Acessibilidade / Reportar erro

Effects of disturbance area on fouling communities from a tropical environment: Guanabara Bay, Rio de Janeiro, Brazil

Abstracts

In marine fouling communities, free space is one of the key limiting resources for settlement of new organisms. In this way, removing biomass through physical disturbances would play an important role in the structure and dynamics of these communities. The disturbance size seems to be a characteristic that influences recolonization patterns, thus affecting species diversity. The aim of this study was to analyze the effects of growing disturbance areas on fouling communities. Fouling panels were allowed to develop for 6 mo. at Guanabara Bay (22°52'S, 043°08'W) prior to a single application of randomly positioned, circular physical disturbances of growing areas (7 levels, from 0 to 75% removed cover, 10 replicates per treatment). Samples were taken fortnightly after the disturbance event, so as to follow the development patterns of the community afterward. At the first sampling the diversity showed maximum indices in communities to which intermediary disturbance levels were applied. However, this profile changed later to a diversity peak in communities with higher disturbance levels. It also showed a continuous increase in richness and diversity through time until the 7th sample (110 days after the disturbance event), with subsequent decrease. Such patterns seem to corroborate the Intermediate Disturbance Hypothesis, despite the drastic profile change with time, revealing that disturbance is indeed an important factor structuring hard bottom communities at Guanabara Bay, and highlighting the importance of longer term studies of disturbance impacts in marine communities.

Physical disturbance; Fouling community; Disturbance area; Intermediate Disturbance Hypothesis (IDH); Diversity; Guanabara Bay


Em comunidades incrustantes marinhas, o espaço livre no substrato é um dos principais recursos limitantes para o estabelecimento de novos organismos. Assim sendo, distúrbios físicos que removam biomassa se mostram importantes agentes para a estruturação e dinâmica dessas comunidades. A extensão do distúrbio é uma característica que parece afetar os padrões de recolonização, e desta forma altera a diversidade de espécies. O objetivo deste trabalho foi analisar os efeitos de áreas crescentes de distúrbio em comunidades incrustantes. Para tal, comunidades macrobentônicas incrustantes foram previamente desenvolvidas por 6 meses na Baía de Guanabara (22°52'S, 043°08'W), recebendo uma única vez distúrbios circulares, aleatoriamente posicionados, com áreas crescentes (7 níveis, de 0 a 75% da cobertura removida, 10 réplicas por nível). Amostragens quinzenais foram realizadas após o distúrbio, de modo a acompanhar os padrões de desenvolvimento das comunidades. Na primeira amostragem observou-se que índices máximos de diversidade foram obtidos nas comunidades que receberam níveis intermediários de distúrbio. No entanto, no decorrer do tempo este perfil deu lugar a um pico de diversidade nas comunidades que sofreram os maiores níveis de distúrbio. Notou-se também um incremento contínuo da riqueza e diversidade ao longo do tempo até a 7ª amostragem (110 dias após os distúrbios), com subseqüente redução a partir deste momento. Tais padrões parecem corroborar a Hipótese do Distúrbio Intermediário, embora em médio prazo o perfil da comunidade mude drasticamente, revelando que perturbações físicas representam de fato um importante fator na estruturação de comunidades marinhas de substrato consolidado da Baía de Guanabara, além de realçar a importância de estudos de maior duração na avaliação dos impactos de distúrbios em comunidades marinhas.

Distúrbio físico; Comunidade incrustante; Área de distúrbio; Hipótese do Distúrbio Intermediário (HDI); Diversidade; Baía de Guanabara


