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The SARS-CoV-2 mutation landscape is shaped before replication starts
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Abstract

Mutation landscapes and signatures have been thoroughly studied in SARS-CoV-2. Here, we analyse those patterns 
and link their changes to the viral replication tissue in the respiratory tract. Surprisingly, a substantial difference in 
those patterns is observed in samples from vaccinated patients. Hence, we propose a model to explain where those 
mutations could originate during the replication cycle.
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Modifications in the mutation landscape of a genomic 
sequence can result through several mechanisms (Kucab et 
al., 2019), such as error-prone polymerases, metabolism, 
and damaging agents, as an unbalanced redox environment. 
The comprehensive analysis of the SARS-CoV-2 interhost 
single base substitution (SBS) showed a mutational spectrum 
dominated by C>U and, surprisingly, G>U substitutions (Di 
Giorgio et al., 2020; Panchin and Panchin, 2020; Popa et al., 
2020; De Maio et al., 2021). Here we extend those studies to 
elucidate the impact of the replication niche and vaccination 
status on that pattern.

The SBS spectrum of SARS-CoV-2 from patients 
infected with alpha and delta variants was calculated (see 
methods in S1), confirming that it is dominated by C>U and 
G>U substitutions, followed by G>A and A>G (Figure 1A). 
Transition-type SBS –the interchanges between purines (C>U 
and U>C) or pyrimidines (G>A and A>G)– were expected to 
be the most frequent, as they can result from the activity of 
antiviral enzymes such as APOBEC and ADAR deaminases 
in host cells (Di Giorgio et al., 2020; Liu et al., 2021; Li 
et al., 2022). In contrast, G>U transversions, particularly 
prevalent in SARS-CoV-2 (Forni et al., 2022), can result 
from stochastic processes, such as the misincorporation of 
nucleotides by an error-prone polymerase with a specific bias 
or the chemical modification of RNA. Those hypotheses have 
been discussed previously (Panchin and Panchin, 2020; De 
Maio et al., 2021; Mourier et al., 2021; Rice et al., 2021), 
and it is widely agreed that G>U transversion is caused by 
mutagen exposure, like oxidation due to reactive oxygen 
species (ROS). The process begins with the oxidation of 
a guanine base to produce 8-oxoguanine (8-oxoG). Like 
guanine, 8-oxoG can pair with cytosine; however, it can also 
pair with adenine (Figure 1B). Exceptionally, if 8-oxoG pairs 

with adenine during the first cycle of viral RNA replication, 
it can be substituted by uracil in the second replication cycle 
(Graudenzi et al., 2021). 

Here, we considered how that misincorporation could 
occur during the intracellular life cycle of SARS-CoV-2. 
Various external mechanisms can explain modifications in 
the redox balance in infected cells, with the immune system 
as the prime suspect (Laforge et al., 2020). Therefore, if the 
immune system were indeed responsible for the changes in 
the oxidative environment of the infected cells (Laforge et 
al., 2020; Paludan and Mogensen, 2022), differences would 
be expected between SBS spectra from unvaccinated and 
vaccinated patients (Collier et al., 2021; Szczepanek et al., 
2022). Thus, we analysed samples from patients infected 
with alpha and delta variants divided into unvaccinated 
and vaccinated groups. Remarkably, G>U transversion was 
significantly altered (Figure 1A), sustaining a possible role 
of the immunological responses on the oxidative nature 
of those mutations. Moreover, the immune cells and those 
regulating their functions vary through the respiratory tract 
(Boers et al., 1998; Boers et al., 1999). Thus, SBS patterns 
from those lineages infecting only part of the respiratory 
tract should differ from those that can infect the whole tract. 
For example, omicron subvariants (BA.1 and BA.2) mainly 
replicate in the upper respiratory tract (Meng et al., 2022), 
which reflects in a significant decrease in the G>U/C>A ratio 
when compared to alpha and delta, which can also replicate 
in the lower respiratory tract (Figure 1C,D). 

