mL antes da intubação endotraqueal: intubação) previne o colapso circulatório observado imediatamente intubação + ventilação com pressão positiva + PEEP em pacientes hipovolêmicos.(163)

Se parte dos pacientes com VNI necessitam de VMC versus VNI(140) por mais de 30 a 60 minutos, a infusão de agonistas alfa-2 pode ser iniciada antes de se instalar a VNI ou durante ela. Por outro lado, os agonistas alfa-2 são infundidos imediatamente após a intubação. Sedação de resgate ou nova sedação é utilizada até que se obtenha sedação cooperativa estável.

A dose de dexmedetomidina é uma função da circulação (0,125μg.kg-1.h-1 aumentando gradualmente até 1,5μg.kg-1.h-1,-2 ≤ RASS ≤ 0 em 3 - 12 horas: começar lento, prosseguir devagar). Como é provável uma permanência longa na UTI, não é necessária imediatamente uma sedação cooperativa estável. Primeiro deve ser obtida a estabilização da circulação (volume versus vasopressores quando a pressão diastólica é baixa(164)). Em segundo lugar, sedação iterativa de resgate nos permitirá estabilizar adicionalmente a sedação cooperativa. Finalmente, trata-se da P-SILI e da hipoxemia (Tabela 1(55)).

Duas questões merecem comentário:
  1. A tolerância aos efeitos sedativos de agonistas alfa-2 se desenvolve em semanas(148) ou dias. Além disso, a confusão séptica ou obnubilação por baixo fluxo melhoram com o tempo. Assim, a sedação obtida com agonistas alfa-2 pode se tornar insuficiente. Podem ser utilizadas doses mais altas de agonistas alfa-2. Por outro lado, a suplementação com neurolépticos (ver acima) alcança-2 < RASS < 0.

  2. O relaxamento muscular suprime P-SILI e dissincronia paciente-ventilador(165) por 12-48 horas.(51,57,58) Agonistas alfa-2 administrados até o teto de efeito deveriam ser suplementados com relaxamento muscular? O estado de vigília será minimizado com exame clínico persistente, eletroencefalografia (BIS), titulação ou uso de agonistas alfa-2 até o efeito, tranquilização e neurolépticos adicionais.

CONSIDERAÇÕES FINAIS

Na unidade de terapia intensiva, os agonistas alfa-2 apresentam efeitos terapêuticos e colaterais intrinsicamente entrelaçados,(13) ou seja, sedação cooperativa e desativação simpática. A desativação simpática é benéfica nas condições de insuficiência sistólica ou diastólica e prejudicial em condições de hipovolemia. Para obter efeitos benéficos, só devem ser selecionadas indicações de nicho, em desacordo com uma abordagem “tamanho único”. A curva de aprendizado se estende da circulação estável (delirium tremens) ao desconforto ventilatório isolado e, em seguida, ao desconforto cardioventilatório agudo. Sugere-se uma abordagem “começar lento, prosseguir devagar”. Deve ser feita suplementação dos agonistas alfa-2 com neurolépticos se necessária, sem benzodiazepínicos ou propofol. É recomendada analgesia sem opioides. Para evitar a mudança de sedação convencional para cooperativa, os agonistas alfa-2 devem ser utilizados como sedativos de primeira linha.(46) O manejo é expresso em itens como segue: cognição (ataraxia,(5) analgognosia(8)), nocicepção, circulação (elevação passiva das pernas,(122) ecocardiografia,(119,120) ventilação (controle da febre,(131,132) agitação,(103) inflamação,(31,33,35,110,166) água pulmonar,(123) pH, PaCO2, hipoxemia). A evidência obtida de um estudo randomizado com utilização de um delineamento nítido(73,74) pode ampliar os dados preliminares de desfecho(37-45) e implantar as presentes sugestões.

AGRADECIMENTOS

A Cividjian, MEng, PhD, Alpha-2 Ltd, Lyon, criou a figura 3. Figura adicionais disponíveis em Research Gate.

  • #
    Após administração de clonidina 300μg por via oral, voluntários mudavam facilmente entre sono e vigília (“bastante alerta”) e vice-versa. Uma baixa dose de clonidina (10μg.kg-1) melhora a memória em primatas idosos. Na unidade de terapia intensiva, sob uso de dexmedetomidina, a) uma criança intubada brinca com sua enfermeira com um jogo de cavalinhos (P Delaire, RN, comunicação pessoal), e b) um paciente intubado relatou dor torácica isquêmica, o que permitiu seu tratamento.
  • $
    O sistema imune inato não é considerado.
  • &
    Não há motivo para acrescentar agonistas alfa-2 a betabloqueadores nas situações da unidade de terapia intensiva (exceto no raro caso de hipertensão resistente em pacientes jovens para controlar a frequência cardíaca entre 55 e 65 batimentos por minuto). Se for escolhido utilizar agonistas alfa-2, os betabloqueadores devem ser retirados logo que se atingir o estado estável da sedação cooperativa, para não provocar mais bradicardia, sendo, então, reintroduzidos, se for o caso. Doses elevadas de amiodarona devem ser reduzidas em 24 a 72 horas para evitar bradicardia excessiva. Caso necessário, por conta de arritmias supraventriculares, deve ser administrada metade das doses de ataque de verapamil ou amiodarona em intervalo mais longo (por exemplo: amiodarona 300mg em 20 minutos administrada como 150mg em 40 minutos, repetida se necessário).
  • £
    A mudança pode ser realizada no turno da noite apenas se o intensivista responsável tiver experiência com agonistas alfa-2, com tempo para supervisionar a mudança realizada por enfermeiros treinados e sem sobrecarga de trabalho.