  • ANDERSON, M. J. Effects of patch size on colonization in estuaries: revisiting the species-area relationship. Oecologia, v. 118, p. 87-98, 1998.
  • BENEDETTI-CECCHI, L. Predicting direct and indirect interactions during succession in a mid-littoral rocky shore assemblage. Ecol. Monogr, v. 70, p. 45-72, 2000.
  • BRANCH, G. M. Competition between marine organisms: ecological and evolutionary implications. Annu. Rev. Oceanogr. Mar. Biol, v. 22, p. 429-593, 1984.
  • CHAPIN, F. S. III; ZAVALETA, E. S.; EVINER, V. T.; NAYLOR, R. L.; VITOUSEK, P. M.; REYNOLDS, H. L.; HOOPER, D. U.; LAVOREL, S.; SALA, O. E.; HOBBIE, S. E. MACK, M. C.; DIAZ, S. Consequences of changing biodiversity. Nature, v. 405, p. 234-242, 2000.
  • CONNELL, J. H. Diversity in tropical rain forests and coral reefs. Science, v. 199, p. 1302-1310, 1978.
  • DAYTON, P. K. Competition, disturbance, and community organization: The provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr, v. 41, p. 351-389, 1971
  • FARRELL, T. M. Succession in a rocky intertidal community: the importance of disturbance size and position within a disturbed patch. J. Exp. Mar. Biol. Ecol, v. 128, p. 57-73, 1989.
  • GRIME, J. P. Competitive exclusion in herbaceous vegetation. Nature, v. 242, p. 344-347, 1973.
  • GRIME, J. Evidences for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Naturalist, v. 111, p. 1169-1194, 1977.
  • HOBBS, R. J.; HUENNEKE, L. F. Disturbance, Diversity, and Invasion: Implications for Conservation. Conserv. Biol, v.6, p. 324-337, 1992.
  • HURLBERT, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr, v. 54, p. 187-211, 1984.
  • HUSTON, M. A. A general hypothesis of species diversity. Am Naturalist, v.113, p. 81-101, 1979.
  • JACKSON, J. B. C. Adaptation and diversity of reef corals. Bioscience, v. 41, p. 475-482, 1977.
  • JACKSON, J. B. C.; BUSS, L. Allelopathy and spatial competition among coral reef invertebrates. Proc. nat. Acad. Sci U.S.A, v. 72, p. 5160-5163, 1975.
  • JACKSON, J. B. C. Adaptation and diversity of reef corals. Bioscience, v. 41, p. 475-482, 1977.
  • JARA, V. C.; MIYAMOTO, J. H .S.; DA GAMA, B. A. P.; MOLIS, M.; WAHL, M.; PEREIRA, R. C. Limited evidence of interactive disturbance and nutrient effects on the diversity of macrobenthic assemblages. Mar. Ecol. Prog. Ser, v. 308, p. 37-48, 2006.
  • KAY, A. M.; KEOUGH, M. J. Occupation of patches and the epifaunal communities on pier pilings and the bivalve Pinna bicolor at Edithburgh, South Australia. Oecologia, v.48, p. 123-130, 1981.
  • KJERFVE, B.; RIBEIRO, C. H. A.; DIAS, G. T. M.; FILIPPO, A. M.; QUARESMA, V. S. Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Continent. Shelf Res, v. 17, p. 1609-1643, 1997.
  • LENZ, M.; MOLIS, M.; WAHL, M.. Testing the intermediate disturbance hypothesis: response of fouling communities to various levels of emersion intensity Mar. Ecol. Prog. Ser, v. 278, p. 53-65, 2004a.
  • LENZ, M.; MOLIS, M.; WAHL, M. Experimental test of the intermediate disturbance hypothesis: response of fouling communities to various levels of emersion intensity. J. Exp. Mar. Biol. Ecol, v. 305, p. 247-266, 2004b.
  • MACKEY, R. L.; CURRIE, D. J. A re-examination of the expected effects of disturbance on diversity. Oikos, v. 88, p. 483-493, 2000.
  • MACKEY, R. L.; CURRIE, D. J. The diversity-disturbance relationship: Is it generally strong and peaked? Ecology, v. 82, p. 3479-3492, 2001.
