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Abstract: The existing practice for Breast Cancer (BC) characterization includes histopathological analysis, 
which is tedious and time-consuming due to massive data analysis. Further, such techniques are subjected 
to inter-and intra-observer variability due to the non-availability of skilled pathologists, particularly in low 
resource settings. Thus, we propose a multi-feature classification technique for risk stratification of BC in 
Histopathology Images (HI) using machine learning strategies and a Long Short-Term Memory (LSTM) based 
deep learning approach. Experiments are performed on a publicly available HI database from which a total 
of 658 image features are extracted, while 192 relevant features are obtained after feature selection using 
genetic algorithm. The highest accuracy of 99.85% using 192 features under the 5-fold data division protocol 
is obtained with the LSTM approach. The proposed framework for analyzing HI using multiple grayscale and 
color features showed promising results and can be an effective tool in the histopathology laboratory. 

Keywords: Intelligent laboratory analysis; Breast cancer; Feature fusion; Machine learning; Deep learning. 

 

HIGHLIGHTS 
 

• The proposed approach performs the classification of breast tumors in histopathology images. 

• The proposed approach evaluates a multi-feature classifier for risk stratification. 

• The performance of different classifiers is compared under different data division protocols. 

• The highest classification accuracy of 99.85% after feature selection is reported.  
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INTRODUCTION 

Background 

Breast Cancer (BC) is considered one of the most common cancers in women worldwide [1]. The 
worldwide estimated new cases of female BC are 2,261,419 for the year 2020 [2]. In India, 179,790 BC cases 
are projected for 2020 [3]. The existing techniques of breast lesion detection include a clinical examination 
of the breast, mammograms [4], [5], Magnetic Resonance Imaging (MRI), and ultrasound [6]. A biopsy is 
usually carried out for a final confirmation to determine if a tumor is cancerous (malignant) or not. A biopsy 
involves the microscopic analysis of Histopathology Images (HI) corresponding to the biopsy sample carried 
out by a pathologist [7]. In a histopathology laboratory, a particular trail needs a trained specialist with several 
years of experience to recognize abnormal tissues under microscopes accurately. Such examination needs 
both tissue diagnosis and analytical estimation based on tissue structure and cell morphology. However, 
there is a high level of inconsistency in the appearance of the tissue because of irregularity in the staining 
procedure. Thus, the manual approach of tissue characterization is challenging as it requires experienced 
and skilled pathologists. Further, such a tedious task consumes more time and is subjected to inter-and intra-
observer variability. This led to the emergence of so-called Computer-Aided Diagnosis (CAD), which can 
decrease misdiagnosis by reducing the workload on pathologists and providing objective evidence for tissue 
characterization [8]. Further, it can help reduce the errors arising out of inter-and intra-observer variability in 
diagnosis. 

This paper presents and evaluates a machine learning and deep learning strategy for automatic risk 
stratification of BC in HI. A database consisting of 2015 images including both benign (645 images) and 
malignant (1370 images) cases are used. A total of 658 image descriptors are extracted and evaluated using 
machine learning classifiers like Back-Propagation Artificial Neural Network (BPANN), Support Vector 
Machine (SVM), Discriminant Analysis, Logistic Regression (LR), k- Nearest Neighbor (k-NN), and Naïve 
Bayes (NB). Also, results are shown after implementing feature selection using a Genetic Algorithm (GA) 
with 192 selected features. This work also employs a Long Term Short Memory (LSTM) based on Deep 
Learning (DL) combined with genetic optimization for BC HI analysis. Further, the results are compared with 
some of the recently reported techniques. To the best of the knowledge of the authors, this is the first study 
evaluating such a large comprehensive set of descriptors for breast tissue classification in HI.  

Related work 

In this section, few recent works in the related area are discussed. Dora and coauthors [9] proposed a 
work on Fine Needle Aspirates (FNA) images of breast tissue. They implemented a Gauss-Newton 
Representation Based Algorithm (GNRBA) to classify breast tumors.  

A deep convolutional neural network (CNN) for the classification of BC using HI is proposed by Wei and 
coauthors [1]. The proposed method obtained classification accuracy up to 97% for 40X magnification 
images. Classification using CNNs on a dataset of breast HI is reported by Araújo and coauthors [10]. For 
the training of the SVM classifier, they used features extracted by CNN. Further, they obtained the optimal 
parameters using a Radial Basis Function (RBF) kernel with a 3-fold data division on the training data. The 
best results were obtained using majority voting with accuracies of 77.8% for four classes and 83.3% for 
carcinoma or non-carcinoma for image-wise classification. Two different sources were used to collect the 
data by Motlagh and coauthors [11]. Red Green Blue (RGB) color-map was used for preserving the tissue 
structures of HI. With the DL-based approach and dividing data as 90% training and 10% testing, the ResNet 
V1 152 achieved a classification accuracy of 98.7%. An approach for the detection and classification of BC 
in HI using deep CNN is proposed by Rahhal and Mahmoud [12]. They divided the dataset as 70% for training 
and 30% for testing. The proposed method with the Visual Geometry Group (VGGm) model achieved a high 
value of classification accuracy 86.80% at the patient level. BC classification on 7909 microscopic images 
consisting of benign and malignant breast tumors using CNNs is performed by Bardou and coauthors [13]. 
They used Dense Scale Invariant Feature Transform features and Speeded-Up Robust Features (SURF) as 
local descriptors. For binary classification, the classification accuracy was achieved between 96.15% and 
98.33%, and for multi-class classification, the accuracy obtained was between 83.31% and 88.23.  