REFERÊNCIAS

  • 1 Petty TL. Suspended life or extending death? Chest. 1998;114(2):360-1.
  • 2 Brochard L. Less sedation in intensive care: the pendulum swings back. Lancet. 2010;375(9713):436-8.
  • 3 Strom T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet. 2010;375(9713):475-80.
  • 4 Strom T, Stylsvig M, Toft P. Long-term psychological effects of a no-sedation protocol in critically ill patients. Crit Care. 2011;15(6):R293.
  • 5 Dollery CT, Davies DS, Draffan GH, Dargie HJ, Dean CR, Reid JL, et al. Clinical pharmacology and pharmacokinetics of clonidine. Clin Pharmacol Ther. 1976;19(1):11-7.
  • 6 Arnsten AF, Goldman-Rakic PS. Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985;230(4731):1273-6.
  • 7 Venn RM, Newman J, Grounds M. A phase II study to evaluate the efficacy of dexmedetomidine for sedation in the medical intensive care unit. Intensive Care Med. 2003;29(2):201-7.
  • 8 Kauppila T, Kemppainen P, Tanila H, Pertovaara A. Effect of systemic medetomidine, an alpha-2 adrenoceptor agonist, on experimental pain in humans. Anesthesiology. 1991;74(1):3-8.
  • 9 Bailey PL, Sperry RJ, Johnson GK, Eldredge SJ, East KA, East TD, et al. Respiratory effects of clonidine alone and combined with morphine, in humans. Anesthesiology. 1991;74(1):43-8.
  • 10 Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77(6):1125-33.
  • 11 Voituron N, Hilaire G, Quintin L. Dexmedetomidine and clonidine induce long-lasting activation of the respiratory rhythm generator of neonatal mice: possible implication for critical care. Respir Physiol Neurobiol. 2012;180(1):132-40.
  • 12 Davies DS, Wing AM, Reid JL, Neill DM, Tipett P, Dollery CT. Pharmacokinetics and concentration-effect relationships of intravenous and oral clonidine. Clin Pharmacol Ther. 1977;21(5):593-601.
  • 13 Ghignone M, Quintin L, Duke PC, Kehler CH, Calvillo O. Effects of clonidine on narcotic requirements and hemodynamic response during induction of fentanyl anesthesia and endotracheal intubation. Anesthesiology. 1986;64(1):36-42.
  • 14 Colin PJ, Hannivoort LN, Eleveld DJ, Reyntjens KM, Absalom AR, Vereecke HE, et al. Dexmedetomidine pharmacodynamics in healthy volunteers: 2. Haemodynamic profile. Br J Anaesth. 2017;119(2):211-20.
  • 15 Giles TD, Iteld BJ, Mautner RK, Rognoni PA, Dillenkoffer RL. Short-term effects of intravenous clonidine in congestive heart failure. Clin Pharmacol Ther. 1981;30(6):724-8.
  • 16 Hermiller JB, Magorien RD, Leithe ME, Unverferth DV, Leier CV. Clonidine in congestive heart failure: a vasodilator with negative inotropic effects. Am J Cardiol. 1983;51(5):791-5.
  • 17 Stefanadis C, Manolis A, Dernellis J, Tsioufis C, Tsiamis E, Gavras I, et al. Acute effect of clonidine on left ventricular pressure-volume relation in hypertensive patients with diastolic heart dysfunction. J Hum Hypertens. 2001;15(9):635-42.
  • 18 Schraub P, Vecchi M, Matthys M, Lecomte B, Ferrara N, Ghignone M, et al. A centrally acting antihypertensive, clonidine, combined to a venous dilator, nitroglycerin, to handle severe pulmonary edema. Am J Emerg Med. 2016;34(3):676.e5-7.
  • 19 Aars H. Effects of clonidine on aortic diameter and aortic baroreceptor activity. Eur J Pharmacol. 1972;20(1):52-9.
  • 20 Motz W, Ippisch R, Strauer BE. The role of clonidine in hypertensive heart disease. Influence on myocardial contractility and left ventricular afterload. Chest. 1983;83(2 Suppl):433-5.
  • 21 Prys-Roberts C. Regulation of the circulation. In: Prys-Roberts C, editor. The circulation in anaesthesia: applied physiology and pharmacology. Oxford: Blackwell; 1980. p. 179-207.
  • 22 Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298(22):2644-53.
  • 23 Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, Whitten P, Margolis BD, Byrne DW, Ely EW, Rocha MG; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared with Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489-99.
  • 24 Mirski MA, Lewin JJ 3rd, Ledroux S, Thompson C, Murakami P, Zink EK, et al. Cognitive improvement during continuous sedation in critically ill, awake and responsive patients: the Acute Neurological ICU Sedation Trial (ANIST). Intensive Care Med. 2010;36(9):1505-13.
  • 25 Arnsten AF, Jin LE. Guanfacine for the treatment of cognitive disorders: a century of discoveries at Yale. Yale J Biol Med. 2012;85(1):45-58.
  • 26 Alexopoulou C, Kondili E, Diamantaki E, Psarologakis C, Kokkini S, Bolaki M, et al. Effects of dexmedetomidine on sleep quality in critically ill patients: a pilot study. Anesthesiology. 2014;121(4):801-7.
  • 27 Ruokonen E, Parviainen I, Jakob SM, Nunes S, Kaukonen M, Shepherd ST, Sarapohja T, Bratty JR, Takala J; “Dexmedetomidine for Continuous Sedation” Investigators. Dexmedetomidine versus propofol/midazolam for long-term sedation during mechanical ventilation. Intensive Care Med. 2009;35(2):282-90.