  • MENGE B. A.; BRANCH, G. M. Rock intertidal communities. In: BERTNESS, M. D.; GAINES, S. D.; HAY M. E. (Ed.). Marine community ecology Sunderland, MA: Sinauer Associates, p. 221-252, 2001.
  • MILLER, T. E. Community diversity and interactions between the size and frequency of disturbance. Am. Naturalist, v. 120, p. 533-536, 1982.
  • MORGAN, S. G. The larval ecology of marine communities. In: BERTNESS, M.D.; GAINES, S.D. & HAY M.E. (Ed.). Marine community ecology Sunderland, MA: Sinauer Associates, p.159-182, 2001.
  • OSMAN, R. W. The establishment and development of marine epifaunal community. Ecol. Monogr, v. 47, p. 37-63, 1977.
  • PALMER, M. A.; AMBROSE, R. F.; POFF, N. L. Ecological theory and community restoration ecology. Restor Ecol, v. 5, p. 291-300, 1997.
  • PALUMBI, S. R.; JACKSON, J. B. C. Ecology of cryptic coral reef communities. II. Recovery from small disturbance events by encrusting bryozoa: the influence of "host" species and lesion size. J. Exp. Mar. Biol. Ecol. v. 64, p. 103-115, 1982.
  • PETRAITIS, P. S.; LATHAM, R. E.; NIESENBAUM, R. A. The maintenance of species diversity by disturbance. Quart Rev Biol., v. 64, p. 393-418, 1998.
  • PORTO, T. F. Efeitos da variabilidade temporal de distúrbios, seqüência e idade sucessional em comunidades macrobentônicas Dissertação (Mestrado em Biologia Marinha). Universidade Federal Fluminense, Niterói, 69 p, 2006.
  • RAPPORT, D. J.; REGIER, H. A.; HUTCHINSON, T. C. Ecosystem behaviour under stress. Am. Naturalist, v. 125, p. 617-640, 1985.
  • RUPPERT, E. E.; FOX, R. S. ; BARNES R. D. Invertebrate Zoology: A Functional Evolutionary Approach. 7th ed. Belmont, CA: Brooks/Cole - Thomson Learning, 963 p. 2004.
  • RUSS, G. R. Overgrowth in a marine epifaunal community: competitive hierarchies and competitive networks. Oecologia, v. 53, p. 12-19, 1982.
  • SEBENS, K. P. Spatial relationships among encrusting marine organisms in the New England subtidal zone. Ecol Monogr, v. 56, p. 73-96, 1986.
  • SOUSA, W. P. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst, v.15, p. 353-391, 1984.
  • SOUSA, W. P. Natural disturbance and the dynamics of marine benthic communities. In: BERTNESS, M. D.; GAINES, S.D. HAY M. E. (Ed.). Marine community ecology Sunderland, MA: Sinauer Associates, p. 85-130, 2001.
  • UNDERWOOD, A. J. Experiments in ecology – Their logical design and interpretation using analysis of variance. Cambridge: Cambridge University Press, 504 p. 1997.
  • VALDIVIA, N.; HEIDEMANN, A.; THIEL, M.; MOLIS, M.; WAHL, M. Effects of disturbance on the diversity of hard-bottom macrobenthic communities on the coast of Chile. Mar. Ecol. Prog. Ser, v. 299, p. 45-54, 2005.
  • WAHL, M. & MARK, O. The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar. Ecol. Progr. Ser, v. 187, p. 59-66, 1999.
  • WITMAN, J.D. & DAYTON, P.K. Rock subtidal communities. In: BERTNESS, M. D.; GAINES, S. D. & HAY M. E. (Ed.). Marine community ecology Sunderland, MA: Sinauer Associates, p. 339-366, 2001.
  • ZALMON, I.R., DA GAMA, B.A.P., LETA, A. Fouling community organization at Guanabara Bay, Brazil: a directional process or a variable temporal progression? Oebalia, v. 19, p. 217-222, 1993.
  • ZAR, J.H. Biostatistical analysis 4th ed. Upper Saddle River, NJ: Prentice Hall. 918 p., 1999.

Publication Dates

  • Publication in this collection
    19 June 2008
  • Date of issue
    June 2008

History

  • Accepted
    13 Aug 2007
  • Received
    09 June 2006
  • Reviewed
    16 Apr 2007
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br