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Abstract: The design of reinforced concrete structures starting from a linear analysis is allowed by design 
codes and leads to safe solutions. The structural model built for the analysis may be composed not only of bar 
and shell elements, but also solid elements. In the present work, the formulation of the Reinforced Solid 
Method (RSM) was reviewed and applied to the Ultimate Limit State design of a reinforced concrete member, 
with the computation of the required reinforcement and concrete check of each individual solid element within 
the structural model. The results were visualized in a post-processor and validated by numerical simulations. 
The RSM effectively allows for the design of concrete structures with general geometry and loading 
conditions, whilst identifying local effects throughout the volume of the structure. 
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Resumo: O dimensionamento de estruturas de concreto armado a partir de esforços provenientes de análise 
linear é permitido pelas normas e conduz a estruturas seguras. O modelo estrutural elaborado para a análise 
pode ser composto não somente de elementos de barra e de casca, mas também de elementos sólidos. Neste 
trabalho, a formulação do Método dos Sólidos Armados (MSA) foi revista e a aplicada ao dimensionamento 
em ELU de uma peça de concreto, com cálculo da armadura e verificação do concreto em cada um dos 
elementos sólidos componentes do modelo estrutural. Os resultados foram visualizados em um pós-
processador e validados por simulações numéricas. O MSA permite o dimensionamento de estruturas com 
geometria e carregamento genéricos, identificando, ao mesmo tempo, efeitos localizados no interior do 
volume da estrutura. 

Palavras-chave: elementos sólidos, concreto armado, dimensionamento, método dos elementos armados, 
elasticidade tridimensional. 
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1 INTRODUCTION 
A concrete structure may be idealized from the composition of linear (bars), shell (membranes, plates, and shells), 

and solid elements. The utilization of finite solid elements may be justified when designing structural members with 
complex geometry and loadings, for which the application of unidimensional or bidimensional elements turns out to be 
insufficient to capture the load paths within the structure, such as those comprising industrial or hydraulic facilities 
(Figure 1). A linear analysis may be performed to determine the internal stress distribution throughout the three-
dimensional structure for the ultimate limit state design, according to design codes [3]–[5]. The stress fields obtained 
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from the analysis consists of six stress components at each integration point of the solid elements comprising the 
structural model. Limiting state conditions are not directly expressed in terms of sectional forces, and the problem of 
dimensioning the required reinforcement and checking concrete in the presence of the applied stresses is then posed. 

 
Figure 1. (a) Finite solid element model for a clinker storage silo of the Ramliya Cement Plant (Dianafea [1]);  

(b) concrete hydroelectric structure (Wikimedia Commons [2]) 

A solution for the design would be to provide reinforcement to resist the major principal stress in the principal 
directions. However, in design practice it is impossible to provide reinforcement following the randomly oriented principal 
tensile stresses within the structure, even more considering that a structural member is designed for multiple loading 
conditions. Alternatively, reinforcement could be arranged in three orthogonal directions to resist the major principal 
tensile stress in the three reinforcement directions. But this solution is also disregarded in design practice since 
uneconomical layouts would be attained, especially when crack directions draw close to any of the reinforcement 
directions. In another attempt, designers previously utilized the incomplete method of defining working sections and 
integrating the normal stress patterns over their surfaces and then calculating the reinforcement from the total sectional 
forces. For example, Boer [6] proposed the so-called “Theory on composing results to lower model type results” where 
one should proceed to the back-substitution of stresses from a solid model to reference elements: either by integration of 
stress components along the height of a structure to a bidimensional model at the level of a reference plane (Figure 2a), or 
by integration of stresses along both height and width of an elected cross-section to a unidimensional model at the level of 
a reference line (Figure 2b). Dolgikh and Podvysotskii [7] proposed, independently, the “Method of equivalent shells”, 
which consisted basically in the same procedure as the one proposed by Boer, and applied it to the design of a concrete 
spillway (Figure 3). The method of composing results in reference elements, however, has restrict application to members 
with uniform geometry and loadings, so that a sectional design may effectively be performed. It cannot be applied in 
discontinuity regions such as joints of frames or zones of application of concentrated loads. As pointed out by Lisichkin 
[8], the results obtained by integration methods are “not rigorous since they did not incorporate either the tangential stresses 
or the effects of the resistance in the reinforcement to shearing in other directions.” 