  • 28 De Kock M, Laterre PF, Van Obbergh L, Carlier M, Lerut J. The effects of intraoperative intravenous clonidine on fluid requirements, hemodynamic variables, and support during liver transplantation: a prospective, randomized study. Anesth Analg. 1998;86(3):468-76.
  • 29 Liepert DJ, Townsend GE. Improved hemodynamic and renal function with clonidine in coronary artery bypass grafting. Anesth Analg. 1990;70(2):S240.
  • 30 Kulka PJ, Tryba M, Zenz M. Preoperative alpha-2 adrenergic receptor agonists prevent the deterioration of renal function after cardiac surgery: results of a randomized, controlled trial. Crit Care Med. 1996;24(6):947-52.
  • 31 von Dossow V, Baehr N, Moshirzadeh M, von Heymann C, Braun JP, Hein OV, et al. Clonidine attenuated early proinflammatory response in T-cell subsets after cardiac surgery. Anesth Analg. 2006;103(4):809-14.
  • 32 Li B, Li Y, Tian S, Wang H, Wu H, Zhang A, et al. Anti-inflammatory effects of perioperative dexmedetomidine administered as an adjunct to general anesthesia: a meta-analysis. Sci Rep. 2015;5:12342.
  • 33 Ueki M, Kawasaki T, Habe K, Hamada K, Kawasaki C, Sata T. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia. 2014;69(7):693-700.
  • 34 Flanders CA, Rocke AS, Edwardson SA, Baillie JK, Walsh TS. The effect of dexmedetomidine and clonidine on the inflammatory response in critical illness: a systematic review of animal and human studies. Crit Care. 2019;23(1):402.
  • 35 Ohta Y, Miyamoto K, Kawazoe Y, Yamamura H, Morimoto T. Effect of dexmedetomidine on inflammation in patients with sepsis requiring mechanical ventilation: a sub-analysis of a multicenter randomized clinical trial. Crit Care. 2020;24(1):493.
  • 36 Zhang Z, Chen K, Ni H, Zhang X, Fan H. Sedation of mechanically ventilated adults in intensive care unit: a network meta-analysis. Sci Rep. 2017;7:44979.
  • 37 Gregorakos L, Kerezoudi E, Dimopoulos G, Thomaides T. Management of blood pressure instability in severe tetanus: the use of clonidine. Intensive Care Med. 1997;23(8):893-5.
  • 38 Moritz RD, Machado FO, Pinto EP, Cardoso GS, Nassar SM. [Evaluate the clonidine use for sedoanalgesia in intensive care unit patients under prolonged mechanical ventilation]. Rev Bras Ter Intensiva. 2008;20(1):24-30. Portuguese.
  • 39 Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, Herr DL, Maze M, Ely EW; MENDS investigators. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Crit Care. 2010;14(2):R38.
  • 40 Ji F, Li Z, Nguyen H, Young N, Shi P, Fleming N, et al. Perioperative dexmedetomidine improves outcomes of cardiac surgery. Circulation. 2013;127(15):1576-84.
  • 41 Kawazoe Y, Miyamoto K, Morimoto T, Yamamoto T, Fuke A, Hashimoto A, Koami H, Beppu S, Katayama Y, Itoh M, Ohta Y, Yamamura H; Dexmedetomidine for Sepsis in Intensive Care Unit Randomized Evaluation (DESIRE) Trial Investigators. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis: a randomized clinical trial. JAMA. 2017;317(13):1321-8.
  • 42 Aso S, Matsui H, Fushimi K, Yasunaga H. Dexmedetomidine and mortality from sepsis requiring mecanical ventilation: a Japanese nationwide retrospective cohort study. J Intensive Care Med. 2020 Jul 22:885066620942154.
  • 43 Eker C, Asgeirsson B, Grande PO, Schalén W, Nordstrom CH. Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Crit Care Med. 1998;26(11):1881-6.
  • 44 Dizdarevic K, Hamdan A, Omerhodzic I, Kominlija-Smajic E. Modified Lund concept versus cerebral perfusion pressure-targeted therapy: a randomised controlled study in patients with secondary brain ischaemia. Clin Neurol Neurosurg. 2012;114(2):142-8.
  • 45 Naredi S, Edén E, Zall S, Stephensen H, Rydenhag B. A standardized neurosurgical neurointensive therapy directed toward vasogenic edema after severe traumatic brain injury: clinical results. Intensive Care Med. 1998;24(5):446-51.
  • 46 Pichot C, Ghignone M, Quintin L. Dexmedetomidine and clonidine: from second- to first-line sedative agents in the critical care setting? J Intensive Care Med. 2012;27(4):219-37.
  • 47 Pichot C, Longrois D, Ghignone M, Quintin L. Dexmédetomidine et clonidine: revue de leurs propriétés pharmacodynamiques en vue de définir la place des agonistes alpha-2 adrénergiques dans la sédation en réanimation. Ann Fr Anesth Reanim. 2012;31(11):876-96.
  • 48 Longrois D, Petitjeans F, Simonet O, de Kock M, Belliveau M, Pichot C, et al. Clinical practice: should we radically alter our sedation of critical care patients, especially given the COVID-19 pandemics? Rom J Anaesth Intensive Care. 2020;27(2):43-76.