A CNN, an LSTM, and CNN+LSTM for the classification of BC are reported by Nahid and coauthors [14]. 
The online dataset consisting of 7909 images was used. They extracted the structural and statistical 
information from the images. Softmax and SVM layers were used for decision-making after feature extraction. 
With the 200X dataset, the best accuracy of 91.00% was achieved, the best precision value of 96.00% was 
achieved on the 40X dataset and for both 40X and 100X datasets, and the best F-Measure value was 
obtained. A DL-based method to classify the breast tissue images is reported by Golatkar and coauthors [15]. 
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A dataset comprising 400 histology microscopic images were used. The average accuracy of 85% (four 
classes) and 93% for benign vs. malignant were achieved. Nahid and Kong [16] proposed the classification 
task of BC HI using CNN. They implemented five different CNN models and achieved the best performance 
on a 200X dataset with accuracy and F-measure of 97.19% and 98%, respectively.  

Alirezazadeh and coauthors [17] performed the classification using a histopathological image dataset. 
They extracted features using LBP, PFTAS, and local phase quantization (LPQ). These features are used 
for representation learning and to obtain a projection matrix, after which the classification is carried out. They 
also evaluated the statistical significance using the paired t-test. The highest accuracy is obtained for 200X 
magnification as 91%, while an overall highest average accuracy using the proposed method is achieved as 
88.5%. The Squeeze-and-Excitation block of the SE-ResNet module, in addition to a new learning rate 
scheduler to automatically classify BC histology images, is proposed by Jiang and coauthors [18]. For binary 
classification, highest accuracy values 99.34% (for 200X magnification) and 93.81% (for 100X magnification) 
for the multi-class classification were achieved.  

Beevi and coauthors [19] performed mitosis detection on a dataset collected from two sources. Using a 
pre-trained VGGNet CNN model, they extracted deep features and performed the classification task. The 
results show that they achieved the highest F-score of 89.66% and accuracy of 90%. Singh [20] in the year 
2019 implemented various classifiers like SVM, NB, Quadratic Discriminant Analysis (QDA), Linear 
Discriminant Analysis (LDA), LR, K-NN, and Random Forest (RF) on anthropometric and clinical features 
and performed the risk prediction for BC. Feature selection and statistical significant analysis are also carried 
out. With the hold-out data division strategy, an accuracy of 92.105% is achieved with a medium K-NN 
classifier. Tong and coauthors [21] considered integrating the multi-omics data to improve the survival 
prediction of BC. Their output shows that combining the DNA methylation and miRNA expression gives the 
best performance of 0.641 ± 0.031 with concatenation autoencoder (ConcatAE). Another approach is 
proposed by Wang and coauthors [22] using a Double Deep Transfer Learning (D2TL) and Interactive Cross-
task Extreme Learning Machine (ICELM) for feature extraction and classification of breast HI, respectively. 
Dalwinder and coauthors [23] carried out their work on three different datasets: two of which consist of FNA 
images, while the third one includes images after positive mammography followed by histological 
examination. They developed a CAD based system using feature weighting and utilized the Ant Lion 
Optimization algorithm. With the neural network, they attained a higher value of accuracy. 

Hameed and coauthors [24] proposed an ensemble DL based method to classify HI of BC. They adopted 
a 5-fold data division protocol and implemented VGG16 and VGG19 architectures for this task. With the 
proposed approach, overall accuracy is obtained as 95.29%. Boumaraf and coauthors [25] implemented 
several machine learning classifiers and compared performance with DL methods to classify benign and 
malignant tumors. They carried out their work on two different datasets. The DL based methods achieved the 
highest accuracy varying from 94.05% to 98.13% (binary) and in the range of 76.77% to 88.95% (eight-class). 

Bhowal and coauthors [26] used fuzzy based ensemble of DL models to perform classification of breast 
HI images using Choquet integral and Information theory. In case of the two-class problem, a test accuracy 
of 95% was obtained using the Xception model while with the fusion method an accuracy of 96% was 
achieved.  

From the literature review, it is found that shape and texture are the features commonly used for the 
classification of grayscale images. And other features are calculated using a co-occurrence matrix. Also, 
various color features like mean, standard deviation, etc., are commonly used. Furthermore, having reviewed 
the above-mentioned studies, it is found that the classifiers most commonly used for classifying breast HI are 
CNN, SVM, ANN, k-NN, LDA, etc. However, the reported studies employ different texture and color features 
for classification. Some studies have reported that the performance of classifiers may vary with image 
magnification, while some magnification invariant models for histopathology image classification are also 
reported. The accuracy achieved using CNN with LSTM is 91%, while the accuracy of 95.29% is reported 
with an ensemble approach [14, 24]. Further using Deep CNN and CNN accuracies of 97 and 97.19% are 
obtained, respectively [1, 16]. Moreover, the existing studies suffer from the following limitations: 

i. The features extracted by various authors include GLCM, SURF, texture, and morphological 
features. However, none of the existing works reported the fusion of multiple features. In this study, we 
propose a multi-feature approach including a total of 658 color and grayscale features. Exploring such a 
comprehensive set of features for breast HI classification is not reported earlier in the literature.  

ii. None of the studies compared the performance of machine learning with DL methods for 
multiple features. In this work, the proposed multi-feature classification was implemented, and the 
performance of several machine learning methods and DL techniques are compared. 

iii. The accuracy reported by different studies still needs to be improved for its clinical acceptance. 
Further, evaluating various models under different data division protocols is required for a fair comparison. 
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Despite this significant progress, the comprehensive evaluation of combined gray features and color 
features is still not explored.  

Determining relevant grayscale and color attributes for BC histology classification is still challenging due 
to a variety of texture, shape, and color measures available in the literature. Due to advantages like relative 
insensitivity to the gap length of LSTM over other sequence learning methods, LSTM can outperform 
traditional methods in problems of classification and prediction. Thus, this article comprehensively evaluates 
several grayscale and color features extracted from BC HI using LSTM based deep learning model with 
genetic optimization. Further, a comparative investigation of traditional machine learning techniques and the 
proposed approach is conducted. We hypothesize that the performance of BC CAD systems based on HI 
can be improved by combining spectral and spatial features. Utilizing a large number of features and selecting 
the most relevant descriptors for building a machine learning model can result in a high-performance 
magnification invariant model. 