We hypothesised two scenarios where the nucleotide 
mispairing could occur when viral RNA (vRNA) is outside 
or inside double-membrane vesicles (DMVs), leading to 
different substitution patterns (Figure 2A,B). SARS-CoV-2 
contains a positive non-segmented RNA genome [(+)vRNA]. 
Its replication comprises the early translation of a large 
polypeptide, then cleaved to produce the RNA-dependent 
RNA polymerase (RdRp). Both (+)vRNA and RdRp are 
compartmentalised into DMVs (Klein et al., 2020), avoiding 
the action of nucleases during vRNA replication (Mendonça 
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et al., 2021). vRNA is then processed through double-stranded 
RNA intermediates in a sophisticated manner involving (+)
vRNA and (-)vRNA. Nevertheless, some vRNA molecules 
generated inside DMVs are transported to the cytoplasm to 
produce viral structural proteins. In this scenario, G>U and 
C>A should have similar magnitudes if the mispairing occurs 
during replication inside DMVs (Figure 2A). However, G>U 
substitutions prevail over C>A (Figure 1A,C,D), favouring 
the theory where the mispairing happens before the vRNA 
is enclosed into a DMV (Figure  2B). Subsequently, the 
asymmetry between G>U and C>A transversions can be 
explained by inferring that guanine oxidation occurs mainly 
outside DMVs (Figure 2A), so compartmentalisation can play 
a role in decreasing the exposure of vRNA to the oxidative 
environment, protecting it from ROS action. Other two pairs 
of substitutions show asymmetry in their patterns, G>C/C>G 
and G>U/C>A (Figure 2C). The first of those pairs can be 
the product of ROS effect over guanine yielding imidazolone 

(Kino and Sugiyama, 2001), and the second one (G>U/
G>A) could be mainly produced by the enzymatic activity 
of antiviral systems, as uracil is the outcome of cytidine 
deamination. Therefore, both asymmetries are explained by 
the protective role of compartmentalisation of the replicative 
machinery into DMVs. Remarkably, other coronaviruses 
shield their replication processes and machinery using 
DMVs (Miller and Krijnse-Locker, 2008). Consequently, 
it is unsurprising that the unbalance between those pairs of 
substitutions was also observed in MERS-CoV (Di Giorgio 
et al., 2020). 

Additional studies are needed to elucidate in detail the 
mechanisms driving viral mutation patterns and how that 
drives the evolution of new SARS-CoV-2 strains. Particularly, 
if vaccines could cause novel strains appearance or to affect 
viral fitness through those mutations, further investigations are 
warranted to uncover how to manipulate that effect favouring 
their efficacy. 

Figure 1 – The environment of infected cells alters the G>U substitution incidence in SARS-CoV-2. (A) Analysis on SBS proportions across alpha and 
delta variants from unvaccinated (samples collected worldwide before 15th of January 2021, when less than 0.5% of the world population was vaccinated) 
and vaccinated patients. (B) Diagrammatic representation of standard (Watson and Crick) pairing of guanine and cytosine (top panel) and Hoogsteen 
base pairing between 8-oxoguanine and adenine (bottom panel). (C) Comparison of SBS spectra of different variants from vaccinated patients. Error bars 
denote confidence intervals (CI). (D) Proportion of G>U and C>A within the variants, coloured as in (C). The dotted line denotes no asymmetry (ratio=1). 
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Figure 2 – The influence of compartmentalisation on SBS patterns generated by oxidation. Differential pattern caused by mutagen exposure of vRNA 
guanines inside (A) or outside (B) double-membrane vesicles (DMVs), where vRNA replicates. Nucleotides circled in orange denote mutations that will 
occur in that scenario, while those in black mark the final product of the process. DMVs are delimited by double green lines. G* indicates 8-oxoguanine. 
(C) Proportion of C>U/G>A and G>C/C>G within the variants, coloured as in Figure 1C.
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