  • 49 Chanques G, Jaber S, Jung B, Payen JF. Sédation-analgésie en réanimation de l’adulte. EMC Anesth Reanim. 2013;10:1-12.
  • 50 Wrigge H, Downs JB, Hedenstierna G, Putensen C. Paralysis during mechanical ventilation in acute respiratory distress syndrome: back to the future? Crit Care Med. 2004;32(7):1628-9; author reply 1629-30.
  • 51 Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guérin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107-16.
  • 52 Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-68.
  • 53 Pichot C, Picoche A, Saboya-Steinbach MI, Rousseau R, de Guys J, Lahmar M, et al. Combination of clonidine sedation and spontaneous breathing-pressure support upon acute respiratory distress syndrome: a feasability study in four patients. Acta Anaesthesiol Belg. 2012;63(3):127-33.
  • 54 Pichot C, Petitjeans F, Ghignone M, Quintin L. Is there a place for pressure-support ventilation and high end-expiratory pressure combined to alpha-2 agonists early in severe diffuse acute respiratory distress syndrome? Med Hypotheses. 2013;80(6):732-7.
  • 55 Petitjeans F, Pichot C, Ghignone M, Quintin L. Early severe acute respiratory distress syndrome: what’s going on? Part II: controlled vs. spontaneous ventilation? Anaesthesiol Intensive Ther. 2016;48(5):339-51. Table 1, An alternative strategy in early severe diffuse ARDS; p.341.
  • 56 Petitjeans F, Pichot C, Ghignone M, Quintin L. Building on the shoulders of giants: is the use of early spontaneous ventilation in the setting of severe diffuse acute respiratory distress syndrome actually heretical? Turk J Anaesthesiol Reanim. 2018;46(5):339-47.
  • 57 Yoshida T, Papazian L. When to promote spontaneous respiratory activity in acute respiratory distress patients? Anesthesiology. 2014;120(6):1313-5.
  • 58 Chen L, Del Sorbo L, Grieco DL, Shklar O, Junhasavasdikul D, Telias I, et al. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon. Am J Respir Crit Care Med. 2018;197(1):132-6.
  • 59 Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1241-8.
  • 60 Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med. 2009;151(8):566-76.
  • 61 Petitjeans F, Martinez J, Danguy des Deserts M, Leroy S, Quintin L, Escarment J. A centrally acting antihypertensive, clonidine, sedates patients presenting with acute res-piratory distress syndrome evoked by Severe acute respiratory syndrome-coronavirus 2. Crit Care Med. 2020;48(10):e991-e993.
  • 62 Wang L, Zhang A, Liu W, Liu H, Su F, Qi L. Effects of dexmedetomidine on perioperative stress response, inflammation and immune function in patients with different degrees of liver cirrhosis. Exp Ther Med. 2018;16(5):3869-74.
  • 63 Virtanen R, Savola JM, Saano V, Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur J Pharmacol. 1988;150(1-2):9-14.
  • 64 Chamadia S, Pedemonte JC, Hobbs LE, Deng H, Nguyen S, Cortinez LI, et al. A pharmacokinetic and pharmacodynamic study of oral dexmedetomidine. Anesthesiology. 2020;133(6):1223-33.
  • 65 Shehabi Y, Botha JA, Ernest D, Freebairn RC, Reade MC, Roberts BL, et al. Clinical application, the use of dexmedetomidine in intensive care sedation. Crit Care Shock. 2010;13(2):40-50.
  • 66 Sauder P, Andreoletti M, Cambonie G, Capellier G, Feissel M, Gall O, et al. [Sedation and analgesia in intensive care (with the exception of new-born babies). French Society of Anesthesia and Resuscitation. French-speaking Resuscitation Society]. Ann Fr Anesth Reanim. 2008;27(7-9):541-51.
  • 67 Sun MK, Guyenet P. Effect of clonidine and gamma-aminobutyric acid on the discharges of medullo-spinal sympathoexcitatory neurons in the rat. Brain Res. 1986;368(1):1-17.
  • 68 Krassioukov AV, Gelb AW, Weaver LC. Action of propofol on central sympathetic mechanisms controlling blood pressure. Can J Anaesth. 1993;40(8):761-9.
  • 69 Bernard JM, Bourélli B, Homméril JL, Pinaud M. Effects of oral clonidine premedication and postoperative i.v. infusion on haemodynamic and adrenergic responses during recovery from anesthesia. Acta Anaesthesiol Scand. 1991;35(1):54-9.
  • 70 Devereaux PJ, Sessler DI, Leslie K, Kurz A, Mrkobrada M, Alonso-Coello P, Villar JC, Sigamani A, Biccard BM, Meyhoff CS, Parlow JL, Guyatt G, Robinson A, Garg AX, Rodseth RN, Botto F, Lurati Buse G, Xavier D, Chan MT, Tiboni M, Cook D, Kumar PA, Forget P, Malaga G, Fleischmann E, Amir M, Eikelboom J, Mizera R, Torres D, Wang CY, Vanhelder T, Paniagua P, Berwanger O, Srinathan S, Graham M, Pasin L, Le Manach Y, Gao P, Pogue J, Whitlock R, Lamy A, Kearon C, Chow C, Pettit S, Chrolavicius S, Yusuf S; POISE-2 Investigators. Clonidine in patients undergoing noncardiac surgery. N Engl J Med. 2014;370(16):1504-13.
