Abstracts
There is no single instrument that can sample quantitatively the complete spectrum of pelagic organisms, or even all the components of zooplankton. Mesh size is the main factor affecting species selectivity in the Continuous Plankton Recorder (CPR), implying a need to use multiple net systems to fully characterize a community. The spatial distribution of copepod communities in the water masses of the western and eastern sectors of Drake Passage were studied using, respectively, a CPR and a Pump Net onboard system. For this purpose, and assuming that copepod community size structures of each of the three water masses were similar in both the sectors studied, the possibility of complementing CPR results using a Pump-Net onboard system was evaluated. The latter system allows the estimation of absolute abundances and has the advantage of solving two problems associated with CPR, namely mesh clogging and low catching efficiency. The contribution of the nauplius forms and species accurately identified with both samplers was analyzed. Although Oithona similis dominated both communities, in the western sector small species made a greater contribution than Calanus simillimus, the opposite being true for the eastern sector. Nauplii and early copepodite stages of O. similis were missing from the CPR samples and represented between 69 and 79% of total copepod communities, whereas small calanoid copepods, C. simillimus copepodites and later stages of O. similis were inaccurately sampled by the CPR and represented between 14 and 18% of the copepod community. Hence, the Pump Net sampler is useful for complementing the semi-quantitative information of the CPR and for its calibration.
Copepod; Continuous Plankton Recorder; Pump Net sampler; Drake Passage; Southern Ocean
Não há um único instrumento que possa efetuar uma amostragem quantitativa completa para o espectro de organismos pelágicos, ou mesmo, para todos os componentes do zooplâncton. O tamanho da malha é o principal fator que afeta a seletividade de espécies no Registro Contínuo de Plâncton (CPR). Neste trabalho, estudamos a distribuição espacial das comunidades da copépode nas massas de água registradas nos setores ocidentais e orientais da Passagem de Drake, usando um CPR e um equipamento de amostragem que consiste em uma bomba de sucção instalada a uma rede de malha de 20 µm, respectivamente. Para este fim, e supondo que o tamanho das estruturas da comunidade de Copépodes de cada uma das três massas de água são similares em ambos setores estudados, foi avaliada a possibilidade de complementar resultados obtidos com o uso de CPR usando à bordo o sistema de bomba de sucção-rede. Este sistema permite a avaliação da abundância absoluta e possui a vantagem de resolver dois problemas associados à CPR, que são o assoreamento da rede e a baixa eficiência de captura. A contribuição das formas nauplius e das espécies identificadas com os dois amostradores, foram analisadas. Embora Oithona similis dominasse ambas as comunidades no setor ocidental, pequenas espécies de calanóides apresentaram contribuição mais elevada do que Calanus simillimus, enquanto o inverso foi verdadeiro para o setor oriental. Nauplii e estágios iniciais de copepoditos de O. similis faltaram nas amostras de CPR e representaram entre 69-79% das comunidade total de copépode, enquanto as densidades de pequenos calanódes e copepoditos de C. simillimus e estágios posteriores do O. similis foram imprecisamente estimadas por meio de CPR e representaram entre 14 e 18% da comunidade copépodes. Portanto, o sistema de bomba de sucção-rede é útil para complementar informações semi-quantitativas de CPR e sua calibração.
Copépodos; densidade; Registro Contínuo de Plâncton; sistema bomba de sucção; Passagem de Drake; Oceano Antártico
- ANON. VI: Sampling zooplankton to determine biomass. In: Recommended interim procedures for measurements inbiological oceanography.Prepared by Biological Methods Panel Committee on Oceanography. Washington, D.C.: Nat. Acad. Sci.‑Nat. Res. Coun., 1964. p. 17-23.
- ARON W. The use of large capacity portable pump for plankton sampling, with notes on plankton patchiness. J. Mar.Res., v. 16, p. 158-173, 1958.
- ATKINSON, A.; WARD, P.; MURPHY, E. J. Diel periodicity of Subantarctic copepods: relationships between vertical migration, gut fullness, and evacuation rate. J. Plankton Res., v. 18, p. 1387‑1405, 1966a.
