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Abstract: The decrease in the possibilities of increasing the arable agricultural areas in the world and the 
continuous increase in the population have led those who are engaged in plant production to seek ways to 
make maximum use of the existing agricultural areas. One of these ways is mixed sowing systems. It is very 
difficult to sow species with different grain sizes in mixtures. Special sowing machines are needed for this 
aim. Because of this reason, the article aims to be a guide for artificial intelligence capable of mixed sowing 
in forage crops. In the research, it is found that there are some differences between YOLOv4-tiny and Y0L0v4 
models as Precision, Recall, F1-score, TP, FP, FN scores. For the YOLOv4-tiny model, these scores were 
found as 0.99, 1.00, 0.99, 90, 1, 0, respectively and the scores for the Y0L0v4 model were 1.00, 1.00, 1.00, 
90, 0, 0. According to the YOLOv4-tiny and YOLOv4 tests in the lab, suggesting that the YOLOv4-tiny is 
faster, and the YOLOv4 is more reliable in terms of all these factors combined. This research establishes a 
standard for real-time recognition of forage crops based on current technology at NVIDIA Jetson TX2 due to 
its high performance and low power consumption and a high-performance computer with CUDA support. 

Keywords: forage crops; smart agriculture; real-time object detection; yolov4-tiny; yolov4. 

INTRODUCTION 

One of the world's primary importance problems is providing sufficient and safe food to the increasing 
population [1-2]. Therefore, plant and animal production must be increased. However, due to the increasing 
input costs and the decrease in yield growth, it becomes difficult to produce the needed food [3-4]. Since 
opening new cultivated areas to overcome this difficulty is impossible, increasing productivity per unit area 
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has become necessary [5]. To increase agricultural production, superior varieties suitable for ecology [6] and 
mixed growing systems such as annual or perennial legume-grass/cereal mixtures must be used to produce 
high yield and quality roughage required in animal production [7]. In addition, taking advantage of artificial 
intelligence applications to reduce the increasing input costs and use resources effectively has become 
necessary. 

Legumes have been grown all over the world for a very long time, either as pure or mixed with cereals 
[8]. Also, leguminous forage crops are one-year forage plants that have an important place as nutrition of 
ruminant animals in livestock with the high protein, minerals, vitamins they contain [9-12]. Including legumes 
in rotation by sowing them pure or mixing them with grass/grains provides many advantages, such as 
preventing soil and water erosion, improving the physical properties of the soil, fixing the free nitrogen of the 
air to the soil, and simplification of weed and pest control [13-18]. In America, when alfalfa is sowed in the 
fall, it is sowed with sorghum to protect it from cold damage. The dead leaves of Sorghum protect from the 
cold by covering the alfalfa seedlings [19]. Although there is no such problem in perennial legume cultivation, 
the most important problem in pure sown annual legume cultivation is the decrease of forage yield and quality, 
and the difficulty of harvesting caused by the lying stem [20,21]. Due to the lying problem in legume seed 
production, flowering, and fruit set decrease, so grain yield decreases. The most practical way to solve this 
problem is to use mixed sowing methods, in which two or more plant species are grown together in the same 
period. [22,23]. In addition to all these, the most important advantage is that the yields of legume-grass/cereal 
mixtures are superior in yield and quality compared to pure sowing [24,25]. However, to benefit from the 
advantages of mixed cultivation, the proportions of the species in the mixture must be precisely adjusted [26]. 

Traditional seed drills are widely used around the world to produce high-quality roughage in forage crops, 
especially for the sowing of annual legume-cereal mixtures. However, it is practically impossible to sow the 
species with different sizes and weights in the mixtures with conventional sowing machines at the desired 
proportions. Since the main purpose of the drills specially designed for forage crops is pure sowing, it is very 
difficult to sow the mixtures at the desired proportions even with these machines. This is another important 
problem that hinders the expected benefits of legume-grass/grain mixtures. Because the proportions of 
legumes and cereals in the mixtures are among the most affecting yield and quality factors [27,29]. For this 
reason, it is necessary to change the point of view of forage seed drills and develop seed drills that can sow 
at desired proportions using modern technologies such as artificial intelligence or machine learning. 