  • 71 Sessler DI, Conen D, Leslie K, Yusuf S, Popova E, Graham M, Kurz A, Villar JC, Mrkobrada M, Sigamani A, Biccard BM, Meyhoff CS, Parlow JL, Guyatt G, Xavier D, Chan MTV, Kumar PA, Forget P, Malaga G, Fleischmann E, Amir M, Torres D, Wang CY, Paniagua P, Berwanger O, Srinathan S, Landoni G, Manach YL, Whitlock R, Lamy A, Balasubramanian K, Gilron I, Turan A, Pettit S, Devereaux PJ; Perioperative Ischemic Evaluation-2 Trial (POISE-2) Investigators. One-year results of a factorial randomized trial of aspirin versus placebo and clonidine versus placebo in patients having noncardiac surgery. Anesthesiology. 2020;132(4):692-701.
  • 72 Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, Bin Kadiman S, McArthur CJ, Murray L, Reade MC, Seppelt IM, Takala J, Wise MP, Webb SA; ANZICS Clinical Trials Group and the SPICE III Investigators. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019;380(26):2506-17.
  • 73 Constantin JM, Godet T, James A, Monsel A. A small step for sedation that may become a giant leap for critical care medicine. Anaesth Crit Care Pain Med. 2019;38(5):425-7.
  • 74 Longrois D, Quintin L. Dexmedetomidine: superiority trials needed? Anaesth Crit Care Pain Med. 2016;35(3):237-8.
  • 75 Abi-Jaoude F, Brusset A, Ceddaha A, Schlumberger S, Raffin L, Dubois C, et al. Clonidine premedication for coronary artery bypass grafting under high-dose alfentanil anesthesia: intraoperative and postoperative hemodynamic study. J Cardiothorac Vasc Anesth. 1993;7(1):35-40.
  • 76 De Kock M, Wiederkher P, Laghmiche A, Scholtes JL. Epidural clonidine used as the sole analgesic agent during and after abdominal surgery. A dose-response study. Anesthesiology. 1997;86(2):285-92.
  • 77 Ghignone M, Calvillo O, Quintin L. Anesthesia and hypertension: the effect of clonidine on perioperative hemodynamics and isoflurane requirements. Anesthesiology. 1987;67(1):3-10.
  • 78 Ghignone M, Noe C, Calvillo O, Quintin L. Anesthesia for ophthalmic surgery in the elderly: the effects of clonidine on intraocular pressure, perioperative hemodynamics, and anesthetic requirements. Anesthesiology. 1988;68(5):707-16.
  • 79 Flacke JW, Bloor BC, Flacke WE, Wong D, Dazza S, Stead SW, et al. Reduced narcotic requirement by clonidine with improved hemodynamic and adrenergic stability in patients undergoing coronary bypass surgery. Anesthesiology. 1987;67(1):11-9.
  • 80 Quintin L, Bouilloc X, Butin E, Bayon MC, Brudon JR, Levron JC, et al. Clonidine for major vascular surgery in hypertensive patients: a double-blind, controlled, randomized study. Anesth Analg. 1996;83(4):687-95.
  • 81 Shehabi Y, Ruettimann U, Adamson H, Innes R, Ickeringill M. Dexmedetomidine infusion for more than 24 hours in critically ill patients: sedative and cardiovascular effects. Intensive Care Med. 2004;30(12):2188-96.
  • 82 Gold MS, Pottash AL, Extein I, Kleber HD. Clonidine and opiate withdrawal. Lancet. 1980;2(8203):1078-9.
  • 83 Schlager E, Meier T. A strange Balinese method of inducing sleep with some notes about balyans. Acta Trop. 1947;4(2):127-34.
  • 84 Wing LM, Reid JL, Davies DS, Dargie HJ, Dollery CT. Apparent resistance to hypotensive effect of clonidine. Br Med J. 1977;1(6054):136-8.
  • 85 Frisk-Holmberg M, Paalzow L, Wibell L. Relationship between the cardiovascular effects and steady-state kinetics of clonidine in hypertension. Demonstration of a therapeutic window in man. Eur J Clin Pharmacol. 1984;26(3):309-13.
  • 86 Erkonen G, Lamb F, Tobias JD. High-dose dexmedetomidine-induced hypertension in a child with traumatic brain injury. Neurocrit Care. 2008;9(3):366-9.
  • 87 Stahle H. A historical perspective: development of clonidine. Baillieres Clin Anaesthesiol. 2000;14(2):236-46.
  • 88 Meyer C, Cambray R. One hundred times the intended dose of caudal clonidine in three pediatric patients. Paediatr Anaesth. 2008;18(9):888-90.
  • 89 Isbister GK, Heppell SP, Page CB, Ryan NM. Adult clonidine overdose: prolonged bradycardia and central nervous system depression, but not severe toxicity. Clin Toxicol (Phila). 2017;55(3):187-92.
  • 90 Metz G, Nebel B. [Clonidine in severe alcohol withdrawal delirium]. Fortschrift Med. 1983;101(26):1260-4. German.
  • 91 Bohrer H, Bach A, Layer M, Werning P. Clonidine as a sedative adjunct in intensive care. Intensive Care Med.1990;16(4):265-6.
  • 92 Spies CD, Dubisz N, Neumann T, Blum S, Muller C, Rommelspacher H, et al. Therapy of alcohol withdrawal syndrome in intensive care unit patients following trauma: results of a prospective, randomized trial. Crit Care Med. 1996;24(3):414-22.
  • 93 Carrasco G, Baeza N, Cabré L, Portillo E, Gimeno G, Manzanedo D, et al. Dexmedetomidine for the treatment of hyperactive delirium refractory to haloperidol in nonintubated ICU patients: a nonrandomized controlled trial. Crit Care Med. 2016;44(7):1295-306.
