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With increasing life expectancy, revision surgeries have become more frequent in implanted 
people. This is due to the biological and biomechanical incompatibility that generates, among others, 
problems such as stress shielding. This works aims to analyze the influence of the hot rolling process 
(HR sample) on the microstructure and, consequently, the properties of β-Ti multiprincipal alloys: 
Ti-27Nb-39Zr (39Zr), Ti-30Nb-50Zr (50Zr), and Ti-20Nb-30Zr-13Ta (30Zr) (wt. %.) (equimassic 
and with high content of β-stabilizer elements). All samples were subjected to characterization 
through X-ray diffraction (XRD) to determine the phases present, and optical microscopy (OM) and 
scanning electronic microscopy (SEM) were realized to characterize the microstructure and confirm 
the phases obtained through XRD. Before hot rolling, only the β phase was identified, but in the HR 
condition, the α and β phases were identified. Consequently, it did not observe significant changes 
in microhardness for all alloys, while the elastic modulus was observed with a reduction of 23% for 
39Zr, 46% for 40Zr, and 13% for 30Zr. The hot rolling processing was confirmed to be a helpful route 
to reduce the elastic modulus for β Ti multiprincipal alloys opening perspectives for applying such 
alloys as metallic implant materials.
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1. Introduction
With the increase in life expectancy, revision surgeries 

have become more frequent in implanted people1-3. 
Among the main reasons that contribute to this increase, 
it can mention two meaningful problems: the biological 
incompatibility, the presence of chemical elements such 
as Al, in Ti-6Al4-V (110 GPa) alloy, and Ni, in stainless 
steels ASTM F138 (200 GPa), can cause health problems 
such as Alzheimer’s disease and cancer, respectively4-8, 
the biomechanical incompatibility, when elastic modulus 
value of the implant material is much higher than that 
of the bone, leading the phenomenon known as stress 
shielding4. The stress-shielding effect is associated with 
bone resorption in the region of contact between the 
bone and the implant, can generate bone weakening and 
inadequate implant fixation, and may even cause the 
implant to loosen9-11.

In this scenario, β-titanium alloys (β-Ti) with low 
elastic modulus and free of toxic elements in their chemical 
composition12,13, like niobium (Nb), zirconium (Zr), and 
tantalum (Ta), have been developed for application as 
biomaterials, considering that β-Ti alloys present good 
corrosion resistance and better biological and mechanical 
compatibility when compared to the commercial alloys 
currently used14-20.

The phase composition of β-Ti alloys is determined 
by the presence and content of β-stabilizing elements, as 
well as processing routes, including cooling rate imposed, 
heat treatments, and thermomechanical treatments19,21-26. 
Among the phases that can be formed, the ω phase has the 
highest elastic modulus and the highest hardness, and the 
α″ phase (orthorhombic) has the lowest elastic modulus and 
hardness27,28. It is essential to highlight that the martensitic 
α″ phase can be formed both via stress-induced martensite 
(SIM), the deformation-induced transformation of the 
β-phase, as well as by rapid quenching from the β field28-30.

Thermomechanical processes are widely used to obtain 
semi-finished products and to adjust some mechanical 
properties of metallic materials31-35. Among these processes, 
it can mention cold, hot rolling, and rotary swaging. While 
hot rolling produces longitudinal deformation in the 
metallic material, hot swaging, or rotary forging, promotes 
radial deformation through the sample. These processes 
apply plastic deformation in order to shape the metallic 
materials and promote recrystallization, texture, and/or 
phase transformation, which influences these materials’ 
properties31-35. In the case of β-Ti alloys, plastic deformation 
induces the phase transformation from β to α″ phase (SIM), 
which in turn leads to a decrease in the values of the elastic 
modulus, and therefore is a crucial processing route for the 
optimization of β titanium alloys32-35.*e-mail: pedro@fc.unesp.br
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Senopatti and Sutowono (2023) analyze the effect of 
the hot rolling process (900, 1000, and 1100 °C) on the 
structure and hardness of α/β Ti-6Al-6Nb alloy for orthopedic 
application. The study revealed that hot rolling at 1000 °C 
has the lowest hardness, and rolling at 900 °C has the highest 
hardness value. The finer grain size increases the hardness 
value of hot-rolled Ti-6Al-6Nb36.