Intelligence and automation used in forage crops need to detect seeds accurately and in real-time. Since 
current detection methods for forage crop seeds are lacking in accuracy and reliability, this study examines 
the YOLOv4 and tiny models for forage crop detection in a complex and changing sowing environment. A 
new YOLO (YOLOv1) network was suggested in 2016 by Joseph Redmon and coauthors [30] that does not 
require images to go through tedious processing steps to recognize objects in real-time. There are several 
advantages to using the YOLO network additional advantages make YOLO a better choice than other object 
identification techniques. One of them is the advantage of training and testing with a full-image view is that it 
implicitly encodes contextual information about the item classes and their look. To put it simply, the YOLO 
network can learn universally applicable images and so beats other detection algorithms when trained with 
natural images and evaluated with the artwork. This means that the YOLO algorithm retains a high average 
detection accuracy even detecting the fastest speeds. When using YOLO serial methods or their upgraded 
methods, the network structure is more complicated and there are more parameters in the network. They 
need a lot of GPU (graphics processing unit) processing power to detect objects in real-time. Some mobile 
and embedded devices in real-world applications require real-time object identification, but these devices 
have limited computing power and memory [31]. A combination of low-power embedded GPUs or even 
embedded CPUs with limited memory is required for real-time inference on embedded video surveillance. 
This means that embedded and mobile device object detection is a significant challenge. As a solution to this 
problem, several researchers have developed lightweight object detection methods. The network topology 
and number of parameters are both simplified in lightweight approaches. So, they consume less processing 
power and memory and perform detection tasks more quickly than their predecessors. Mobile and embedded 
devices are better suited for their use. Even though they have a lower detection rate, they meet the 
requirements of the needed applications, such as seed detection, identification, and classification. Because 
of these reasons, a new lightweight YOLO series approach based on YOLOv4-tiny has been developed [32]. 

In this research, the number of forage crop seeds used for YOLO-based seed determination can be used 
in mixed sowing which is an important parameter for farmers. Therefore, the classification of forage crop 
seeds is a challenging task for farmers and the agro-industry. There is a need to automate seed rates. If 
production is continued with sowing machines that do not automatically adjust the seed rate, the sowing rate 
desired by the producer will not be kept and seed loss will continue. Because in a mixed sowing, seeds vary 
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in size, specific gravity, etc. Since their characteristics are different from each other, seed detection became 
more important. The reason why YOLO was chosen is that it has three advantages over other object detection 
methods. First and foremost, the YOLO network is extremely fast. Second, because the YOLO network sees 
the entire image during training and testing, contextual details about the object classes and their appearance 
are implicitly encoded. Third, the YOLO network learns generalizable representations of objects; thus, when 
trained with natural images and tested on the artwork, the YOLO algorithm outperforms other detection 
methods. As a result, the YOLO algorithm maintains high average detection accuracy while providing the 
fastest detection speed [33]. So, in section 1, we looked at the most recent developments in object detection. 
Section 2 explains our proposed method and introduces the YOLOv4-tiny and YOLOv4 object detection 
method’s principles and procedures with different hardware support for real-time applications. YOLO model 
results are shown and discussed in Sections 3-4. 

MATERIAL AND METHODS 

Material 

The materials of the research consisted of fodder pea, triticale, oat, sorghum, and vetch seeds, which 
are generally mixed at different rates in the production of forage crops. Each of the seeds can be sowed pure 
or mixed. Of these seeds, vetch and fodder pea are in the legumes group, while the others are in the grasses 
group. It has been reported in many studies that there is an increase in yield and quality when mixed planting 
compared to plain planting of legumes and grasses. 