  • 94 Saunier CF, Akaoka H, de La Chapelle B, Charléty PJ, Chergui K, Chouvet G, et al. Activation of brain noradrenergic neurons during recovery from halothane anesthesia. Persistence of phasic activation after clonidine. Anesthesiology. 1993;79(5):1072-82.
  • 95 Servan-Schreiber D, Printz H, Cohen JD. A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science. 1990;249(4971):892-5.
  • 96 Aston-Jones G, Cohen JD. Adaptative gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol. 2005;493(1):99-110.
  • 97 Miyazaki S, Uchida S, Mukai J, Nishihara K. Clonidine effects on all-night human sleep: opposite action of low- and medium-dose clonidine on human NREM-REM sleep proportion. Psychiatry Clin Neurosci. 2004;58(2):138-44.
  • 98 Harron DW, Riddell JG, Shanks RG. Effects of azepexole and clonidine on baroreceptor mediated reflex bradycardia and physiological tremor in man. Br J Clin Pharmacol. 1985;20(5):431-6.
  • 99 Tremblay LE, Bedard PJ. Effect of clonidine on motoneuron excitability in spinalised rats. Neuropharmacology. 1986;25(1):41-6.
  • 100 Mokhtari M, Sistanizad M, Farasatinasab M. Antipyretic effect of clonidine in intensive care unit patients: a nested observational study. J Clin Pharmacol. 2017;57(1):48-51.
  • 101 Quintin L, Viale JP, Annat G, Hoen JP, Butin E, Cottet-Emard JM, et al. Oxygen uptake after major abdominal surgery: effect of clonidine. Anesthesiology. 1991;74(2):236-41.
  • 102 Takahashi H, Nishikawa T, Mizutani T, Handa F. Oral clonidine premedication decreases energy expenditure in human volunteers. Can J Anaesth. 1997;44(3):268-72.
  • 103 Liatsi D, Tsapas B, Pampori S, Tsagourias M, Pneumatikos I, Matamis D. Respiratory, metabolic and hemodynamic effects of clonidine in ventilated patients presenting with withdrawal syndrome. Intensive Care Med. 2009;35(2):275-81.
  • 104 Vourc’h M, Feuillet F, Mahe PJ, Sebille V, Asehnoune K; BACLOREA trial group. Baclofen to prevent agitation in alcohol-addicted patients in the ICU: study protocol for a randomised controlled trial. Trials. 2016;17(1):415.
  • 105 Gagnon DJ, Riker RR, Glisic EK, Kelner A, Perrey HM, Fraser GL. Transition from dexmedetomidine to enteral clonidine for ICU sedation: an observational pilot study. Pharmacotherapy. 2015;35(3):251-9.
  • 106 Herr DL, Sum-Ping ST, England M. ICU sedation after coronary artery bypass graft surgery: dexmedetomidine-based versus propofol-based sedation regimens. J Cardiothorac Vasc Anesth. 2003;17(5):576-84.
  • 107 Lam F, Ransom C, Gossett JM, Kelkhoff A, Seib PM, Schmitz ML, et al. Safety and efficacy of dexmedetomidine in children with heart failure. Pediatr Cardiol. 2013;34(4):835-41.
  • 108 Cioccari L, Luethi N, Bailey M, Shehabi Y, Howe B, Messmer AS, Proimos HK, Peck L, Young H, Eastwood GM, Merz TM, Takala J, Jakob SM, Bellomo R; ANZICS Clinical Trials Group and the SPICE III Investigators. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: a subgroup analysis of the Sedation Practice in Intensive Care Evaluation [SPICE III] Trial. Crit Care. 2020;24(1):441.
  • 109 Morelli A, Sanfilippo F, Arnemann P, Hessler M, Kampmeier TG, D’Egidio A, et al. The effect of propofol and dexmedetomidine sedation on norepinephrine requirements in septic shock patients: a crossover trial. Crit Care Med. 2019;47(2):e89-e95.
  • 110 Leroy S, Aladin L, Laplace C, Jalem S, Rosenthal JM, Abrial A, et al. Introduction of a centrally anti-hypertensive, clonidine, reduces noradrenaline requirements in septic shock caused by necrotizing enterocolitis. Am J Emerg Med. 2017;35(2):377.e3-377.e5.
  • 111 Pichot C, Mathern P, Khettab F, Ghignone M, Geloen A, Quintin L. Increased pressor response to noradrenaline during septic shock following clonidine? Anaesth Intensive Care. 2010;38(4):784-5.
  • 112 Pichot C, Géloen A, Ghignone M, Quintin L. Alpha-2 agonists to reduce vasopressor requirements in septic shock? Med Hypotheses. 2010;75(6):652-6.
  • 113 Geloen A, Chapelier K, Cividjian A, Dantony E, Rabilloud M, May CN, et al. Clonidine and dexmedetomidine increase the pressor response to norepinephrine in experimental sepsis: a pilot study. Crit Care Med. 2013;41(12):e431-8.
  • 114 Lankadeva YR, Booth LC, Kosaka J, Evans RG, Quintin L, Bellomo R, et al. Clonidine restores pressor responsiveness to phenylephrine and angiotensin II in ovine sepsis. Crit Care Med. 2015;43(7):e221-9.
  • 115 Hoffman BB, Lefkowitz RJ. Alpha-adrenergic receptor subtypes. N Engl J Med. 1980;302(25):1390-6.
  • 116 Kulka PJ, Tryba M, Reimer T, Weisser H. Clonidine prevents tissue-malperfusion during extracorporal circulation. Anesth Analg. 1996;82:S254.