This work aims to analyze the influence of the hot rolling 
process (thermomechanical) on the microstructure and, 
consequently, mechanical properties of multiprincipal β-Ti 
alloys in different compositions and the number of alloying 
elements: Ti-27Nb-39Zr (39Zr), Ti-30Nb-50Zr (50Zr), and 
Ti-20Nb-30Zr-13Ta (30Zr) (wt. %.) β-Ti alloys (equimassic 
and with high content of β-stabilizer elements).

The 30Zr, 39Zr, and 50Zr alloys form part of a new 
group of β-Ti alloys yet to be studied. According to the Mo 
equivalent theory (Moeq = Nb*0.28 + Ta*0.22 +Zr*0.11), 
the 30Zr, 39Zr, and 50Zr alloys are of the β-metastable type 
with Moeq values corresponding to 11.8, 11.9, and 13.9, 
respectively37.

2. Experimental Procedure
From high purity elements (> 99%), 100 g ingots of 

Ti-27Nb-39Zr (39Zr), Ti-30Nb-50Zr (50Zr), and Ti-20Nb-
30Zr-13Ta (30Zr) all in weight percent (wt. %) β-Ti alloys 
(equimassic and with high content of β-stabilizer elements) 
were cast through an arc melting furnace, Edmund Bulher 
model D-72411, under argon protective atmosphere and 
cooled in a copper mold, named here as the as-cast condition 
(AC). Subsequently, the ingots were subjected to a heat 
treatment of solubilization for 15 minutes at a temperature of 
1273 K to stabilize the temperature within the β (bcc) phase 
field. After that, the hot rolling process was started through 
a conventional (symmetrical) mill, FENN brand, model 
051-51019 located at DEMa/UFSCar. The reduction in the 
thickness per pass was 0.42 mm, and every three passes the 
samples were reheated at 1273 K for 5 minutes. This process 
was repeated until an area reduction of approximately 50%. 
These samples are named here as hot rolled conditions (HR).

To calculate the percentage of reduction in area (%RA), 
that is, the degree of plastic deformation of the samples, the 
following equation was used (Equation 1):
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where Ao is the initial cross-sectional area, and Af is the final 
cross-sectional area38.

All samples were subjected to metallographic preparation 
using SiC sandpaper and water as a lubricant, from 
240 to 2000 mesh, and then polished 1 µm alumina (Al2O3) 
polished. Finally, chemical etching using a modified Kroll 
(40% H2O + 40% HF + 20% HNO3) aqueous solution by 
volume revealed the microstructure. To determine the phases 
present in the samples, was used X-ray diffraction (XRD) via 
Rigaku Gierflez model by Cu-Kα radiation (λ = 1.54 Å), with 
a sweep between the angles of 20 - 90°, and with a step size of 
2° /min. From the analysis of the XRD, and by manipulating the 
interplanar distance equations (Equation 2) for cubic systems 

and Bragg’s law (Equation 3), it is possible to determine the 
lattice parameter, an (Equation 4), as shown below:
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where n is the order of reflection, λ is wavelength (Å), θ 
is angle of incidence, h, k and l are Miller indices, dhkl is 
interplanar spacing (angstrom), and a (Å) is the lattice 
parameter38.

Microscopy techniques were used to confirm the phases 
determined by XRD and determine the grain size and 
geometry. Optical microscopy (OM) was performed using 
an Olympus optical microscope, model BX41M-LED, 
with an Infinity Capture acquisition and processing system. 
Scanning electron microscopy (SEM) was performed using 
the Philips XL30 FEG in SE and BSE modes. Furthermore, 
the SEM-FEG is equipped and coupled to EDS (energy 
dispersive spectroscopy) EDAX detector system, in order 
to determine the semi-quantitative chemical composition of 
the multiprincipal β-Ti alloys.

The elastic modulus, E (GPa) measurements were 
performed using the Sonelastic equipment from the ATCP 
company, based on the impulse excitation technique, following 
the ASTM E1876:2001 standard39. Finally, the Vickers 
microhardness was measured, following the ASTM-E384 
standard, using a Shimadzu HMV - G20ST microhardness 
tester, applying a load of 0.5 kgf for 15 seconds40.