In the research, Vicia sp. and Pisum sp. seeds were selected as legume varieties and Sorghum 
sudanense (Piper) Stapf, Triticosecale sp., and Avena sp. seeds were selected as grass forage plant varieties 
obtained from Kırşehir, Turkey is the experimental application in this research. The Vicia pannonica (called 
in the research Vicia sp.) is a plant with a high adaptation to cold and dry climate conditions. The herb, which 
is very high in efficiency and quality, is very nutritious for animals [34]. Sown mied Vicia pannonica is wrapped 
in cereals, making harvesting of the growing plant easier and at the same time, productivity losses are 
significantly reduced. Pisum Sativum L. (called in the research Pisum sp.) is a good forefront plant, as it 
connects free nitrogen in the air to the ground. Therefore, the proliferation of plantation areas will be useful 
in both animal feeding and the development of planting watch systems [35]. Sorghum sudanense (Piper) 
Stapf (called in the research Sorghum) is a hot-climate annual forage crop that has a good ability to adapt to 
difficult terrain conditions. Green and dry herbage are used in the production of silage feed to provide 
essential nutrients for milk production, it is a highly prolific forage plant. Triticale (called in the research 
Triticosecale sp.) has a good tolerance of biotic and abiotic stress conditions, it is a more suitable plant for 
marginal areas [36]. Triticale has a high yield compared to other cereals, as well as wide adaptation capability 
and high nutritional value [37]. It is more recent than Avena sativa L. (called in the research Avena sp.), which 
is an agricultural plant that is used in various industries. 

Method 

Data preparation for training 

As depicted in Figure 1, the forage crop photographs were taken on Feb 20, 2022, using a studio, DSLR 
camera, computer, fill light, and camera stand (5). This is a Nikon D800 with a 135 mm zoom lens and a 45 
cm focal length. The ‘JPG’ file format is used to save a total of 2000 high-resolution images. 1000 images 
were used for all applications of each of the YOLOv4, and YOLOv4-tiny models, and for the aim of image 
enhancement forage crop seeds were positioned at random degrees. Also, five seeds were used from each 
forage crop seed species, so a total 100 evaluations were done. Some of the forage crop seeds have a 
circular shape. But in any way, forage crops were positioned at random degrees. 
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Figure 1. Forage crop seed imaging system. 

Forage crop images are processed as follows LabelImg has been used to tag the images, and the forage 
crop seeds are divided into five test sets. In this way, LabelImg was used to label and annotate the forage 
crop seed shoots and seeds in a YOLO format standard txt file to establish their orientation to ensure that 
the label box is tightly next to the target boundary of each label for the YOLOv4 train and validation needs 
[38]. Each variety was identified by its taxonomical name for labeling. Labeled data was stored as ‘txt’ files. 
The text file contains all crop coordinates and tag information. System training is involved in the following 
steps. Before tagging and processing, a set of photos is sorted into three sets: training, validation, and 
detection sets. Convoluting images from the training set through the feature extraction network is used to 
create a texture feature map, which is then normalized in batches. During the model step, the network training 
parameters are adjusted based on the difference in recognition result and tag. When the loss rate falls within 
the set range or reaches the maximum number of iterations, the training is complete. 

Dataset training 

Google Colab Pro was used during the training process. Google Colab Pro has powerful GPUs and 
TPUs machine learning applications and creating models for this aim. In this research, Nvidia Tesla P100-
PCI-E-16GB was used to test Colab Pro YOLOv4 and tiny deep neural network models with the help of 
CUDA-version: 11, cuDNN: 7.6.5, OpenCV version: 3.2.0. There are two separate sets of forage crops in the 
image set, one for training and one for validation, according to the 90% and %10 ratios respectively. The 
research examines a model’s performance in terms of five different metrics, including the F1-score, an 
average precision value, recall, and detection speed (mAP) [39]. 

Implementation of GPU‑based systems 

In the research, to show the efficiency of the YOLOv4 and tiny models in real-time applications on 
different hardware platforms was used. These are a high-performance computer and NVIDIA Corporation 
Jeston TX2 Artificial Intelligence Board. The reason for the selection of these platforms is to make a 
comparison between mobility and process power. Also, mobility is important for making good quality seed 
process machines for agricultural mechanization. Additionally, the Nvidia Jetson TX2 device is cheap and 
more powerful when comparing the other artificial intelligence boards. The high-performance computer 
configuration is i7 4.5 GHz Cpu, 32 GB ram, Nvidia Geforce GTX 1660 Ti graphics card with 6 Gb ram, 1 TB 
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SSD disk with the support of CUDA-version: 10.2, cuDNN: 7.6.5, OpenCV version: 4.5.1 with the support of 
Python 3.7, also Colab Pro support and Nvidia Jetson TX2 device was used to detection of a single forage 
crop seed. All platforms used Logitech Brio 4K webcam for forage crop seed detection by YOLO models in 
both devices at 640x480 px resolution. 