 
Figure 2. Composition of results from solid elements: (a) in a quadrangular reference plane or (b) in a reference line [6] 
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Figure 3. Finite element model for a concrete spillway: (a) with solid elements; (b) with equivalent shell elements  

(Dolgikh and Podvysotskii [7]) 

The solution for the Ultimate Limit State (ULS) then relied on the definition of a resistant mechanism equilibrating 
the applied stress tensors. Smirnov [9], addressed, for the first time, equations for the reinforcement design in concrete 
solid elements from three-dimensional stress tensors, focusing on the application in hydroelectric structures. 
Kamezawa et al. [10] proposed additional formulas for the computation of the required reinforcement, but these were 
still limited to stress combinations yielding reinforcement in three directions. Marti, Mojsilović and Foster published 
two thorough detailed works on the subject [11], [12], clearly identifying biaxial and uniaxial compression design cases, 
and representing graphically the solution with the aid of Mohr circles. Their formulation was later reproduced in the fib 
Bulletin [13], which was a practical guide to finite element modelling of reinforced concrete structures. In this 
publication, however, no new information about the subject were brought. Hoogenboom and Boer [14], [15] categorized 
the solution into three subgroups, namely “corner”, “edge” and “interior solution”, according to the requirement of 
reinforcement in one, two or three orthogonal directions, respectively. They also implemented this solution in a 
numerical algorithm searching for the solution that minimized the total required steel. Su et al. [16] presented a genetic 
algorithm to examine all possible solutions and to find, among then, the one that provided the optimal reinforcement. 
Zalesov et al. [17] and Lisichkin [8] treated the theme with a different approach, where reinforcement incorporated 
shearing resistance. Since the solution was not analytical, but rather based upon coefficients determined experimentally, 
the derived equations are not presented in this work. Finally, Nielsen and Hoang presented the complete formulation in 
the third edition of the book Limit Analysis and Concrete Plasticity [18]. Former editions, dated of 1984 and 1999, still 
did not address this theme. The authors brought out the physical interpretation of the applied shear stresses and elegantly 
deducted analytically the complete set of design formulas of the reinforced solid method (RSM). 

2 THE REINFORCED SOLID METHOD 
The reinforced solid method (RSM) for the design of reinforced concrete structures combines linear stress analysis 

with limit design. A plastic method is in fact applied, and the lower bound theorem is recalled twice: first in the selection 
of a linear elastic statically admissible stress field equilibrating the design load (at the level of the global structure), and 
then in the calculation of the equivalent stresses on reinforcement and concrete composing a system of resistance that 
is statically able to carry the applied stresses, where the yield stress is nowhere violated (at the level of each individual 
element comprising the structure). The design load will be a safe estimate of the ultimate load of the structural member. 

2.1. Application of limit analysis to structural concrete 
Limit analysis was formulated for rigid-plastic materials and deals with the collapse load or the load-carrying 

capacity of a body at the yield point. The lower-bound theorem of limit analysis states that: 
“Any load corresponding to a statically admissible state of stress (a state of stress that satisfies the equilibrium 

conditions and the statical boundary conditions for the actual load) everywhere at or below yield is not higher than the 
ultimate load.” 

A state of stress obtained from a linear elastic analysis represents a statically admissible stress field since equilibrium 
and static boundary conditions are satisfied. Concepts of limit analysis and their application to reinforced concrete were 
carefully reviewed and organized by several researchers [18]–[21]. Muttoni et al. [19] detailed the lower bound theorem 
for the application in reinforced concrete enunciating: 
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“In a plastic design a stress field is chosen such that the equilibrium conditions and the statical boundary conditions 
are fulfilled. The dimensions of cross-section and the reinforcement have to be proportioned such that the resistances 
are everywhere greater than or equal to the corresponding internal forces.” 