Contributions 

The contributions of the present study are summarized as follows:  
i. We implement and evaluate a multi-feature classifier for risk stratification in HI using combined 

temporal, spectral, and color features.  
ii. We implement several machine learning techniques and propose LSTM based approach for risk 

stratification of BC HI. All the techniques are evaluated under different data division protocols. 
iii. Another significant contribution of the present study is that we employ and evaluate several temporal, 

spectral, and color features to identify the most reliable image markers to classify BC HI. We have extracted 
and evaluated 472 grayscale features based on shape, texture, etc., 186 color features (12 color features 
based on color moments and 174 color features using wavelet transform). Further, GA is used to determine 
the subset of the most relevant features. 

Organization of the paper 

The remaining sections of the paper are organized as follows. Materials and methods used in this study 
are explained in next section, followed by corresponding results and discussions. In the last section, 
conclusions are presented. 

MATERIAL AND METHODS  

Data 

A publicly available BreaKHis dataset [27] is utilized in this study consisting of 7909 images (both 

malignant and benign images) with different resolutions. It includes the images with different magnifications 

i. e. 40X, 100X, 200X and 400X of each type. However, we have employed images with 40X resolution 

consisting of 645 benign and 1370 malignant tumors [28]. The resolution of each image is 700×460. 

Permission from the ethical committee is not required in this study since the open-source database is used. 

All the experiments in this study are implemented using MATLAB® software.  

Feature extraction 

Feature extraction aims at extracting the relevant information to characterize each class. It is the process 
of retrieving the most important raw data attributes by reducing the dimensionality of input data to represent 
the image efficiently. Features give information associated with color, shape, or texture in an image [29]. 
Measures such as moment, perimeter, area, and orientation are usually employed to quantify shape [30]. 
The morphological features are used to determine the shape and margin (smooth or irregular) of lesions. 
Irregular shapes generally characterize the malignant nuclei, and the edges are spiky. On the other hand, 
the texture of the image represents the distribution of gray levels. Table 1 shows various texture and shape 
features extracted from the HI. Features based on First Order Statistics (FOS), Haralick Spatial Gray Level 
Dependence Matrices (SGLDM), Gray Level Difference Statistics (GLDS), Neighborhood Gray Tone 
Difference Matrix (NGTDM), Spectral texture of Images(STI), Statistical Feature Matrix (SFM), Laws Texture 
Energy Measures (TEM), Fractal Dimension Texture Analysis (FDTA), shape, Invariant Moments of Image 
(IMI), Statistical Measures of Texture in an Image (SMTI), Gray Level Run Length Matrix (GLRLM), 
Segmentation-based Fractal Texture Analysis (SFTA) are utilized. 
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The third category of features used is related to color distribution in an image. Compared to shape and 
texture, features based on color demonstrate improved stability because the color adds more information to 
an image [31, 32]. Table 2 shows the Color features based extracted from HI. 

Wavelets are used in multi-resolution analysis and are utilized extensively for texture measurements. 
Discrete Wavelet Transform (DWT) is used to generate wavelet coefficients for each image in the database, 
followed by calculating the mean and standard deviation of these coefficients to construct the feature vector 
[34]. The coefficients are computed in RGB color space, so for a particular image, 87 coefficients each for 
mean and standard deviation were extracted, including 29 coefficients for each color channel. Hence, a total 
of 174 WT based features are used in the classification process. The details of these features are presented 
in Table 2. Finally, all the extracted features are pooled to generate a feature vector comprising 658 features 
for each image in the database and are utilized as input for training and testing of the BC risk stratification 
system using HI.  

Table 1. Spatial texture and shape attributes extracted from HI 

Type of 
Feature 

Number 
of 
features 

Name of various features 

FOS  5 V1-V5: Mean, median, skewness, kurtosis, and standard deviation [29]  

SGLDM 26 
V6-V31: ASM, contrast, correlation, SOS, IDM, sum average, sum variance, sum 
entropy, entropy, difference variance, difference entropy, and information measures of 
correlation-2  

GLDS  
 

4 V32-V35: Contrast, angular second moment, entropy, and mean 

NGTDM 5 V36-V40: Coarseness, contrast, busyness, complexity, and strength  
SFM 4 V41-V44: Coarseness, contrast, periodicity, and roughness 
TEM 6 V45-V50: LL, EE, SS, LE, ES, and LS  
FDTA 4 V51-V54: Hurst coefficient H(k); k=1 to 4 
Shape 
features 

3 V55-V57:  area, perimeter, and perim^2/area [33] 

STI 379 V58-V436: Computes Radial features and angular features [33]  
IMI 7 V437-V443: Computes the moment invariants of the image  

SMTI 6 
V444-V449:  Average gray level, average contrast, measure of smoothness, third 
moment, measure of uniformity, and entropy   

GLRLM 11 
V450-V460: SRE, LRE, GLN, RLN, RP, LGRE, HGRE, SRLGE, SRHGE, LRLGE and 
LRHGE 

SFTA 12 V461-V472:  SFTA based texture features 

ASM=Angular Second Moment, SOS=Sum of Squares, IDM= Inverse Difference Moment, SRE= Short Run Emphasis, 
LRE= Long Run Emphasis, GLN= Gray level non-uniformity, RLN= Run-length non-uniformity, RP= Run percentage, 
LGRE= Low Gray Level Run Emphasis, HGRE= High Gray Level Run Emphasis, SRLGE= Short Run Low Gray Level 
Emphasis, SRHGE= Short Run High Gray Level Emphasis, LRLGE= Long Run Low Gray Level Emphasis, LRHGE= 
Long Run High Gray Level Emphasis 

Table 2. Spatial Color features extracted from HI  

S. 
No. 

Type of 
features 

Name of 
Feature 

No. of features 
(Details) 

S. No. 
Type of 
features 

Name of 
Feature 

No. of features 
(Details) 

1.  
Color 
moments 
based 
features 

Mean 
3 (meanR, 
meanG, meanB) 

4. 