3. Results and Discussion
The microstructural analysis was based on XRD analysis 

and microscopy tests to determine the phases present, 
shape and grain size. Figure 1 shows the XRD patterns and 
crystallographic planes corresponding to each phase, β-Ti 
(bcc) and α″ martensite (orthorrombic). For all samples in 
the as-cast (AC) condition, the presence of only the β-Ti 
phase was identified. Due to the high content of β-stabilizing 
elements (elements which stabilize the β-Ti phase), and the 
cooling rate imposed from the arc melting process in a water-
cooled copper hearth crucible, which is not high enough 
for martensite α” formation. However, when analyzing the 
diffractograms of the hot-rolled (HR) samples condition, 
besides identifying the β-Ti phase, it is also possible to 
identify the martensite α” phase. Such phase formation, as 
discussed previously, is the result of the plastic deformation 
to which the alloys were subjected during the rolling 
process. Thus, the martensite α” phase was formed induced 
by deformation, so it is stress-induced martensite (SIM). 
This result is in agreement with the literature32,33, and it 
happens even for multiprincipal β-Ti alloys with high content 
of β-stabilizer elements).

As regular XRD can only detect the presence of phases 
with a volumetric fraction above 5%, the presence of the 
omega phase is usually not confirmed by this technique; 
however, based on the literature, it is likely to be present35. 
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To confirm this possibility, it is necessary to use other 
techniques, such as high-energy XRD or transmission 
electron microscopy (TEM)33,41,42. Through Equation 4 and 
the crystallographic planes of the β (BCC) phase, it was 
possible to determine the lattice parameter of this phase, 
and the same alloy, for both conditions (BC), AC and HR. 
The values were the same as shown then: a50Zr = 3.4271, 
a39Zr = 3.3357, and a30Zr = 3.3152 Å, with a clear tendency 
of increasing of β-Ti phase lattice parameter.

Figure 2 shows the micrographs for all alloys under all 
conditions. Through it, it is possible to observe that for the 
AC condition, the microstructure is dendritic (MO), not 
being possible to determine the grain size. After the hot 
rolling process, the microstructure changed from the raw 

melt structure to equiaxial grains (SEM using backscattered 
electrons, BSE, signal), slightly deformed in the rolling 
direction and the average grain size (GS) for the alloys, 
in this condition (HR) are shown followed: GS50Zr = 119, 
GS39Zr = 102 and GS30Zr = 96 µm. Still, in Figure 2, it is 
possible to observe equiaxial grains of the β phase with 
the presence of the acicular phase α” (SIM) in its interior, 
thus confirming the analyses carried out through the XRD.

Table 1 shows the results for the alloys studied in this work 
of the semi-quantitative analysis performed using SEM-EDS. 
This analysis showed that the experimental composition for 
the 50Zr, 30Zr, and 39Zr alloys is according to plan since a 
discrepancy of approximately 2% is acceptable, considering 
that it is a semi-quantitative analysis.

Figure 1. X-ray diffraction (XRD) patterns for β Ti-Nb-Zr(-Ta) alloys in the a) as-cast (AC) and b) hot rolled (HR) conditions.

Figure 2. OM images for AC condition and SEM-BSE images for HR condition, respectively, a) and d) 27Zr, b) and e) 50Zr and c) and f) 30Zr.
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Table 2 presents the data regarding the elastic modulus 
(GPa), Vickers microhardness (HV), average grain size, 
strain (%RA), and lattice parameter (a, Å) for all alloys in 
AC and HR conditions.

It was not observed that a significant variation in the 
hardness values if compared the condition AC with the RH. 
Despite the formation of the α”, which has a lower hardness 
even than the β phase, the hardness remained practically 
unchanged because of strain hardening27,30,32.

It is possible to notice a tendency to decrease the 
elastic modulus with the decrease of the lattice parameter. 
Furthermore, when comparing the AC condition with the HR 
condition, a reduction in the elastic modulus of 46% for the 
50Zr alloy, 23% for the 39Zr, and 13% for the 30Zr alloy is 
observed. Thus, reaffirming that the hot-rolling process is an 
efficient route in optimizing β titanium alloys for biomedical 
applications. In addition, this result suggests that Zr may 
indeed influence the suppression of the formation of the 
omega phase since the 40Zr alloy showed the most significant 
reduction in the value of the elastic modulus and it is the one 
with the highest Zr content, approximately 48% (wt. %).

Figure 3 provides a graphic representation of the alloys 
studied here for the elastic modulus and the lattice parameter 
under AC and HR conditions.

