Acessibilidade / Reportar erro

Coral reef detection using SAR/RADARSAT-1 images at Costa dos Corais, PE/AL, Brazil

Abstracts

The present work aimed to examine the potentials of SAR RADARSAT-1 images to detect emergent coral reefs at the Environmental Protection Area of "Costa dos Corais". Multi-view filters were applied and tested for speckle noise reduction. A digital unsupervised classification based on image segmentation was performed and the classification accuracy was evaluated by an error matrix built between the SAR image classification and a reference map obtained from a TM Landsat-5 classification. The adaptative filters showed the best results for speckle suppression and border preservation, especially the Kuan, Gamma MAP, Lee, Frost and Enhanced Frost filters. Small similarity and area thresholds (5 and 10, respectively) were used for the image segmentation due to the reduced dimensions and the narrow and elongated forms of the reefs. The classification threshold of 99% had a better user's accuracy, but a lower producer's accuracy because it is a more restrictive threshold; therefore, it may be possible that it had a greater omission on reef classification. The results indicate that SAR images have a good potential for the detection of emergent coral reefs.

coral reefs; SAR images; Detection; Costa dos Corais


O presente trabalho examinou o potencial de imagens SAR do RADARSAT-1 na detecção de recifes de coral expostos na Área de Proteção Ambiental das Costa dos Corais. Filtros de multi-visada foram aplicados e testados para redução do ruído speckle. Uma classificação não supervisionada baseada em uma imagem segmentada foi realizada e a acurácia da classificação foi avaliada através de uma matriz de erro construída entre a imagem classificada e o mapa de referência. Os filtros adaptativos apresentaram os melhores desempenhos para supressão de speckle e preservação de bordas, especialmente os filtros Kuan, Gamma MAP, Lee, Frost and Enhanced Frost. Os pequenos limiares de similaridade e de área (10 e 5, respectivamente) foram melhores devido à forma fina e alongada dos recifes. O limiar de classificação de 99% apresentou uma melhor acurácia do produtor, mas uma menor acurácia do usuário, porque este limiar é mais restritivo; portanto, é possível que tenha havido uma maior omissão na classificação de recifes. Os resultados indicam que imagens SAR têm um bom potencial para a detecção de recifes expostos.