Kaufmann and Mata-Falcón [22] refer to Nielsen, Thürlimann and his coworkers as the pioneers in applying the theory 
of plasticity to reinforced concrete back to the second half of the last century, stating that “they were of course fully aware 
of the limited ductility of concrete and even reinforcement. Therefore, they completely neglected the tensile strength of 
concrete and addressed further concerns regarding ductility by providing minimum reinforcement and using conservative 
limits of the so-called effective concrete compressive strength as well as upper limits for the reinforcement quantities and 
corresponding compression zone depths (to avoid brittle failures due to concrete crushing).” Since then, design methods 
for three-dimensional structures based on the limit analysis have been developed, including the strut-and-tie method (STM) 
and the stress field method (SFM), (extensively reviewed in a state-of-the-art report fib bulletin [23]), and the reinforced 
solid method (RSM) [14], [15], [9]–[12], [18]. 

2.2. Idealization of material response 

Limit analysis assumes that materials behave in a rigid-plastic manner. Since the material response is not perfectly 
plastic, equivalent reduced plastic strengths need to be defined for the application of the RSM: 

Yielding conditions for concrete. The compressive strength of concrete fc is considered with a reduced value to 
account for the material brittleness and effects of transversal strains. The tensile strength of concrete is neglected for 
equilibrium. 

Yielding conditions for reinforcement. Reinforcing bars are assumed to be perfectly plastic, capable to resist only 
axial stresses. They are also assumed to be perfectly bonded to the concrete and distributed at such small intervals that 
the forces in them can be replaced by an equivalent stress distribution in the concrete. All these assumptions are allowed 
with basis on the lower bound theorem, once they will result in stresses in the reinforcement that are statically 
admissible. Kaufmann [20] contextualizes objectively the above-mentioned considerations: “Apart from the 
assumption of perfectly plastic reinforcement, these idealizations are quite crude. In a real structure, reinforcing bars 
are not infinitely thin, and considerable transverse shear may occur in reinforcement (“dowel action”). Bond stresses 
are limited by the bond strength, resulting in finite development lengths. The crack spacings are not infinitely small 
and tension stiffening effects occur. On the other hand, the analysis of a structure is simplified to a great extent by these 
assumptions, and their influence on the ultimate load is often negligible.” 

Yielding conditions for reinforced concrete. Until now, yielding conditions were set for each material individually 
and not for reinforced concrete, a heterogenous material. In the application of limit analysis methods to structural 
concrete, concrete and reinforcement are considered together as a continuum with resistance given by the linear 
combination of the resistances of the individual materials. Limit analysis may be applied to reinforced concrete if there 
is sufficient deformation capacity to develop the plastic stress redistribution required in the element. 

2.3 RSM: the applied stresses 

In the three-dimensional space, the stresses at a point referred to a rectangular coordinate system x, y and z are 
completely defined by the symmetrical stress tensor: 

x xy xz

xy y yz

xz yz z

S
 
 =  
  

σ τ τ
τ σ τ
τ τ σ

 (1) 

The positive sign convention for the six stress components is shown in Figure 4a: normal stresses σx, σy and σz are 
positive as tensile stresses; shear stresses τxy and τxz are positive in the coordinate directions in a section with the x-axis 
as an outwardly directed normal of the element face; shear stresses τxy and τyz are positive in the coordinate directions 
in a section with the y-axis as an outwardly directed normal of the element face; shear stresses τxz and τyz are positive in 
the coordinate directions in a section with the z-axis as an outwardly directed normal of the element face. 
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Figure 4. (a) Stress components in a solid element; (b) normal and shear stresses in an arbitrary plane; (c) Mohr circle for 3-D 

stresses in a point (adapted from Foster et al. [12]) 