Overarching steps of the applied approach 

At first, a hardware design is created to capture and process images of forage crops in real-time. Forage 
crop samples were then identified by training with the YOLOv4 and tiny models, which are based on the 
photographs taken. After that, the effectiveness of the forage crop detection system was then validated 
through experiments (Figure 2). 

 

 
Figure 2. Overarching steps of the applied approach. 

RESULTS 

YOLOv4-tiny model train graph can be seen in Figure. 3. Train graph created after 7h work time of Nvidia 
Tesla P100-PCI-E-16GB graphic card and its Cuda GPU support. Also, the YOLOv4 model was trained in 
21h work time of Nvidia Tesla P100-PCI-E-16GB graphic card and its Cuda GPU support. 
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Figure 3. YOLOv4-tiny model train graph. 

 

As for performance metrics, true positives, false positives, and false negatives, precision and recall are 

referred to as TP, FP, and FN, Precision and Recall, respectively in Table 1.  

 

              Table 1. Comparison of different YOLO models in parameters. 

Model Precision Recall F1-score TP FP FN 

YOLOv4-tiny  0.99 1.00 0.99 90 1 0 

Y0L0v4 1.00 1.00 1.00 90 0 0 

 
Also, results of different YOLOv4-tiny and YOLOv4 model results for each forage crop species can be 

seen in Tables 2 and 3. According to Tables 2 and 3 whole ap (%) values are 100 % for forage crop seed 
model results. 
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                    Table 2. Comparison of different YOLOv4-tiny model results for each of forage crop species 

Class Id Name ap (%) TP FP 

0 Avena sp. 100 24 0 

1 Pisum sp. 100 14 0 

2 Sorghum 100 18 0 

3 Triticosecale sp. 100 14 0 

4 Vicia sp. 100 20 0 

 

                    Table 3. Comparison of different YOLOv4 model results for each of forage crop species 

Class Id Name ap (%) TP FP 

0 Avena sp. 100 18 0 

1 Pisum sp. 100 18 0 

2 Sorghum 100 18 0 

3 Triticosecale sp. 100 18 0 

4 Vicia sp. 100 18 0 

 

Additionally, a comparison of different YOLO models in FPS and mAP was presented in table 4. 
According to table 4, the YOLOv4-tiny model size is 23 Mb, and it supports 12.3 FPS in Nvidia Jetson TX2 
GPU, also YOLOv4-tiny model size is 250 Mb, and it supports 21 FPS in High-Performance Computer GPU. 
The YOLOv4-tiny method is lighter and faster to run than the original YOLOV4, but its diagnostic accuracy is 
less accurate as well. With the YOLOv4-tiny method, objects can be detected quicker than using the YOLOv4 
method. It significantly increases the number of embedded systems and mobile devices that can make use 
of an object detection approach [40]. 

                    Table 4. Comparison of different YOLO models and platforms in FPS and mAP. 

Method      Model Size (KB)  FPS mAP(%) 

YOLOv4-tiny (Nvidia Jetson TX2 GPU) 23.007 12.3 0.5 

Y0L0v4 (Nvidia Jetson TX2 GPU) 250.100 2.3 0.5 

YOLOv4-tiny (Computer GPU) 23.007 21 0.5 

Y0L0v4 (Computer GPU) 250.100 10 0.5 

 
For mobile artificial intelligence boards, it is a well-known reality that tiny models of artificial intelligence 

libraries like TensorFlow, Keras, Coffee, and YOLO have the best performance in real-world applications like 
in this research. NVIDIA Jetson TX2 device and a high-performance computer were used to measure the 
detection speed for a single forage crop as a real-world application only with the YOLOv4 and tiny models 
then results were presented in table 5 - 8.  