Color 
moments 
based 
features 

Skewness 3 (yR, yG, yB) 

2. 
Standard 
deviation 

3 (stdR, stdG, 
stdB) 

5. 
Wavelet 
transform 
based 
features 

Mean 
87 (mean1 to 
mean87) 

3. Variance 3 (VR, VG, VB) 6. 
Standard 
deviation 

87 (std1 to std 
87) 

Genetic optimization for feature selection 

Feature selection aims at choosing a useful subset of attributes from data that is multidimensional and 
larger in size. It also reduces the computation time needed for classification. There are several techniques 
available to obtain subsets of features like Genetic Algorithm (GA), Principal Component Analysis (PCA), 
Particle Swarm Optimization (PSO), etc. We have considered GA as it is known to be an efficient and adaptive 
method for feature selection [35, 36]. GAs are basically search algorithms based on natural selection and 
genetics. The GA functions on search space (binary) as bit strings are used as chromosomes. The initial 
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population is generated depending upon the population size and genome length. A fitness function is to be 
defined for GA to pick an informative set of features. In this work, k-NN based fitness function is used to 
evaluate the fitness of each chromosome in the population with k=3. It determines the shortest distance by 
calculating the Euclidean distance between the data used for training and testing. The new population is 
created using crossover and mutation. GA stops when it reaches the optimum solution. The highest number 
of generations and stall generation limit are the stopping conditions used in GA. The other parameters used 
for the implementation of GA are shown in Table 3. Table 4 gives the details for 192 features selected by GA. 
The parameter values were selected empirically after several experiments. After applying GA, the numbers 
of extracted features were reduced to 192 at a population size of 50. 

  Table 3. Details of parameters used for GA 

S.No. Parameters 
Parameter value 
used 

S.No. 
Parameters Parameter value used 

1.  Size of population 50 6. Crossover Arithmetic 

2.  
Value of genome 

length 
658 

7. 
Crossover Probability  0.8 

3.  Type of population Bitstrings 8. Mutation  Uniform 
4.  Fitness function used k-NN 9. Mutation Probability  0.1 
5.  Number of generations 100 10. Selection scheme  Tournament of size 2 

  Table 4. List of selected features obtained using genetic algorithm 

Selected features 

Spatial texture and shape attributes: 
V1, V4-V6, V10, V13, V15-V18, V20-V23, V32, V36, V38, V40, V47, V58, V64 , V67, V68, V74, V77, V78, V82, 
V85, V87, V88, V91, V96, V97, V98, V101, V102, V116, V117, V118, V119, V124, V125, V129, V132, V134, V138, 
V139, V143, V144, V145, V146, V148, V152, V153, V154, V155, V157, V163, V172, V174, V175, V178, 
V180,V182, V188, V190, V201, V202 ,V204, V206, V208, V214, V219, V220, V222, V224, V229, V235, V236, 
V240, V246, V247, V249, V253, V255, V257 ,V258, V260, V263, V268, V273, V283, V284, V286, V287 ,V289, 
V296, V299, V302, V303, V307, V308, V310, V312, V313, V314, V315, V317, V320, V323, V328, V342, V343, 
V348, V350, V353, V358, V361, V362, V363, V367, V388, V392, V395, V403, V405, V408, V409, V410, V415, 
V421, V427, V429, V430, V432, V433, V435, V437 ,V443, V444, V445, V461, V463, V464, V467.  

Color features based on color moments:  
Standard deviation- stdR, stdB; Variance- VR 

Spectral color features based on wavelet transform-Mean: 
mean1, mean2, mean4, mean5, mean9, mean11, mean15, mean17, mean19, mean23, mean27, mean30, 
mean36, mean40, mean41, mean47, mean49, mean53, mean58, mean60, mean64, mean70, mean71, mean73, 
mean75, mean77, mean86 

Spectral color features based on wavelet transform- Standard deviation: 
std6, std22, std26, std32, std38, std41, std44, std47, std59, std60, std67, std68, std69, std70, std71, std77, 
std87 

 

The steps for the same are shown in Algorithm 1. 

Algorithm 1: A proposed method for feature selection using genetic optimization 

Input: FE// Input features after feature extraction; Output: FS // Selected features 

Steps: procedure Popfcn()         //Create Initial Population 
pop ← PopulationSize, GenomeLength 
Return pop 
end procedure 
procedure Fitfcn()         //Fitness Function Evaluation 
Feature index   ← Indices from Chromosome 
NDS   ← Data set indexed using Feature index; NF  ← No. of elements in Feature index 
3  ←  No. of Neighbors using kNN       // NumNeighborskNN 
kNNERR ←   ClassifierKNN(Data set, ClassInfo, NumNeighborskNN)         // kNN Error 
Return ← kNNERR 
end procedure  
FS = Selected_features 
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Proposed framework for multi-feature classification using machine learning 

Figure 1 shows the schematic block diagram of the proposed approach. The images are initially divided 
into training and test dataset using different data division strategies. A dotted line separates the training and 
testing phase of the proposed machine learning framework. The left side of the dotted line incorporates a 
supervised learning strategy for training and building the machine learning and deep learning model. This 
part is referred to as an offline system. On the contrary, the evaluation of the proposed model using test 
images is referred to as an online system and represented on the right side of dotted lines. Various grayscale 
and color features are combined to perform feature fusion. To eliminate the redundant and misguiding HI 
features, GA is used for feature selection. Various traditional techniques such as Support Vector Machine 
(SVM), Back-Propagation Artificial Neural Networks (BPANN), k-Nearest Neighbors (k-NN), Quadratic 
Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), Logistic Regression (LR), and Naive Bayes 
(NB) are implemented and evaluated for the classification of HI into benign or malignant using image markers 
selected by GA. Only relevant features are extracted from test HI in the online phase to save computational 
time.  