Recifes de coral; Imagens SAR; Detecção; APA Costa dos Corais


  • AHMAD, W.; NEIL, D. T. An evaluation of Landsat Thematic Mapper (TM) digital data for discriminating coral reef zonation: Heron Reef (GBR). Int. J. Remote Sens, v.15, n. 13, p. 2583-2597, 1994.
  • ANDRÉFOUËTA, S.; KRAMERB, P.; TORRES-PULLIZAC, D.; JOYCED, K. E.; HOCHBERGE, E. J.; GARZA-PÉREZF, R.; MUMBYG, P. J.; RIEGLH, B.; YAMANOI, H.; WHITEJ, W. H.; ZUBIAK, M.; BROCKC, J. C.; PHINND, S. R.; NASEERL, A.; HATCHERL, B. G.; MULLER-KARGERA, F. E. Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sens. Env, n. 88, p. 128-143, 2003.
  • BAGHDADI, N.; GRATIOT, N.; LEFBVRE, J. P.; OLIVEROS, C.; BOURGUIGNON, A. A coastline and mudbank monitoring in French Guiana: contributions of radar and optical satellite imagery. Can. J. Remote Sens., v. 30, p. 109-122, 2004.
  • BAGHDADI, N.; PEDREROS, R.; LENOTRE, N.; DEWEZ, T.; PAGANINI, M. Impact of polarization and incidence of the ASAR sensor on coastline mapping: example of Gabon. Int. J. Remote Sens., v. 28, n. 17, p. 3841-3849, 2007.
  • BEAUCHEMIN, M.; THOMSON, K. P. B.; EDWARDS, G. On Nonparametric edge detection in multilook SAR images. IEEE Trans. Geosci. Remote Sens, v. 36, n. 5, p. 1826-1829, 1998.
  • BRAGA, C. Z. F.; GHERARDI, D. F. M. Mapeamento de recifes costeiros utilizando imagens orbitais. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 10., 2001. Foz do Iguaçu, Proceedings... São Paulo: Fábrica da Imagem, 2001. 13 p.
  • CÂMARA, G.; SOUZA, R. C. M.; FREITAS, U. M.; GARRIDO, J. SPRING: Integrating remote sensing and GIS by object-oriented data modelling. J. comput Graphics, v. 20, n. 3, p. 395-403, 1996.
  • CASTRO, C. B.; PIRES, D. Brazilian coral reefs: what we already know and what is still missing. Bull. mar. Sci, v. 2, n. 69, p. 357-71, 2001.
  • CLARK, J. R. Coastal zone management Handbook. Boca Raton, FLA: CRC Press., 1996. 720 p.
  • ENVI, Environment for visualizing images, Lafayette: Research Systems, Inc. 1999.
  • FROST, V. S.; STILES, J. A.; SHANMUGAN, K. S.; HOLTZMAN, J. C. A model for radar images and its applications to adaptive digital filtering of multiplicative noise. Trans. Patt. Anal. Mach. Intel., PAMI-4, n. 2, p. 157-166, 1982.
  • FROUIN, R.; SCHWINDLING, M.; DESCHAMPS, P.-Y. Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications. J. Geophys. Res, v. 101(C6), p. 14361-14371, 1996.
  • GALY, H. M.; SANDERS, R. A. Using synthetic aperture radar imagery for flood modelling. Trans. in GIS, v. 6, n. 1, p. 31-42, 2002.
  • GHERARDI, D. F. M. ; BRAGA, C. Z. F.; MORELLI, F. Reef conservation in Brazil: remote sensing and ground truthing. Reef Encounter, v. 26, p. 32, 1999.
  • GREEN, E. P. M. P. J.; EDWARDS, A. J.; CLARK, C. D. Remote sensing Handbook for tropical coastal management. Paris: United Nations Educational, 2000. p. 129-175.
  • JOHANNESSEN, O. M.; SANDVEN, S.; JENKINS, A. D.; DURAND, D.; PETTERSSON, S. H.; ESPEDAL, H.; EVENSEN, G.; HAMRE, T. Satellite earth observation in operational oceanography. Coast. Eng, v. 41, p. 155-176, 2000.
  • KUAN, D. T.; SAWCHUK, A. A.; STRAND, T. C.; CHAVEL, P. Adaptative noise smoothing filter for images with signal dependent noise. Trans. Patt. Anal. Mach. Intel., PAMI -2, p. 165-177, 1985.
  • KUCHLER, D. A.; JUPP, D. L. B.; CLAASEN, D. R.; BOUR, W. Coral reef remote sensing applications. Geocart. int, v. 4, p. 3-15, 1986.
  • LEE, S. J. Digital image enhancement and noise filtering by use of local statistics. Trans. Patt. Anal. Mach. Intel, v.2, n. 2, p. 165-168, 1980.
  • LILLESAND, T. M.; KIEFER, R. W. Remote sensing and image interpretation New York: Wiley & Sons, 1994. 724 p.
  • LOBO, A.; CHIC, O.; CASTERAD, A. Classification of Mediterranean crops with multisensor data : per-pixel versus per-object statistics and image segmentation. Int. J. Remote Sens., v.17, n. 2, p. 2385-2400, p. 1996.
  • LOPES, A.; TOUZI, R.; NEZRY, E. Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens, v. 28, n. 6, p. 992-1000, 1990.
  • LOPES, A.; NEZRY, E.; TOUZI, R.; LAUR, H. Structure detection and statistical adaptive speckle filtering in SAR images. Int. J. Remote Sens., v. 14, n. 9, p. 1735- 1758, 1993.
  • MAIDA, M.; FERREIRA, B. P. Coral reefs of Brazil: an overview. In: INTERNATIONAL CORAL REEF SYMPOSIUM, 8. 1997, Panama City. Proceedings... International Society for Reef Studies, 1997. p. 263–274.
  • MOBERG, F.; FOLKE, K. Ecological goods and services of coral reef ecosystems. Ecol Econ, v. 29, p. 215-223, 1999.
  • MORELLI, F. Mapping of coastal reefs of Paripueira (AL) using LANDSAT TM and HRV SPOT image classification. 2000. 78 p. (Master Thesis in Remote Sensing) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP. In Portuguese. 2000.
  • PCI, Easi-Pace Software. Richmont: PCI Geomatics. 1995.
  • PURKIS, S. J. A "Reef-Up" approach to classifying coral habitats from IKONOS imagery. IEEE Trans. Geosci. Remote Sens, v. 43, n.6, p. 1375-1390, 2005.
  • RIEGL, B. M.; PURKIS, S. J. Detection of shallow subtidal corals from IKONOS satellite and QTC View (50, 200 kHz) single-beam sonar data (Arabian Gulf; Dubai, UAE). Remote. Sens. Environ, v. 95, p.96-114, 2005.
  • RSI. RADARSAT Data Products Specifications RADARSAT International (RSI). Richmond: RSI, RSI-GS-026, 1997. 148 p.
  • SHERBININ, A.; RAUSTIALA, K.; KLINE, K. Remote sensing data: Valuable support for environmental treaties. Environ, v. 44, n. 1, p.20-31, 2002.
  • SOLER, L. d. S. Oil slick detection on sea surface by textural classification of sinthetic aperture radar images (RADARSAT-1). 2000. 167 p. (Master Thesis in Remote Sensing) - INPE, São José dos Campos, SP. 2000.
  • STOFFLE, R. W.; HALMO, D. B.; WAGNER, T. W.; LUCZKOVICH, J. J. Reefs from space: satellite imagery, marine ecology, and ethnography in the Dominican Republic. Hum. Ecol: An Interdisciplinary Journal, v. 22, n.3, p. 355-378, 1994.
  • SUGA, Y.; OGURO, Y.; TAKEUCHI, S. Detection of oyster beds using Sar and Optical Sensor Data. In: ASIAN CONFERENCE ON REMOTE SENSING, 20., 1999, Hong Kong. Proceedings... GIS Development, 1999. p. 1-2.
  • TRAVAGLIA, C.; PROFETI, G.; AGUILAR-MANJARREZ, J.; LOPEZ, N. Mapping coastal aquaculture and fisheries structures by Satellite Imaging Radar: Case Study of the Lingayen Gulf, the Philippines. FAO Fish. tech Pap, 2004. 45 p.
  • VAN DER SANDEN, J. J.; ROSS, S. G. Applications potential of RADARSAT-2: A preview. Report for the Canadian Space Agency. Ottawa: CCRS, 2001. 80 p.
  • XIAO, J.; Li, J.; MOODY, A. A detail-preserving and flexible adaptive filter for speckle suppression in SAR imagery. Int. J. Remote Sens, v. 24, n. 12, p. 2451-2465, 2003.
  • YAMANO, H.; SHIMAZAKI, H.; MATSUNAGA, T.; ISHODA, A.; MCCLENNEN, C.; YOKOKI, H.; FUJITA, K.; OSAWA, Y.; KAYANNE, H. Evaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall Islands. Geomorph, v. 82, p. 398-411, 2006.

Publication Dates

  • Publication in this collection
    19 June 2008
  • Date of issue
    June 2008

History

  • Accepted
    11 Dec 2007
  • Reviewed
    05 Oct 2007
  • Received
    23 Mar 2007
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br