For any oblique plane having a unit normal n = {nx, ny, nz} passing through a point P, the stresses at point P can 
resolved into a component normal to the plane (σn) and a shear component parallel to the plane (Sn), as shown in Figure 
4b. For a stress to be principal, Sn = 0 which implies that: 

x x xy y xz z n x

xy x y y yz z n y

xz x yz y z z n z

n n n n
n n n n
n n n n

σ + τ + τ = σ
τ + σ + τ = σ
τ + τ + σ = σ

 (2) 

As all three components of n cannot be zero, the solution is nontrivial only if the determinant of the coefficients 
\σ\ = 0, that is: 

0
x n xy xz

xy y n yz

xz yz z n

−
− =

−

σ σ τ τ
τ σ σ τ
τ τ σ σ

 (3) 

Expansion of the equation above leads to the characteristic equation: 

3 2
1 2 3 0n n nI I Iσ − σ + σ − =  (4) 

where I1, I2 and I3 are the invariants of the stress tensor given by: 

1 1 2 3

2 2 2
2 1 2 2 3 1 3

2 2 2
3 1 2 32

x y z

x y y z x z xy yz xz

x y z xy xz yz x yz y xz z xy

I

I

I

= + + = + +

= + + − − − = + +

= + − − − =

σ σ σ σ σ σ

σ σ σ σ σ σ τ τ τ σ σ σ σ σ σ

σ σ σ τ τ τ σ τ σ τ σ τ σ σ σ

 (5) 

where σ1, σ2 e σ3 are the principal stresses, ordered such that σ3 ≤ σ2 ≤ σ1. The principal stress directions ni = {nix, niy, 
niz} (i = 1, 2, 3) are obtained from: 
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; ;iy iz ix iyix iz
ix iy ix

i i i

c c c cc cn n n
C C C

= − = − = −  (6) 

where 2 2 2 2 2 2
i i x i y i x i z i y i zC c c c c c c= + +  and 

( ) ( ) ( ); ;ix x i yz xy xz iy y i xz xy yz iz z i xy xz yzc c c= − − = − − = − −σ σ τ τ τ σ σ τ τ τ σ σ τ τ τ  (7) 

Once that the principal stresses have been found in magnitude and direction, the stresses on any oblique plane can 
be determined from: 

2 2 2
1 1 2 2 3 3n n n n= + +σ σ σ σ ; 2 2 2 2 2 2 2 2

1 1 2 2 3 3n nS n n n= + + −σ σ σ σ  (8) 

where n1, n2, n3 are the direction cosines relative to the principal axes of a vector normal to the plane. The point (σn, Sn) 
lies within the hatched region in Figure 4c. For the planes yz, xz and xy, the shear stresses are calculated, respectively, by: 

2 2 2 2 2 2; ;x xy xz y xy yz z xz yzS S Sτ τ τ τ τ τ= + = + = +  (9) 

Notes on shear stresses. There are eight combinations of signs for given absolute values of the shear stresses τxy, 
τxz and τyz, as shown in Table 1, that can be grouped into two subgroups. Let us consider a stress state with three positive 
shear stresses (sign combination #1). If the coordinate system is rotated 1800 about the x-axis, the same shear stresses 
referred to the new coordinate system should be written with the sign combination #2; if the original coordinate system 
is rotated 1800 about the y-axis, the shear stresses should be written with the sign combination #3; if, however, the 
original coordinate system is rotated 1800 about the z-axis, shear stresses should be written with the sign combination 
#4. These transformations are represented in Figure 5, showing the physical equivalence between the so-called positive 
shear stress Case 1. Let us now consider a stress state with all three shear stresses being negative. Similarly, sign 
combinations #6 to #8 are physically equivalent to sign combination #5, and they all can be grouped into the so-called 
negative shear stress Case 2, as shown by the transformations in Figure 6. 