- ATKINSON, A.; SHREEVE, R. S.; PAKHOMOV, E. A.; PRIDDLE, J.; BLIGHT, S. P.; WARD P. Zooplankton response to a phytoplankton bloom near South Georgia, Antarctica. Mar. Ecol. Prog. Ser., v. 144, p. h195–210, 1996b.
- ATKINSON, A.; SINCLAIR, J. D.. Zonal distribution and seasonal vertical migration of copepod assemblages in the Scotia Sea. Polar Biol., v. 23, p. 46-58, 2000.
- ATKINSON, A.; SIEGEL V.; PAKHOMOV, E. A.; ROTHERY, P.; LOEB, V.; ROSS, R. M.; QUETIN L. B.; SCHMIDT, K.; FRETWELL, P.; MURPHY, E. J.; TARLING, G. A.; FLEMING, A. H. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser., v. 362, p. 1–23, 2008.
- BATTEN, S. D.; FLINKMAN, J.; HAYS, G.; JOHN, G.; JOHN, A. W. G.; JONAS, T.; LINDLEY, J. A.; STEVENS, D. P.; WALE, A. CPR sampling: the technical background, materials and methods, consistency and comparability. Prog. Oceanogr., v.58, p. 193–215, 2003.
- BRADFORD-GRIEVE, J. M.; MARKHASEVA, E. L.; ROCHA, C. E. F.; ABIAHY, B.. Copepoda. In: BOLTOVSKOY, D. (Ed.). South Atlantic Zooplankton. v.2. Leiden: Backhuys Publishers, 1999. p. 869-1098.
- BRANDER, K. M.; DICKSON, R. R.; EDWARDS, M. Use of Continuous Plankton Recorder information in support of marine management: applications in fisheries, environmental protection, and in the study of ecosystem response to environmental change. Prog.Oceanogr. , v. 58, p. 175–191, 2003.
- CLARK, R. A.; FRID, C. L. J.; BATTEN, S.. A critical comparison of two long‑term zooplankton time series from the central‑west North Sea. J. Plankton Res., v. 23, p. 27–39, 2001.
- DUBISCHAR, C. D.; LOPES, R. M.; BATHMANN, U. V. High summer abundances of small pelagic copepods at the Antarctic Polar Front ‑ implications for ecosystem dynamics. Deep‑Sea Res. PT II, v. 49, p. 3871‑3887.
- GALLIENNE C. P.; ROBINS, D. B.. Is Oithona the most important copepod in the world's oceans? J. Plankton Res., v. 23, p. 1421–1432, 2001.
- GRUBBS, F. E. Procedures for detecting out-lying observations in samples. Technometrics, v. 11, p. 1-21, 1969.
- HARDY, A. C. Observations on the uneven distribution of oceanic plankton. Discov. Rep., v. 11, p. 511- 538, 1936.
- HOSIE, G. W.; FUKUCHI, M.; KAWAGUCHI, S.. Development of the Southern Ocean Continuous Plankton recorder survey. Prog. Oceanogr, v. 58, p. 263–28, 2003.
- HUNT, B. P. V.; HOSIE, G. W. The Continuous Plankton Recorder in the Southern Ocean: a comparative analysis of zooplankton communities sampled by the CPR and vertical net hauls along 140ºE. J. Plankton Res., v. 25, p. 1561‑1579, 2003.
- HUNT, B. P. V.; HOSIE G. W. Zonal structure of zooplankton communities in the Southern Ocean south of Australia: results from a 2150 km Continuous Plankton Recorder transect. Deep‑Sea Res., v. 52, p. 1241‑1271, 2005.
- HUNT, B. P. V.; HOSIE, G. W. Continuous Plankton Recorder flow rates revisited: clogging, ship speed, and flowmeter design. J. Plankton Res., v. 28:847‑855, 2006.
- JOHN, E. H.; BATTEN S. D.; HARRIS R.P.; HAYS G. C. Comparisons between zooplankton data collected by the Continuous Plankton Recorder survey in the English Channel and by WP‑2 net at station L4, Plymouth (UK). J. Sea Res. , v. 46, p. 223–232, 2001.