Additionally, accuracy and FPS samples of forage crop seeds detection with YOLOv4-tiny and YOLOv4 
models inTX2 and High-Performance Computer GPU can be seen in Figure 4 – 7. The ranges between 0.00-
1.00 in Figure 4 – 7 are equal to the ranges between 0-100% accuracy. 
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Figure 4. Accuracy and FPS samples of forage crop seeds detection with YOLOv4-tiny model at TX2. 

 

Figure 5. Accuracy and FPS samples of forage crop seeds detection with YOLOv4-tiny model at High-Performance 
Computer GPU. 
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Figure 6. Accuracy and FPS samples of forage crop seeds detection with YOLOv4 model at TX2. 

 

Figure 7. Accuracy and FPS samples of forage crop seeds detection with YOLOv4 model at High-Performance 
Computer GPU. 

According to table 5, YOLOv4-tiny model application for forage crop detection accuracy ranges between 

85-96 % for Vicia sp., 98-100 % for Pisum sp., 93-98 % for Sorghum, 82-90 % for Triticosecale sp., and 92-

99 % for Avena sp. in NVIDIA Jetson TX2 AI Board. 
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            Table 5. YOLOv4-tiny model application for forage crop detection in NVIDIA Jetson TX2 AI Board 

Material Accuracy (%) Model FPS mAP(%) 

Vicia sp.  93 YOLOv4-tiny 12.18 0.5 

Vicia sp.  85 YOLOv4-tiny 12.20 0.5 

Vicia sp.  96 YOLOv4-tiny 12.19 0.5 

Vicia sp.  95 YOLOv4-tiny 12.18 0.5 

Vicia sp.  93 YOLOv4-tiny 12.18 0.5 

Pisum sp. 99 YOLOv4-tiny 12.33 0.5 

Pisum sp. 96 YOLOv4-tiny 12.32 0.5 

Pisum sp.  100 YOLOv4-tiny 12.32 0.5 

Pisum sp.  100 YOLOv4-tiny 12.32 0.5 

Pisum sp. 98 YOLOv4-tiny 12.32 0.5 

Sorghum 94 YOLOv4-tiny 12.32 0.5 

Sorghum 98 YOLOv4-tiny 12.31 0.5 

Sorghum 98 YOLOv4-tiny 12.31 0.5 

Sorghum 93 YOLOv4-tiny 12.31 0.5 

Sorghum 98 YOLOv4-tiny 12.31 0.5 

Triticosecale sp.  90 YOLOv4-tiny 12.29 0.5 

Triticosecale sp.  82 YOLOv4-tiny 12.24 0.5 

Triticosecale sp.  91 YOLOv4-tiny 12.23 0.5 

Triticosecale sp.  82 YOLOv4-tiny 12.22 0.5 

Triticosecale sp.  83 YOLOv4-tiny 12.14 0.5 

Avena sp. 99 YOLOv4-tiny 12.34 0.5 

Avena sp. 97 YOLOv4-tiny 12.34 0.5 

Avena sp. 99 YOLOv4-tiny 12.34 0.5 

Avena sp. 92 YOLOv4-tiny 12.33 0.5 

Avena sp. 94 YOLOv4-tiny 12.33 0.5 

 
According to table 6, the YOLOv4-tiny model application for forage crop detection accuracy in High-

Performance Computer GPU ranges between 81-90 % for Vicia sp., 92-100 % for Pisum sp., 91-99 % for 

Sorghum, 84-99 % for Triticosecale sp., and 82-98 % for Avena sp. 

              Table 6. YOLOv4-tiny model application for forage crop detection in High-Performance Computer GPU 

Material Accuracy (%) Model FPS mAP(%) 

Vicia sp.  81 YOLOv4-tiny 21.14 0.5 

Vicia sp.  88 YOLOv4-tiny 21.15 0.5 

Vicia sp.  97 YOLOv4-tiny 21.16 0.5 

Vicia sp.  95 YOLOv4-tiny 21.21 0.5 

Vicia sp.  90 YOLOv4-tiny 21.18 0.5 

Pisum sp. 100 YOLOv4-tiny 20.86 0.5 

Pisum sp. 92 YOLOv4-tiny 20.91 0.5 

Pisum sp. 100 YOLOv4-tiny 20.97 0.5 

Pisum sp. 97 YOLOv4-tiny 21.00 0.5 

Pisum sp. 99 YOLOv4-tiny 21.05 0.5 
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               Cont. Table 6 