  • 117 Mellander S. Comparative studies on the adrenergic neuro-hormonal control of resistance and capacitance blood vessels in the cat. Acta Physiol Scand Suppl. 1960;50(176):1-86.
  • 118 Olivari MT, Levine TB, Cohn JN. Acute hemodynamic and hormonal effects of central versus peripheral sympathetic inhibition in patients with congestive heart failure. J Cardiovasc Pharmacol. 1986;8(5):973-7
  • 119 Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30(9):1734-9.
  • 120 Vieillard-Baron A, Evrard B, Repessé X, Maizel J, Jacob C, Goudelin M, et al. Limited value of end-expiratory inferior vena cava diameter to predict fluid responsiveness impact of intra-abdominal pressure. Intensive Care Med. 2018;44(2):197-203.
  • 121 Monnet X, Teboul JL. Passive leg raising. Intensive Care Med. 2008;34(4):659-63.
  • 122 Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19(1):18.
  • 123 Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41(2):472-80.
  • 124 Yu T, Huang Y, Guo F, Yang Y, Teboul JL, Qiu H. The effects of propofol and dexmedetomidine infusion on fluid responsiveness in critically ill patients. J Surg Res. 2013;185(2):763-73.
  • 125 Nelson KM, Patel GP, Hammond DA. Effects from continuous infusions of dexmedetomidine and propofol on hemodynamic stability in critically ill adult patients with septic shock. J Intensive Care Med. 2020;35(9):875-80.
  • 126 Miyamoto K, Nakashima T, Shima N, Kato S, Ueda K, Kawazoe Y, Ohta Y, Morimoto T, Yamamura H; DESIRE Trial Investigators. Effect of dexmedetomidine on lactate clearance in patients with septic shock: a subanalysis of a multicenter randomized controlled trial. Shock. 2018;50(2):162-6.
  • 127 Flacke JW. Alpha-2 adrenergic agonists in cardiovascular anesthesia. J Cardiothorac Vasc Anesth. 1992;6(3):344-59.
  • 128 Chatterjee K. The fear of beta-blocker therapy in heart failure: time to forget. Arch Intern Med. 2004;164(13):1370-1.
  • 129 Viires N, Sillye G, Aubier M, Rassidakis A, Roussos C. Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J Clin Invest. 1983;72(3):935-47.
  • 130 Page B, Vieillard-Baron A, Beauchet A, Aegerter P, Prin S, Jardin F. Low stretch ventilation strategy in acute respiratory distress syndrome: eight years of clinical experience in a single center. Crit Care Med. 2003;31(3):765-9.
  • 131 Manthous CA, Hall JB, Olson D, Singh M, Chatila W, Pohlman A, et al. Effect of cooling on oxygen consumption in febrile critically ill patients. Am J Respir Crit Care Med. 1995;151(1):10-4.
  • 132 Schortgen F, Clabault K, Katsahian S, Devaquet J, Mercat A, Deye N, et al. Fever control using external cooling in septic shock: a randomized controlled trial. Am J Respir Crit Care Med. 2012;185(10):1088-95.
  • 133 Petitjeans F, Leroy S, Pichot C, Geloen A, Ghignone M, Quintin L. Hypothesis: fever control, a niche for alpha-2 agonists in the setting of septic shock and severe acute respiratory distress syndrome? Temperature (Austin). 2018;5(3):224-56.
  • 134 Coggeshall JW, Marini JJ, Newman JH. Improved oxygenation after muscle relaxation in adult respiratory distress syndrome. Arch Intern Med 1985;145(9):1718-20.
  • 135 Mauri T, Grasselli G, Suriano G, Eronia N, Spadaro S, Turrini C, et al. Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology. 2016;125(1):159-67.
  • 136 Crotti S, Bottino N, Ruggeri GM, Spinelli E, Tubiolo D, Lissoni A, et al. Spontaneous breathing during extracorporeal membrane oxygenation in acute respiratory failure. Anesthesiology. 2017;126(4):678-87.
  • 137 Pichot C, Petitjeans F, Ghignone M, Quintin L. Spontaneous ventilation-high PEEP upon severe ARDS: an erratum to further the analysis. Med Hypotheses. 2013;81(5):967.
  • 138 Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med. 1990;16(6):372-7.
  • 139 Dellamonica J, Lerolle N, Sargentini C, Hubert S, Beduneau G, Di Marco F, et al. Effect of different seated positions on lung volume and oxygenation in acute respiratory distress syndrome. Intensive Care Med. 2013;39(6):1121-7.
  • 140 Carteaux G, Millan-Guilarte T, De Prost N, Razazi K, Abid S, Thille AW, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume. Crit Care Med. 2016;44(2):282-90.
  • 141 Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438-42.
  • 142 Pichot C, Petitjeans F, Ghignone G, Quintin L. Commentary: Spontaneous ventilation in the setting of early severe stabilized ARDS: heresy? Austin J Pulm Respir Med. 2016;3(2):id1046.
  • 143 Freebairn R, Hickling K. Spontaneous breathing during mechanical ventilation in ARDS. Crit Care Shock. 2005;8(3):61-6.
  • 144 Leray V, Bourdin G, Flandreau G, Bayle F, Wallet F, Richard JC, et al. A case of pneumomediastinum in a patient with acute respiratory distress syndrome on pressure support ventilation. Respir Care. 2010;55(6):770-3.