- JOHN, E. H.; BATTEN, S. D.; STEVENS, D. S.; WALNE, A. W.; JONAS, T. J.; HAYS, G. C. Continuous Plankton Records stand the test of time: evaluation of flow rates, clogging and the continuity of the CPR time-series. J. Plankton Res , v. 24, p. 941–946, 2002.
- KANE, J. A comparison of two zooplankton time series data collected in the Gulf of Maine J. Plankton Res, v. 31:, p. ‑259, 2009.
- MCLEOD, D. J.; HOSIE, G. W.; KITCHENER, J. A.; TAKAHASHI, K. T.; HUNT, B. P. V. Zooplankton Atlas of the Southern Ocean: The SCAR SO‑CPR Survey (1991‑2008). Polar Sci., v. 4, p. 353‑385, 2010.
- METZ, C. Life strategies of dominant Antarctic Oithonidae (Cyclopoida, Copepoda) and Oncaeidae (Poecliostomatoida, Copepoda) in the Bellinghausen Sea. Ber. Polarforsch. , v. 207, p. 1‑123, 1996.
- MOORE, J. K.; ABBOTT, M. R. Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. J. Geophys. Res., v. 105, p. 28709–28722, 2000.
- NAYAR, S.; GOH, B. P. L. and CHOU, L. M.. A portable, low-cost, multipurpose, surface–subsurface plankton sampler. J. Plankton Res, v. 24, p. 1097–1105, 2002.
- NICHOLS, J. H.; THOMPSON, A. B.. Mesh selection of copepodite and nauplius stages of four calanoids copepod species. J. Plankton Res., v. 13, p. 661–671, 1991.
- OCEAN BIOGEOGRAPHIC INFORMATION SYSTEM. <www.iobis.org> . Accessed April 22nd, 2011.
» link - O'BRIEN, T. D. 2007. COPEPOD: The Global Plankton Database. A review of the 2007 database contents and new quality control methodology. U.S. Dep. Commerce, NOAA Tech. Memo NMFS‑F/ST‑34, 28 p.
- ORSI, A. H.; WHITWORTHIII, T.; NOWLIN JR.,W. D. On the meridional extent and fronts of the Antarctic circumpolar current. Deep‑Sea Res. PT I, v. 42, p. 641–673, 1995.
- PAKHOMOV, E. A.; ANSORGE, I. J.; FRONEMAN, P. W. Variability in the inter-island environment of the Prince Edward Islands (Southern Ocean). Polar Biol v. 23, p. 593–603, 2000.
- PARK J.; Oh, I.-S.; KIM, H.-C.; YOO, S. Variability of SeaWIFS chlorophyll-a in the southwest Atlantic sector of the Southern Ocean: Strong topographic effects and weak seasonality. Deep-Sea Res., PT I v. 57, p. 604-620, 2010.
- PINKERTON, M. H.; SMITH, A. N. H.; RAYMOND, B.; Hosie, G. W.; SHARP, B.; LEATHWICK, J. R.; BRADFORD‑GRIEVE, J. M.. The spatial and seasonal distribution of Oithona similis in the Southern Ocean: predictions using Boosted Regression Trees. Deep‑SeaRes. PT I. v. 57, p 469-485, 2010.
- PITOIS, S. G.; FOX, C. J. Empirically cod larvae in modelling the potential effects of changes in temperature and prey availability on the growth of UK shelf seas. ICES J.Mar.Sci., v. 65:1559-1572, 2008.
- QUINONES, R. A.; PLATT, T.; RODRÍGUEZ, J. Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic. Prog. Oceanogr., v. 57, p. 405-427, 2003.
- RAZOULS, S.; RAZOULS, C.; DE BOVÉE, F. Biodiversity and biogeography of Antarctic copepods. Antarct. Sci., v. 12, p. 343‑362, 2000.