Table 1. Shear stress sign combinations 

Case 1 Sign combination 
Case 2 Sign combination 

τxy τxz τyz τxy τxz τyz 
# 1 + + + # 5 - - - 
# 2 - - + # 6 + + - 
# 3 - + - # 7 + - + 
# 4 + - + # 8 - + + 
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Figure 5. Positive shear stresses in Case 1 

 
Figure 6. Negative shear stresses in case 2. Legend: (±, ±, ±) = (signal of τxy, signal of τxz, signal of τyz) 

2.4 RSM: the system of resistance 

Let us consider a concrete cube with smeared reinforcement in the x-, y- and z-directions, delimited by an inclined 
plane corresponding to a crack, this plane being orthogonal to the larger principal stress (Figure 7). It is assumed that 
the crack face is crossed by the reinforcement in three directions but is free from any normal or shear stresses. The 
applied stresses (S) are resisted by equivalent stresses on concrete (Sc) and equivalent reinforcement stresses (Ss), as 
shown in Figure 8a: 

0 0
0 0
0 0

c s

x xy xz x tx xy xz tx

yx y yz yx y ty yz ty

zx zy z zx zy z tz tz

f f
f f

f f

= +

   −  
     = − +     
     −     

σ τ τ σ τ τ
τ σ τ τ σ τ
τ τ σ τ τ σ

S S S

 (10) 

Concrete must resist both the difference between the normal applied stresses and the normal stresses carried by the reinforcement 
(σci = σi - fti), and the three shear stress components (τxy, τxz, τyz); reinforcement, on the other hand, must resist the equivalent 
reinforcement stresses ftx, fty, ftz (reinforcement bar stresses distributed over the concrete area). It is assumed that reinforcing steel 
cannot carry shear stress. 
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Figure 7. Cracked solid element with reinforcement in three orthogonal directions: (a) side view; (b) view of the inclined crack 
plane crossed by the reinforcement 

The principal concrete stresses are derived from the concrete characteristic equation: 

3 2
1 2 3 0n c n c n cI I Iσ σ σ− + − =

 (11) 

where the Ic1, Ic2, Ic3 are the invariants of the concrete stress tensor: 

( ) ( )1

2 2 2
2

2 2 2
3 2

c cx cy cz x y z tx ty tz

c cx cy cy cz cx cz xy yz xz

c cx cy cz xy xz yz x yz y xz z xy

I f f f

I

I

= + + = + + − + +

= + + − − −

= + − − −

σ σ σ σ σ σ

σ σ σ σ σ σ τ τ τ

σ σ σ τ τ τ σ τ σ τ σ τ

 (12) 

When one principal concrete stress is zero (σc1=0), the third invariant of the concrete stresses Ic3 = 0, and the latter the 
characteristic equation reduces to: 

2
1 2 0c cI Iσ σ− + =

 (13) 

which has the roots: 

( )2
1

2
21

3

41
2

c II
c

c III
c cI I I


= ±



=
−

=
σ σ
σ σ

 (14) 

The first term in Equation 14 defines the center of the 2 to 3 principal concrete stress circle and the second term, 
the radius. Figure 8b plots the Mohr´s circle for the applied stresses and, within the circles, the stress (σi, Si), with i = x, 
y, z. They are resisted by equivalent concrete stresses (σci, Sci) and by equivalent steel stresses fti = (ρsi x σsi), where ρsi 
are the reinforcement ratios in the i-th directions, and σsi are the equivalent steel stresses in the i-th directions. 
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Figure 8. (a) System of resistance for a reinforced solid; (b) Mohr´s circle for the applied stresses and equivalent stresses on 

concrete and reinforcement [11] 

2.5 RSM: equivalent stresses computation 
From the eight combinations of signs of the three shear stresses, it is only necessary to consider two cases: all shear 

stresses positive or all shear stresses negative (or equivalently two shear stresses positive and one negative). This 
separation leads the ensuing formulation. For the complete deduction, please refer to Nielsen and Hoang [18]. 