  • 145 Guldner A, Pelosi P, Gama de Abreu M. Spontaneous breathing in mild and moderate versus severe acute respiratory distress syndrome. Curr Opin Crit Care. 2014;20(1):69-76.
  • 146 Rittayamai N, Brochard L. Recent advances in mechanical ventilation in patients with acute respiratory distress syndrome. Eur Respir Rev. 2015;24(135):132-40.
  • 147 Mezidi M, Guérin C. Complete assessment of respiratory mechanics during pressure support ventilation. Intensive Care Med. 2019;45(4):557-8.
  • 148 Onesti G, Bock KD, Heimsoth V, Kim KE, Merguet P. Clonidine: a new antihypertensive agent. Am J Cardiol. 1971;28(1):74-83.
  • 149 Saito J, Amanai E, Hirota K. Dexmedetomidine-treated hyperventilation syndrome triggered by the distress related with a urinary catheter after general anesthesia: a case report. JA Clin Rep. 2017;3(1):22.
  • 150 Gattinoni L, Carlesso E, Brazzi L, Cressoni M, Rosseau S, Kluge S, et al. Friday night ventilation: a safety starting tool kit for mechanically ventilated patients. Minerva Anestesiol. 2014;80(9):1046-57.
  • 151 Akada S, Takeda S, Yoshida Y, Nakazato K, Mori M, Hongo T, et al. The efficacy of dexmedetomidine in patients with noninvasive ventilation: a preliminary study. Anesth Analg. 2008;107(1):167-70.
  • 152 Deletombe B, Trouve-Buisson T, Godon A, Falcon D, Giorgis-Allemand L, Bouzat P, et al. Dexmedetomidine to facilitate non-invasive ventilation after blunt chest trauma: a randomised, double-blind, crossover, placebo-controlled pilot study. Anaesth Crit Care Pain Med. 2019;38(5):477-83.
  • 153 Tobias JD, Berkenbosch JW, Russo P. Additional experience with dexmedetomidine in pediatric patients. South Med J. 2003;96(9):871-5.
  • 154 Venkatraman R, Hungerford JL, Hall MW, Moore-Clingenpeel M, Tobias JD. Dexmedetomidine for sedation during noninvasive ventilation in pediatric patients. Pediatr Crit Care Med. 2017;18(9):831-7.
  • 155 Takasaki Y, Kido T, Semba K. Dexmedetomidine facilitates induction of noninvasive positive pressure ventilation for acute respiratory failure in patients with severe asthma. J Anesth. 2009;23(1):147-50.
  • 156 Tian X, Li H, Ji Z, Zhao S, Sun M. [Application of dexmedetomidine sedation in treatment of continuous state of asthma: a case report]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014;26(8):598. Chinese.
  • 157 Galland C, Sergent B, Pichot C, Ghignone M, Quintin L. Acute iterative bronchospasm and “do not re-intubate” orders: sedation by an alpha-2 agonist combined with noninvasive ventilation. Am J Emerg Med. 2015;33(6):857.e3-5.
  • 158 Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R; Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165-228.
  • 159 Anjos CF, Schettino GP, Park M, Souza VS, Scalabrini Neto A. A randomized trial of noninvasive positive end expiratory pressure in patients with acquired immune deficiency syndrome and hypoxemic respiratory failure. Respir Care. 2012;57(2):211-20.
  • 160 Petitjeans F, Quintin L. Noninvasive failure in de novo acute hypoxemic respiratory failure: high positive end-expiratory pressure-low pressure support, i.e. “inverted settings”? Crit Care Med. 2016;44(11):e1153-e1154.
  • 161 Carteaux G, Prost N, Razazi K, Mekontso Dessap A. The authors reply. Crit Care Med. 2016;44(11):e1154.
  • 162 Baillard C, Fosse JP, Sebbane M, Chanques G, Vincent F, Courouble P, et al. Noninvasive ventilation improves preoxygenation before intubation of hypoxic patients. Am J Respir Crit Care Med. 2006;174(2):171-7.
  • 163 Quenot JP, Binquet C, Pavon A. [Cardiovascular collapse due to ventilation: lack of understanding or failure to anticipate heart-lung interactions?]. Reanimation. 2012;21:710-4. French.
  • 164 Hamzaoui O, Teboul JL. Importance of diastolic arterial pressure in septic shock rebuttal to comments of Dr. Magder. J Crit Care. 2019;51:244.
  • 165 Slutsky AS. Neuromuscular blocking agents in ARDS. N Engl J Med. 2010;363(12):1176-80.
  • 166 Xu B, Makris A, Thornton C, Ogle R, Horvath JS, Hennessy A. Antihypertensive drugs clonidine, diazoxide, hydralazine and furosemide regulate the production of cytokines by placentas and peripheral blood mononuclear cells in normal pregnancy. J Hypertens. 2006;24(5):915-22.

Editado por

  • Editor responsável: Antonio Paulo Nassar Jr.

Datas de Publicação

  • Publicação nesta coleção
    24 Jan 2022
  • Data do Fascículo
    2021

Histórico

  • Recebido
    22 Maio 2020
  • Aceito
    20 Out 2020
location_on
Associação de Medicina Intensiva Brasileira - AMIB Rua Arminda, 93 - Vila Olímpia, CEP 04545-100 - São Paulo - SP - Brasil, Tel.: (11) 5089-2642 - São Paulo - SP - Brazil
E-mail: rbti.artigos@amib.com.br
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Acessibilidade / Reportar erro