 

 
 

Figure 1. Block diagram of the proposed approach 
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Proposed framework for multi-feature classification using LSTM based deep learning 

The DL is considered a powerful technology in the machine learning area [37]. It is a type of neural 
network that allows multiple hidden layers and has achieved good results in various research problems 
related to image classification, speech recognition, etc. In this study, work on HI of BC is carried out using 
deep recurrent neural networks implementing the LSTM model for classification. Recurrent neural networks 
(RNN) use weights to the present and the previous input. LSTM networks enable RNN to remember their 
inputs for a long duration of time. LSTM has three gates: the input, forget, and output gate [38]. The sigmoid 
function is used as a gate activation function, while a hyperbolic tangent is applied for block input and output 
activation function. The output is connected again to the block input and all the gates in a recurrent manner 
that replaces the usual hidden units of ordinary recurrent networks [39]. The value of the input feature 
evaluated using an artificial neuron unit can be accumulated if the sigmoidal input gate allows it. The forget 
gate controls the weight of the self-loop. Multiplier input and output gate units are connected to act as a buffer 
for storing the memory contents to avoid irrelevant inputs [38].   

We have designed the deep neural network by specifying the input size as 658 (all features) and 192 
(selected features), respectively. The bidirectional LSTM layer maps the input features and then connects 
the output to a fully connected (FC) layer. FC layer works like the feed-forward layer in a neural network. This 
layer multiplies the input by a weight WM and thereby adds it to a bias value bi given by: 

WMXt + bi                                                                        (1) 

Where Xt denotes time step t of X. It combines all the information learned by the previous layers. As we are 
performing the classification task in this work, the number of classes specified in the FC layer is 2. FC layer 
is followed by the Softmax layer defined as: 

𝜋𝑘 (𝑥) = 
exp (𝑎𝑘

𝜋)

∑ exp (𝑎𝑙
𝜋)𝐾

𝑙=1
                                                               (2) 

where 0 ≤  πk (x) ≤1 and ∑ πk (x)  = 1K
k=1 . The softmax activation function determines the probabilities of 

each class being classified as benign or malignant [39]. The next layer is the classification layer that computes 
the categorical label for each sample. It uses cross-entropy as a loss function. To perform the classification 
task, we have used Adaptive Moment Estimation (ADAM) [40] to optimize network parameters. It is 
computationally efficient, requires less memory, and performs better on large datasets. Another advantage 
of using ADAM as an optimizer is that updating the parameters is invariant to gradient rescaling. Further, the 
value of maximum epochs is empirically chosen to be 20. An initial learning rate of 0.01 is used. The mini 
batch size is set to 150, i.e., it instructs the network to consider 150 training samples at a time. Training and 
testing of developed models were done using the following data division protocols: (i) Hold-out: the dataset 
was split into 67% training, and the remaining 33% was used for testing. (ii) K-fold: 5-folds and 10-folds cross-
validation were used for the proposed network. The developed machine learning and deep learning 
framework are evaluated in terms of overall accuracy (A), i.e., the total percentage of rightly categorized 
samples. Several other performance measures, namely, sensitivity (Se), specificity (Sp), the area under the 
receiver operating characteristic curve (AUC), and Matthew's correlation coefficient (MCC) are also used. 

RESULTS AND DISCUSSIONS 

This section presents the results of various steps included in the proposed machine learning and deep 
learning framework. 

Results of proposed machine learning approach 

The results of the machine learning approach are calculated for the following combination of features at 
classifier input: (i) four hundred seventy two grayscale features; (ii) twelve color features based on moments 
and (iii) one hundred seventy-four color features based on WT and (iv) total of 658 features by combining 
grayscale and color features (v) selected 192 features obtained by feature selection using GA. Table 5 shows 
the performance measures (in %) of the BPANN model using holdout, 10-fold, and 5-fold data division 
protocols, respectively, for grayscale and color features separately. Also, in Table 5, the results for the two 
best performing SVM classifier types (medium gaussian and coarse gaussian SVM) are presented.  

It is found that BPANN with 174 wavelet-based color features under 10-fold data division protocol 
achieved the highest classification accuracy of 98.56%. On the other hand, BPANN with 472 grayscale 
features as input under 10-fold data division protocol achieved a classification accuracy of 98.46%, which 
are very close to that using 174 color WT features. For BPANN with 12 features based on color moments as 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Atrey, K.; et al. 9 
 

 
Brazilian Archives of Biology and Technology. Vol.66: e23220297, 2023 www.scielo.br/babt 

input under the 10-fold data division protocol, the classification accuracy achieved is 98.17%. It is thus 
concluded that wavelet-based color features outperform others in classifying benign and malignant cases 
when BPANN is used as a classifier.  

The highest classification accuracy achieved using medium and coarse Gaussian SVM classifiers is  
93.85%, when color features based on color moments under 10-fold data division protocol are used. From 
the results of Table 5, it is concluded that color features based on color moments and wavelet transform are 
more significant for classifying BC in HI. 