Sorghum 96 YOLOv4-tiny 21.1 0.5 

Sorghum 98 YOLOv4-tiny 21.15 0.5 

Sorghum 91 YOLOv4-tiny 21.20 0.5 

Sorghum 99 YOLOv4-tiny 21.25 0.5 

Sorghum 98 YOLOv4-tiny 21.30 0.5 

Triticosecale sp.  99 YOLOv4-tiny 21.26 0.5 

Triticosecale sp.  93 YOLOv4-tiny 21.31 0.5 

Triticosecale sp.  84 YOLOv4-tiny 21.33 0.5 

Triticosecale sp.  98 YOLOv4-tiny 21.37 0.5 

Triticosecale sp.  97 YOLOv4-tiny 21.4 0.5 

Avena sp.  87 YOLOv4-tiny 20.54 0.5 

Avena sp.  98 YOLOv4-tiny 20.62 0.5 

Avena sp.  92 YOLOv4-tiny 20.70 0.5 

Avena sp.  83 YOLOv4-tiny 20.76 0.5 

Avena sp.  82 YOLOv4-tiny 20.81 0.5 

 

Table 7 shows that in the NVIDIA Jetson TX2 AI Board, the YOLOv4 model application for forage crop 
detection accuracy ranges from 93-99 % for Vicia sp., 100 % for Pisum sp., 99-100 % for Sorghum, 83-99 % 
for Triticosecale sp., and 100 % for Avena sp. 

              Table 7. YOLOv4 model application for forage crop detection in NVIDIA Jetson TX2 AI Board 

Material Accuracy (%) Model FPS mAP(%) 

Vicia sp.  99 YOLOv4 2.32 0.5 

Vicia sp.  97 YOLOv4 2.33 0.5 

Vicia sp.  96 YOLOv4 2.33 0.5 

Vicia sp.  98 YOLOv4 2.33 0.5 

Vicia sp.  93 YOLOv4 2.33 0.5 

Pisum sp. 100 YOLOv4 2.31 0.5 

Pisum sp. 100 YOLOv4 2.31 0.5 

Pisum sp. 100 YOLOv4 2.31 0.5 

Pisum sp. 100 YOLOv4 2.30 0.5 

Pisum sp. 100 YOLOv4 2.31 0.5 

Sorghum 99 YOLOv4 2.31 0.5 

Sorghum 99 YOLOv4 2.31 0.5 

Sorghum 100 YOLOv4 2.31 0.5 

Sorghum 100 YOLOv4 2.31 0.5 

Sorghum 99 YOLOv4 2.31 0.5 

Triticosecale sp.  98 YOLOv4 2.33 0.5 

Triticosecale sp.  99 YOLOv4 2.33 0.5 

Triticosecale sp.  83 YOLOv4 2.33 0.5 

Triticosecale sp.  97 YOLOv4 2.33 0.5 

Triticosecale sp.  94 YOLOv4 2.33 0.5 

Avena sp.  100 YOLOv4 2.21 0.5 

Avena sp.  100 YOLOv4 2.28 0.5 

Avena sp.  100 YOLOv4 2.29 0.5 

Avena sp.  100 YOLOv4 2.29 0.5 

Avena sp.  100 YOLOv4 2.30 0.5 
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In High-Performance Computer GPU, the YOLOv4 model application for forage crop detection accuracy 

ranges from 94-99 % for Vicia sp., 100 % for Pisum sp., 99-100 % for Sorghum, 95-98 % for Triticosecale 

sp., and 97-100 % for Avena sp., according to Table 8. 