2.5.1 Case 1a: positive shear stresses, reinforcement in three directions 
Initially, the concrete normal stresses σcx, σcy, σcz are expressed as a function of the given shear stresses τxy, τxz, τyz 

and the Euler angles Ψ, θ, ϕ (angles used to describe the rotation for going from a rectangular coordinate x, y, z-system 
to the ξ, η, ζ-system when describing a stress state, as shown in Figure 9). 

sin cos sin

cos cos
xy xz

cx θ

τ τ
σ

ψ θ θ

ψ
= −

+
; 

cos cos sin

sin cos
xy yz

cy θ

τ τ
σ

ψ θ θ

ψ
= −

+
; 

cos cos sin cos

sin
xz yz

cz θ

τ τ
σ

ψ θ ψ θ
= −

+
 (15) 

These formulas make possible to express the equivalent reinforcement stresses ftx, fty, ftz as: 

tantan
costx x xy xzf = + +

θψσ τ τ
ψ

; 
1 tan

tan sinty y xy yzf = + +
θ

ψ
σ τ τ

ψ
; 

cos sin
tan tantz z xz yzf = + +σ τ τψ ψ

θ θ
 (16) 

 
Figure 9. Euler angles 

The total reinforcement consumption R = ftx + fty + ftz is calculated by: 

1 tan tan
tan

tan tan tanx y z xy xz yztx ty tz
cos sin

R f f f
cos sin

= + + = + + + + + + + +
     
     
     

θ ψ θ ψ
σ σ σ τ ψ τ τ

ψ ψ θ ψ θ
 (17) 
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whose minimum is found for tan ψ = 1 and tan θ = 2 / 2 . Inserting these values into Equation 16, we find: 

( )tx x xy xzf σ τ τ= + + ; ( )ty y xy yzf σ τ τ= + + ; ( )tz z xz yzf σ τ τ= + +  (18) 

Concrete stresses are only dependent on the shear stresses: 

( )cx tx xy xzx fσ σ τ τ−= = − + ; ( )cy ty xy yzy fσ σ τ τ−= = − + ; ( )cz tz xz yzz fσ σ τ τ−= = − +  (19) 

and the corresponding principal stresses are: 

( ) ( ) ( )22

3

3II c
xy xz yz xy xz yz xy xz xz yz yz xy

III c


= − + + + + − + +



=
=



σ σ
τ τ τ τ τ τ τ τ τ τ τ τ

σ σ
 (20) 

2.5.2 Case 1b: positive shear stresses, reinforcement in two directions 
i. If ftx comes out negative in Equation 18, then: 

0 0

0; ;xy xz xy xz
tx ty y yz xy tz z yz xz

x x

f f f

> >

+ +
= = + + = + +

 

τ τ τ τ
σ τ τ σ τ τ

σ σ
 (21) 

ii. If fty comes out negative in Equation 18, then: 

0 0

; 0;xy yz xy yz
tx x xz xy ty tz z xz yz

y y

f f f

> >

+ +
= + + = = + +

 

τ τ τ τ
σ τ τ σ τ τ

σ σ
 (22) 

iii. If ftz comes out negative in Equation 18, then: 

0 0

; ; 0xz yz xz yz
tx x xy xz ty y xy yz tz

z z

f f f

> >

+ +
= + + = + + =

 

τ τ τ τ
σ τ τ σ τ τ

σ σ
 (23) 

Concrete stresses are no longer only dependent on the shear stresses: 

; ; zx ycx tx cy ty zcz tf f fσ σ σ σ σ σ= = −= − −  (24) 

2.5.3 Case 1c: positive shear stresses, reinforcement in one direction 
i. If fty comes out negative in Equation 21 or ftx comes out negative in Equation 22: 
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2 2

2

2
0; 0; x x yz y xz

tx
y xz

ty tz z
x y

yz

xy

f f f= = = +
−

− −τ τ τ σ τ σ τ
σ

σ σ τ
 (25) 

ii. If ftz comes out negative in Equation 21 or ftx comes out negative in Equation 23: 

2 2

2

2
0; ; 0xy xz y x yz z xy

tx ty y tz
x z xz

zf f f= = +
−

=
−

−σ τ σ τ
σ σ τ

τ τ τ
σ  (26) 

iii. If ftz comes out negative in Equation 22 or fty comes out negative in Equation 23: 