Table 5. Results of BPANN, medium and coarse gaussian SVM classifier with different data division protocols  and 
feature combinations 

Data 
division  

Perform
ance 
measure
s (%) 

BPANN classifier Medium Gaussian SVM classifier Coarse Gaussian SVM classifier 

Features Features Features 

 472 
grayscale 
features 

12 Color 
Moments 

 174 WT 
features 

 472 
grayscale 
features 

12 Color 
Moments 

 174 WT 
features 

 472 
grayscale 
features 

12 Color 
Moments 

174 WT 
features 

Holdout 

A 86.02 91.28 88.12 77.56 92.32 86.75 70.48 92.17 86.75 
Se 92.29 91.93 92.57 97.57 96.24 95.35 100 96.24 95.58 
Sp 73.66 89.69 79.19 34.91 83.96 68.40 7.55 83.49 67.93 
AUC 82.98 90.81 85.88 66.24 90.10 81.88 53.77 89.87 81.75 
MCC 68.07 79.62 72.90 45.31 82.10 68.64 22.94 81.74 68.64 

5-fold 

A 94.94 97.57 96.03 78.86 93.10 88.19 71.32 93.15 88.14 
Se 96.57 98.25 97.08 97.74 96.13 95.11 100 95.99 95.18 
Sp 91.47 96.12 93.79 38.76 86.67 73.49 10.39 87.13 73.18 
AUC 94.02 97.19 95.44 68.25 91.40 84.30 55.19 91.56 84.18 
MCC 88.28 94.39 90.94 49.15 84.00 72.21 27.03 84.13 72.09 

10-fold 

A 98.46 98.17 98.56 79.21 93.85 89.28 71.22 93.85 88.93 
Se 98.98 98.76 99.27 97.45 96.28 95.33 100 96.06 95.18 
Sp 97.34 96.91 97.04 40.47 88.68 76.43 10.08 89.15 75.66 
AUC 98.16 97.84 98.15 68.96 92.48 85.88 55.04 92.60 85.42 
MCC 96.41 95.79 96.61 49.96 85.76 74.86 26.61 85.78 74.02 

 

 
Finally, the classifier's performance is evaluated by generating a feature vector using a combination of 

all grayscale and color features resulting in a total of 658 features. Table 6 shows the classification results 
using BPANN and different types of SVM classifiers when all 658 features are used as input. It is observed 
that the overall performance of classifiers improves when all 658 features are supplied to their input. The 
highest classification accuracy achieved is 99.26% using the 10-fold data division protocol for BPANN.  

 

  Table 6. Results of classification after combining all grayscale and color features (total 658 features) 

Data   
Division 

 

Perform-
ance 
measures 

Classifiers 

BPANN 

SVM 

Linear 
SVM 

Quadratic 
SVM 

Cubic 
SVM 

Fine Gaussian 
SVM 

Medium 
Gaussian SVM 

Coarse Gaussian  
SVM 

Hold-
out 

A 93.53 87.80 94.88 94.58 82.08 91.57 77.11 
Se 95.58 94.91 96.68 94.91 99.34 96.90 98.67 
Sp 89.15 72.64 91.04 93.87 45.28 80.19 31.13 
AUC 92.37 83.78 93.86 94.39 72.31 88.55 64.90 
MCC 85.06 71.22 88.17 87.73 58.40 80.30 44.69 

 
 
5-fold 

A 98.81 87.84 94.14 94.54 82.53 91.71 79.40 
Se 98.98 94.89 96.35 95.99 99.56 96.50 97.74 
Sp 98.45 72.87 89.46 91.47 46.36 81.55 40.47 
AUC 98.71 83.88 92.90 93.73 72.96 89.02 69.10 
MCC 97.29 71.37 86.46 87.46 59.77 80.67 50.63 

 
 
10-fold 

A 99.26 87.89 94.99 95.09 83.08 92.16 80.89 
Se 99.27 94.74 97.15 96.64 99.64 96.72 97.74 
Sp 99.23 73.33 90.39 91.78 47.91 82.48 45.12 
AUC 99.25 84.04 93.77 94.21 73.77 89.60 71.43 
MCC 98.35 71.50 88.41 88.68 61.15 81.73 54.56 

 
Table 7 (a & b) shows the results for classification using BPANN, several types of SVM classifiers, NB 

classifier, LDA, QDA, LR, and different types of k-NN when 192 selected features were applied at the input 
of the classifiers. After applying feature selection using GA, the highest accuracy is obtained as 99.75% (for 
192 features subset) using the 10-fold data division protocol for BPANN. 
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                        Table 7a. Results of hold out classification after applying feature selection (192 features) 

Classification technique 
Performance measures (%)  

A Se Sp  AUC MCC 

BPANN 92.18 94.87 86.64 90.75 82.1 
Linear SVM 88.10 92.92 77.83 85.38 72.21 
Quadratic SVM 94.13 95.80 90.57 93.18 86.47 
Cubic SVM 94.58 96.02 91.51 93.76 87.53 
Fine Gaussian SVM  93.22 97.57 83.96 90.76 84.23 
Medium Gaussian SVM 93.37 97.57 84.43 91.00 84.58 
Coarse Gaussian SVM 93.37 97.57 84.43 91.00 84.58 
Naïve Bayesian 67.62 88.72 22.64 55.68 14.87 
Linear discriminant 65.06 77.43 38.68 58.06 16.78 
Quadratic discriminant 64.46 84.51 21.70 53.11 7.63 
Logistic regression 85.99 90.49 76.42 83.45 67.51 
Fine k-NN 92.92 93.36 91.98 92.67 84.06 
Medium k-NN 90.36 94.25 82.08 88.16 77.56 
Coarse k-NN 80.12 93.81 50.94 72.37 51.69 
Cosine k-NN 87.50 92.70 76.42 84.56 70.75 
Cubic k-NN 89.76 94.69 79.25 86.97 76.03 
Weighted k-NN 91.87 93.58 88.21 90.90 81.39 
      