              Table 8. YOLOv4 model application for forage crop detection in High-Performance Computer GPU 

Material Accuracy (%) Model FPS mAP(%) 

Vicia sp.  96 YOLOv4 10.32 0.5 

Vicia sp.  94 YOLOv4 10.32 0.5 

Vicia sp.  98 YOLOv4 10.32 0.5 

Vicia sp.  96 YOLOv4 10.31 0.5 

Vicia sp.  99 YOLOv4 10.31 0.5 

Pisum sp. 100 YOLOv4 10.39 0.5 

Pisum sp. 100 YOLOv4 10.39 0.5 

Pisum sp. 100 YOLOv4 10.38 0.5 

Pisum sp. 100 YOLOv4 10.38 0.5 

Pisum sp. 100 YOLOv4 10.38 0.5 

Sorghum 98 YOLOv4 10.38 0.5 

Sorghum 99 YOLOv4 10.37 0.5 

Sorghum 100 YOLOv4 10.37 0.5 

Sorghum 100 YOLOv4 10.36 0.5 

Sorghum 99 YOLOv4 10.35 0.5 

Triticosecale sp.  97 YOLOv4 10.35 0.5 

Triticosecale sp.  96 YOLOv4 10.34 0.5 

Triticosecale sp.  98 YOLOv4 10.34 0.5 

Triticosecale sp.  98 YOLOv4 10.33 0.5 

Triticosecale sp.  95 YOLOv4 10.32 0.5 

Avena sp.  100 YOLOv4 10.10 0.5 

Avena sp.  98 YOLOv4 10.30 0.5 

Avena sp.  97 YOLOv4 10.37 0.5 

Avena sp.  99 YOLOv4 10.38 0.5 

Avena sp.  100 YOLOv4 10.39 0.5 

DISCUSSION 

In many studies, deep learning algorithms have been used in seed analysis applications in agriculture. 
According to Uzal and coauthors [41] used deep learning algorithms, and convolutional neural networks 
(CNN) to predict seeds per pod for plant breeding. On the other hand, Altuntas and coauthors [42] stated that 
they were able to identify haploid and diploid maize seeds using convolutional neural networks and a transfer 
learning approach. Zhao and coauthors [43] reported that they developed a deep learning-based real-time 
recognition system for exact surface defects in soybean seeds. According to Koklu and coauthors [44] 
created models using artificial neural network (ANN) and deep neural network (DNN) algorithms and 
convolutional neural network (CNN) algorithm to classify rice varieties. The classification successes obtained 
from the models were reported as 99.87% for ANN, 99.95% for DNN, and 100% for CNN. Additionally, Khanal 
and coauthors [45] stated that they used deep learning for counting and external quality classification of 
maize seeds. 

An improved version of the YOLOv4-tiny system developed by Jiang and coauthors [40] was able to 
detect objects in real-time, with confidence scores of trains that ranged from 90-92 % in their sample figures 
with YOLOv4-tiny to 90-94 % in their proposed method. 

Li and coauthors [46] focused on developing and testing a YOLOv4-tiny algorithm-based broken corn 
kernel detection device. The YOLOv4-tiny model was found to be 93.5 % accurate for intact kernels 
and %90.0 accurate for broken kernels, with precision, recall, and F1 score values of 92.8 %, 93.5 %, and 
93.11 %, respectively. 
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For real-time electronic component detection, Guo and coauthors [47] developed a new YOLOv4-tiny 
network. From 93.74 % to 98.6 %, the original algorithm’s accuracy has been improved. The method is the 
fastest and most accurate when compared to current mainstream algorithms, such as Faster RCNN, SSD, 
RefineDet, EfficientDet, and YOLOv4. It’s also implied that the method can be used to develop manufacturing 
robots for the electronics industry as a technical reference. 

CONCLUSION 

This research employs a YOLOv4-tiny network structure to determine forage crop seeds and shows the 
detection accuracy without increasing enormous calculations. As compared to YOLOv4 and YOLOv4-tiny 
has a faster detection rate and a nearly similar average precision. 

Efficiency and quality in mixed crops may vary depending on the types of plants used, the blend ratios, 
and the harvest times [48]. Because in the seed mix, the competitiveness of the legumes is lower than the 
grain. Therefore, the quality of the grass in the blends is reduced as the proportion of the legumes decreases 
[49]. This means that in mixed crops, the percentage of seeds to be applied is very important. There are no 
machines capable of planting this type of mixed crop. It’s a blow-by-blow for the design of machines that can 
plant this kind of mixed crop, later control and optimization of the systems can be done by real-time YOLOv4-
tiny models. 
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