2 2

2

2
; 0 ; 0y xz z xy

tx x ty tz
y z yz

xy xz yzf f f
− −

= + = =
−

σ τ σ
τ

τ
σ σ

τ τ τ
σ  (27) 

Concrete stresses, once again, do not depend only on the shear stresses: 

xxcx tfσ σ= − ; yycy tfσ σ= − ; zcz tzf= −σ σ  (28) 

2.5.4 Case 1d: positive shear stresses, no reinforcement required 
When ftx, fty and ftz all become negative in Equations 26 through 28, no reinforcement is required. This condition 

occurs when: 

2 2 2 02x y z x yxy xz yz yz xz xyzτ τ τ τσ τ τσ σ σ σ σ−+ − − <  (29) 

In this case, all principal stresses are negative (compressive). 

2.3.5 Case 2a: negative shear stresses, biaxial concrete compression 
The shear stresses with the larger absolute values are considered positive and the shear stress with the smaller 

absolute value is considered negative. Analyzing Equation 20 for the concrete principal stresses, biaxial compression 
(σII e σIII < 0) occurs if: 

0xy xz xz yz xy yz+ + >τ τ τ τ τ τ  (30) 

In this case, the formulas for Case 1 may be used when |τyz| is the smaller absolute shear stress. Otherwise, the 
designer should rename axes according to the following scheme: 

If |τxy| is the smaller one: x y y z z x→ → →  (31) 

If |τxz| is the smaller one: x z y x z y→ → →  (32) 
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2.5.6 Case 2b: negative shear stresses, uniaxial concrete compression 
Once again, the shear stresses with the larger absolute values are considered positive and the shear stress with the 

smaller absolute value is considered negative. Analyzing Equation 20 for the concrete principal stresses, uniaxial 
compression (only σIII < 0) occurs when 

0xy xz xz yz xy yz+ + <τ τ τ τ τ τ  (33) 

Considering that |τyz| is the smaller absolute shear stress, the equivalent reinforcement stresses are: 

xy
x

yz
x

xz
tf

τ τ
σ

τ
= − ; xy

y
xz

y
yz

tf = −
τ τ
τ

σ ; xz
z

xy
z

yz
tf = −

τ τ
τ

σ  (34) 

If ftx turns out negative in Equation 34, Formula 21 from Case 1 is valid; if fty comes out negative in Equation 34, 
Formula 22 is valid; if, finally, ftz comes out negative in Equation 34, Formula 23 is valid. One may continue using the 
formulas from Case 1, Equations 25 to 27 and 30, when further negative values appear. Concrete stresses are calculated 
by 

; ;x cy y cz
xy xz xy yz xz yz

cx tx ty tz
yz xz xy

zf f f
τ τ τ τ τ τ

σ σ σ σ
τ τ τ

σ σ= = =− = =− = −  (35) 

Concrete principal stresses are 

0

0; xy xz xy yz xz yz

yz x
II III cx cy

z y
cz

x

<

= = + + = + +


σ σ
τ τ τ τ τ

τ τ
σ σ σ

τ
τ  (36) 

When |τxy| is the smaller shear stress, Formulas 34 to 36 for Case 2b may be applied when transformations in Equation 31 
are applied. When |τxz| is the smaller one, the transformations (32) apply. 

The design equations for cases 1a, 1b, 1c, 1d, 2a, and 2b are summarized in Table 2. 

2.6 RSM: reinforcement design and concrete verification 
Reinforcement is designed on the assumption of utilization of the bars up to the design value, and stresses must be 

limited to: 

; ;tx sx yd ty sy yd tz sz ydf f f f f f≤ ≤ ≤ρ ρ ρ  (37) 

where ρsx, ρsy, ρsz are the reinforcement ratio in the x-, y- and z-directions, respectively, and fyd is the design value of the 
reinforcement steel yield stress. 