Table 7b. Results of 5-fold and 10-fold classification after applying feature selection (192 features) 

Classification 
technique 

Performance measures (%) for 5-fold data 
division 

Performance measures (%) for 10-fold data 
division 

A  Se  Sp  AUC MCC A  Se  Sp  AUC MCC 

BPANN 98.41 99.05 97.05 98.05 96.32 99.75 99.85 99.53 99.69 99.43 
Linear SVM 87.79 94.09 74.42 84.25 71.30 88.24 94.38 75.19 84.79 72.37 
Quadratic 
SVM 

93.65 95.77 89.15 92.46 85.34 
94.04 95.84 90.23 93.04 86.29 

Cubic SVM 94.59 95.84 91.94 93.89 87.60 94.89 96.35 91.78 94.07 88.24 
Fine Gaussian 
SVM  

94.64 97.81 87.91 92.86 87.58 
95.14 98.03 88.99 93.51 88.74 

Medium 
Gaussian 
SVM 

94.89 97.88 88.53 93.21 88.16 95.14 97.96 89.15 93.55 88.74 

Coarse 
Gaussian 
SVM 

94.99 97.88 88.84 93.36 88.39 95.19 98.03 89.15 93.59 88.85 

Naïve 
Bayesian 

67.64 89.20 21.86 55.53 14.82 67.39 89.05 21.40 55.23 13.71 

Linear 
discriminant 

68.68 76.64 51.78 64.21 28.32 68.59 76.72 51.32 64.02 27.98 

Quadratic 
discriminant 

66.70 84.96 27.91 56.44 15.26 66.25 82.77 31.16 56.97 15.78 

Logistic 
regression 

85.71 90.07 76.43 83.25 66.96 86.50 90.73 77.52 84.12 68.77 

Fine k-NN 94.00 95.69 90.39 93.04 86.19 94.54 95.77 91.94 93.85 87.49 
Medium k-NN 91.61 93.72 87.13 90.43 80.76 91.91 93.87 87.75 90.81 81.45 
Coarse k-NN 81.49 95.40 51.94 73.67 55.47 81.99 95.40 53.49 74.44 56.76 
Cosine k-NN 90.22 92.34 85.74 89.04 77.67 90.67 92.99 85.74 89.36 78.60 
Cubic k-NN 91.22 93.87 85.58 89.73 79.75 91.91 94.23 86.98 90.61 81.38 
Weighted k-
NN  

93.05 96.06 86.67 91.36 83.88 93.65 96.35 87.91 92.13 85.28 

 

Results of proposed LSTM-based deep learning approach 

Table 8 shows the results for the deep learning approach that uses the LSTM network. The performance 
can be seen in terms of accuracy, sensitivity, specificity, AUC, and MCC when (i) all combined 658 grayscale 
and color features; and (ii) one ninety-two features selected using GA are applied at the input of the deep 
neural network. In Table 8, it can be observed that the highest classification accuracy of 99.85% is obtained 
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with selected 192 features under a 5-fold data division protocol. On the other hand, an accuracy of 99.83% 
is obtained with all 658 features under holdout data division protocol when the average of 10 readings is 
considered.  

As seen from the results, the accuracy is reduced using the 10-fold cross-validation for the selected 192 
features. This has happened possibly due to the class imbalance present in the dataset. While using 10-fold 
cross validation, the data is partitioned into subsets 10 times (for 10-fold) for evaluating the performance of 
the model. Hence, one class of data might have been overrepresented due to which the accuracy has 
reduced with 10-fold cross validation. 

 
  Table 8. Performance of deep learning using LSTM with different data division protocols and feature combinations 

 
Deep learning 
 

Performance measures 
(%) 

All 658 features Selected 192 features 

Holdout 

A 99.83 93.25 
Se 99.85 95.12 
Sp 99.81 95.75 
AUC 99.83 95.43 
MCC 99.62 84.43 

5-fold 

A 99.70 99.85 
Se 99.57 99.93 
Sp 100.00 99.69 
AUC 99.78 99.81 
MCC 99.32 99.66 

10-fold 

A 98.16 84.89 
Se 97.43 92.72 
Sp 100.00 75.39 
AUC 98.71 84.05 
MCC 95.82 68.21 

 

The training progress for best performing protocol using LSTM is shown in Figure 2 (a, b, c, & d) for all 
combined 658 features using holdout data division protocol (10 readings); and selected 192 features using 
GA under 5-fold data division protocol (5 readings) respectively. The plots in Figure 2 (a & b) represent the 
variation of training accuracy with the number of iterations, i.e., the classification accuracy on each mini batch 
for all combined 658 features using holdout data division protocol and selected 192 features under 5-fold 
data division protocol respectively. Each iteration represents an update of the network parameters. It is 
observed that training accuracy reaches 100% as the training progresses. Training loss for all combined 658 
features using holdout data division protocol and selected 192 features under 5-fold data division protocol is 
shown in Figure 2 (c & d), respectively. As desired, the training loss decreases to zero as training progresses. 
The faint line indicates the training process, while the bold line represents the smoothened version of the 
same in all the plots. It takes a few seconds on a single GPU to obtain results with a learning rate of 0.01 and 
a mini-batch size of 150. To help a network learn better, the mini-batch size or initial learning rate values can 
be decreased, but it may result in a longer training time. From the results, we can interpret that the proposed 
approach (multi-feature + GA + LSTM) can effectively classify BC as benign or malignant in HI. 