When comparing the 50Zr alloy in this work with the Ti-
40Nb alloy, it is possible to notice that adding Zr decreased 
the elastic modulus32. Since the two alloys have a very 
similar Nb weight percentage, for 50Zr with a percentage 
of reduction in the area (%RA) of 57%, it was determined 
that an elastic modulus of 41 GPa, while for Ti-40Nb has an 
elastic modulus of 69 GPa for %RA = 68%32. This is because 
Zr may be suppressing the formation of the omega phase, 
responsible for the increase in hardness and elastic modulus, 
the increase in the lattice parameter due to the addition of 
this element, and the reduction of the lower limit of e/a, 
which adjusts the atomic structure and elastic constants12,43-47.

A direct relationship between the elastic modulus and 
the lattice parameters of the β phase is observed; increasing 

the value of the lattice parameter of the β phase decreased 
the elastic modulus of the 50Zr, 39Zr, and 30Zr alloys due 
to the decrease of the atomic strength of the β structure. 
Kuroda et al.48 produced alloys of the Ti-25Ta-Zr system 
(Zr = 0, 10, 20, 30, and 40 in weight) and analyzed the 
changes in the lattice parameters of the α and β phases under 
the influence of the hot rolling process (1000 °C); in their 
results, it was observed that the hot rolling process dilates 
the HCP and BCC structures of titanium alloys, where 
higher values of alpha and β lattice parameters result in 
alloys with low values of elastic modulus. Thus, as seen 
by Kuroda, hot rolling decreased the elastic modulus of 
the 50Zr, 39Zr, and 30Zr alloys due to the dilation of the 
β lattice parameter.

In addition, as seen previously, the 50Zr alloy has a higher 
Moeq value (Moeq = 13.9) than the other alloys. Because of 
this, the 50Zr alloy has a lower elastic modulus among the 
alloys produced in this work. β-type Ti alloys tend to have 
a low elastic modulus.

Table 1. Semi-quantitative chemical composition obtained through SEM-EDS (wt. %) for β Ti-Nb-Zr(-Ta) multiprincipal alloys.

Sample Nb (wt. %) Zr (wt. %) Ta (wt. %) Ti (%p)
Ti-30Nb-50Zr (50Zr) 28 48 - balance
Ti-27Nb-39Zr (39Zr) 38 28 - balance

Ti-20Nb-30Zr-13Ta (30Zr) 21 29 13 balance

Table 2. Values of elastic modulus E (GPa), Vickers Microhardness (HV), Average Grain Size (µm) and Deformation (%RA) for all alloys 
in AC, HR, both (BC) conditions and for Ti-40Nb33.

50Zr 39Zr 30Zr Ti-40Nb

Elastic Modulus (GPa)
77 (AC) ± 2 91 (AC) ± 2 83 (AC) ± 2 75 (AC)
41 (HR) ± 1 70 (HR) ± 3 72 (HR) ± 2 69 (HR)

Vickers Microhardness (HV)
245 (AC) ± 22 228 (AC) ± 16 247 (AC) ± 20 226 (AC)
237 (HR) ± 17 227 (HR) ± 13 233 (HR) ± 17 181 (HR)

Average Grain Size (µm) 119 (HR) ± 21 102 (HR) ± 16 96 (HR) ± 11
384 (AC)
189 (HR)

Deformation (%RA) 57 (HR) 50 (HR) 54 (HR) 58 (HR)
Bcc - Lattice parameter (Å) 3.4271 ± 0.0015 3.3357 ± 0.0013 3.3152 ± 0.0031 ---

Figure 3. Variation of Elastic Modulus (GPa) and lattice parameter, a 
(Å), for β (BCC) for all alloys in the as-cast and hot-rolled conditions.
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4. Conclusions
The results lead to the following conclusions:
- The greater the Zr content, the higher the lattice 

parameter of bcc β phase, and the lower the elastic 
modulus of the β Ti-Nb-Zr(-Ta) multiprincipal alloys;

- The hot-rolling thermomechanical processing led 
to the formation of stress-induced martensite α″ 
(SIM) for β Ti-Nb-Zr(-Ta) alloys and consequent 
decreasing of elastic modulus, optimizing mechanical 
biocompatibility, reaching the best value of 41 GPa 
for Ti-30Nb-50Zr alloy.

- The decreasing of microhardness and the elastic 
modulus was due to the increase of the volumetric 
fraction of the martensite α″ (SIM) formed as a 
consequence of the deformation and, consequently, 
dynamic recrystallization;

- Hot rolling processing was confirmed to be a helpful 
route in order to reduce the elastic modulus for β-Ti 
multiprincipal alloys and opens perspectives of its 
application as metallic biomaterials.
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