- RAZOULS, C.; DE BOVÉE, F.; KOUWENBERG, J. AND DESREUMAUX, N. Diversité et répartition géographique chez les Copépodes planctoniques marins. 2005‑2011. http://copepodes.obs‑banyuls.fr
- REID P. C.; COLEBROOK, J. M.; MATTHEWS, J. B. L.; AIKEN, J. CONTINUOUS PLANKTON RECORDER TEAM. The continuous plankton recorder: concepts and history, from plankton indicator to undulating recorders. Prog. Oceanogr. 58:117–173, 2003.
- RICCARDI, N. Selectivity of plankton nets over mesozooplankton taxa: implications for abundance, biomass and diversity estimation. J. Limnol., v. 69, p. 287‑296, 2010.
- RICHARDSON, J. A.; JOHN, H. E.; IRIGOIEN, X.; HARRIS, P. R.; HAYS, C. G. How well does the Continuous Plankton Recorder (CPR) sample zooplankton? A comparison with the Longhurst Hardy Plankton Recorder (LHPR) in the northeast Atlantic. Deep‑Sea Res. PT I, v. 51, p. 283–1294, 2004.
- SCHNACK‑SCHIEL, S. B.; HAGEN, W. Life cycle strategies and seasonal variations in distribution and population structure of four dominant calanoid copepod species in the eastern Weddell Sea, Antarctica. J. Plankton Res., v. 16, p. 1543-1566, 1994.
- SHELDON, R. W.; PRAKASH, A. SUTCLIFFE JR., W. H. The size distribution of particles in the ocean. Limnol. Oceanogr., v. 17, p. 327-340, 1972.
- SPRINTALL, J.. Long term trends and interannual variability of temperature in Drake Passage. Prog. Oceanogr., v.77, p. 316-330, 2008.
- TAKAHASHI, K. T.; KAWAGUCHI, S.; HOSIE, G. W.; TODA, T.; NAGANOBU, M.; FUKUCHI, M.. Surface zooplankton distribution in Drake Passage recorded by Continuous Plankton Recorder (CPR) in late austral summer of 2000. Polar Sci., v. 3, p. 235‑245, 2010.
- THORPE, S. E.; MURPHY, E. J.; WATKINS, J. L. Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations: investigating the roles of ocean and sea ice transport. Deep-Sea Res. PT I, v. 54, p. 792–810, 2007.
- TONOLLI V. A new device for continuous quantitative plankton sampling: the plankton bar. Proc. Int. Assoc. Theor. , v. 11, p. 422–429, 1951.
- TURNER, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud., v. 43, p. 255‑266, 2004.
- UNESCO. Zooplankton Sampling Monographs on Oceanographic Methodology, n 2. Paris: UNESCO Press, 1968. 174 p.
- VERVOORT, W. Notes of the biogeography and ecology of freeliving, marine Copepoda. In:VAN OYE P.; VAN MIEGHAN J. (Ed.) Biogeography and ecology inAntarctica. The Hague: Junk, 1965. p. 381‑400.
- WARD, P.; SHREEVE, R. S.; CRIPPS, G. C.; TRATHAN, P. N. Mesoscale distribution and population dynamics of Rhincalanus gigas and Calanus simillimus in the Antarctic Polar Open Ocean and Polar Frontal Zone during summer. Mar. Ecol. Prog. Ser, v. 140, p. 21-32, 1996.
- WARD, P.; ATKINSON, A.; TARLING, G.. Mesozooplankton community structure and variability in the Scotia Sea: A seasonal comparison. Deep Sea Res. PT II, v. 59–60, p. 78-92, 2011.
- WIEBE, P. H.; BENFIELD, M. C. From the Hensen net toward four-dimensional biological oceanography. Prog. Oceanogr., v. 56, p. 7–136, 2003.
- ZAR, J. H. Biostatistical Analysis 4th ed. Englewood Cliffs, NJ.:Prentice‑Hall, 1999.
Publication Dates
-
Publication in this collection
30 Oct 2012 -
Date of issue
Sept 2012
History
-
Received
26 Oct 2011 -
Accepted
14 Aug 2012 -
Reviewed
22 July 2012