We now compare our proposed work vis-à-vis other relevant research contributions reported in the 
literature. Table 9 compares the performance of the proposed method with some of the recently reported 
studies. Some of the reported work utilized CNN [12-16] and deep CNN [1, 22] as classifiers. Few works are 
reported on transfer learning based classification of breast HI in [19, 24-25]. The size of the dataset reported 
in [24] is small, and they performed classification on two-class only. Most of the recent findings on the same 
dataset analyze only the accuracy [17]. We calculated other parameters like specificity, sensitivity, MCC, and 
accuracy to assess our model. In [17], traditional methods were used to extract features, and an accuracy of 
88.5% was obtained, which is low compared to our proposed model. However, the performance of the 
proposed model is higher than in existing studies due to the large number of texture and color features used 
in this study. The highest accuracy obtained by the proposed model is 99.85% which is higher than reported 
by other authors in Table 9.  

The use of multiple features adds more information to the descriptor set, resulting in improved efficiency 
of automated disease diagnosis systems. Further, such approaches can reduce the workload of medical 
professionals and reduce variability among their observations. The removal of redundant attributes is turned 
out to be beneficial for accurate classification. The results show that the classification accuracy is improved 
after eliminating irrelevant and redundant datasets. This also signifies that irrelevant features can misguide 
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the classifiers and thus deteriorate their overall performance. A lesser number of attributes also reduces the 
computation time involved in the feature extraction process. Though the results of the proposed study are 
promising, it has certain limitations. Firstly, HI of only one resolution is considered in this study. In the future, 
work on the higher resolution can be explored. The class imbalance present in the dataset is also a limitation 
of the present study. Another limitation is the use of a single modality to classify breast tumors as benign or 
malignant. The use of the multi-modality approach can be considered further, and advanced machine learning 
techniques based on a hybrid/ensemble approach can be explored to classify BC using relevant markers 
identified from multimodal data. The proposed approach can also be implemented to detect cancers of skin 
[41], lung [42], and brain tumor [43]. 

 
 

 
Figure 2. Performance plots of LSTM-based deep learning approach: (a) training for all 658 features under holdout data 
division, (b) training for selected 192 features under 5-fold data division, (c) loss for all 658 features, and (d) loss for 
selected 192 features 

CONCLUSION 

This article proposed a deep learning based approach that utilizes multi-feature space, LSTM network, 
genetic optimization, and softmax function for the classification of BC HI. Further, various classical machine 
learning models were also implemented and evaluated using combined grayscale and color descriptors 
extracted from the spatial and spectral domain of BC HI of 40X resolution. The comparative evaluation was 
carried out under different data division protocols such as holdout, 5-fold, and 10-fold using performance 
measures like accuracy, sensitivity, specificity, AUC, and MCC. The main findings are summarized as 
follows- (i) when all the 658 features are applied at the input, the proposed LSTM based approach achieved 
a classification accuracy of 99.83% under repeated holdout data division protocol, while the accuracy 
achieved by the classical BPANN model is 99.26% under 10-fold data division protocol; (ii) when 192 most 
reliable features elected using GA are applied at the input, the proposed LSTM based approach achieved a 
classification accuracy of 99.85% under 5-fold data division protocol while the accuracy achieved by classical 
BPANN model is 99.75% under 10-fold data division protocol. The performance reported by both the deep 
learning based LSTM approach and BPANN is higher than other reported studies on the same database. We 
conclude that the integration of multiple features from different domains improves the overall classification 
accuracy of BC HI. Thus, the proposed method will help to reduce the load on the medical practitioners and 
also reduce the errors due to inter- and intra-observer variability. The proposed classification and feature 
selection scheme can also prove beneficial for other areas such as, the detection of skin cancer, lung cancer, 
and brain tumor. In future, this work can be extended to multi-modal analysis and hybrid/ensemble approach 
can be used for the classification of BC using multimodal data. Also, the size of dataset can be increased in 
future to eliminate the class imbalance problem. 
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Table 9. Comparison of performance of the proposed method with recently reported studies 

Author and year 
Size of the 
dataset 

Classifier/ 
Architecture used 

Performance Accuracy 

Bhowal et al. (2022) [26] 400 Fuzzy based ensemble of DL models 96% (two class) 

Boumaraf et al. (2021) [25] 7909 VGG-19 
98.13% (Binary) 
88.95% (Multi-class) 

Hameed  et al. (2020) [24] 544  VGG16 and VGG19 95.29% 

Wang et al. (2020) [22]  1125   D2TL and  ICELM 
98.18% (Normal vs. 
Malignant) 

Beevi et al. (2019) [19] 53+45 VGGNet 90% 

Jiang  et al. (2019) [18]  7909  CNN 
99.34%  (Binary) 
93.81%  (Multi-class) 

Motlagh et al. (2018) [11]  
6,402 + 
7909   

Inception and ResNet 
98.7%  
 

Rahhal and Mahmoud 
(2018)  [12]  

9109  CNN: VGGm 86.80%  

Bardou et al. (2018) [13]  7909  CNN 98.33%  
Nahid  et al. (2018) [14]  7909   CNN, LSTM, and CNN+LSTM 91%  

Golatkar et al. (2018) [15]  400 Fine-tuning Inception-v3 CNN 
 
93% 

Nahid and Kong  (2018) [16] 7909 CNN 97.19% 
Alirezazadeh  et al. (2018) 
[17] 

7909 Unsupervised domain adaptation, 
representation learning 

88.5% (Average) 

Wei et al. (2017) [1]  7909 Deep CNN: Softmax 97% 

Proposed method 2015 

472 grayscale features +BPANN 98.46%  
12 color moments + BPANN 98.17% 
174 wavelet-based features + BPANN 98.56% 
All features combined 
(658 features) + BPANN 

99.26% 

192 features selected using genetic 
algorithm+ BPANN  

99.75% 

All features combined using deep learning 
(LSTM)  
(658 features) 

99.83% 

With deep learning (LSTM) using 192 
selected features 

99.85% 
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