Concrete stresses are required to satisfy: 

III cdf− ≤σ ν  (38) 
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where fcd is the design compression strength of concrete, and ν is the efficiency factor introduced to account for both 
confinement effects, as in the case of concrete in biaxial or triaxial compression, disturbance effects such as caused by 
transmission of tension fields through compression fields, and micro-cracking in the concrete paste due to shrinkage. 
Then, ν accounts for the imperfect assumption that concrete behaves as a rigid-plastic material and ensures that ductility 
demands are met. The following values of ν are indicated by the fib Model Code [4]: 

i. If no reinforcement has yielded and at least one principal stress is in tension, then: 

1,18 1
1,14 0,00166 si

= ≤
+

ν
σ

 (39) 

where σsi is the maximum tensile stress (in MPa) in any layer of the reinforcing steel 

ii. If one or more layers of reinforcement yield: 

( ) 1,181 0,032
1,14 0,00166i

ydf
= −

+
ν δ  (40) 

where δi is given by Equation 42 (i = x, y, z). 

iii. If all principal stresses are compressive, ν may be taken as 1,0 or determined in accordance with more elaborate 
expressions for the strength under multiaxial states of stress, such as the one given by Ottosen [4], [24]: 

22 1
2 ' 1 0

cm cm cm

JJ I
f f f

α +λ +β − =  (41) 

where I1 and J2 characterize the state of stress considered, and fcm is the concrete uniaxial compressive strength. 

In a solid subject to increasing loads, the stress field is continuously redistributed, starting from an initial 
approximately elastic state, followed by cracking of concrete, and yielding of steel. Through this process, elements 
shall be capable of allowing for sufficient plastic strains to prevent local rupture before the calculated stress distribution 
has been attained. Foster et al. [12] alert that “designers must critically examine the load path being assumed to satisfy 
themselves that a sufficient level of ductility is available to meet the demands of the imposed tractions.” For this purpose, 
they presented an expression for the enclosed angle between the principal direction of the applied stresses and those of 
the concrete stresses: 

1cosi ix cix iy ciy iz cizn n n c n nδ −≤ + +  (42) 

where nci (i = 1, 2, 3) are the direction cosines of the concrete stress tensor, as shown in Figure 10. They suggested a 
limit of 25 degrees to δi, value that was later revised by the Model Code [4] to 15 degrees. 
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Figure 10.  Comparison of concrete principal stress directions and the principal stress directions  

for the case of optimum reinforcement [12] 

Table 2. Summary of design equations for individual elements 

Reinf Cases ftx fty ftz Condition 
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Notes: 
(1) Sign convention: positive normal stress for tension. 
(2) Case 1: (sign of τxy, sign of τxz, sign of τyz) = (+, +, +), (+, -, -), (-, +, -), (-, -, +) → consider +|τxy|, +|τxz| and +|τyz| 
(3) Case 2: (sign of τxy, sign of τxz, sign of τyz) = (+, +, -), (+, -, +), (-, +, +), (-, -, -) 

→ If |τyz| is the smallest absolute shear stress: consider +|τxy|, +|τxz| and -|τyz|. 
→ If |τxy| is the smallest absolute shear stress: x→y, y→z, z→x . Consider: +|τxy|, +|τxz| and -|τyz|. Calculate reinf. and retrieve original axes. 
→ If |τxz| is the smallest absolute shear stress: x→z, y→x, z→y . Consider +|τxy|, +|τxz| and -|τyz|. Calculate reinf. and retrieve original axes. 

(4) Concrete stresses (all cases): σcx= σx - ftx; σcy= σy - fty; σcz= σz - ftz. Concrete verification as described in section 2.5. 
(5) Reinforcement: ρsx = ftx / fy; ρsy = fty / fy; ρsz = ftz / fy; and as= ρs. Ac 
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3 METHODOLOGY FOR THE DESIGN OF A STRUCTURAL MEMBER 
As an example of the herein proposed methodology, the design of a reinforced concrete member by the RSM was 

performed according to the steps 1 to 3 described below: 
Step 1: Linear analysis. An initial linear analysis was performed with the software STRAP version 12.5 from Atir 
Engineering Software Development Ltd. [25]. The structure was modeled with finite solid elements assuming 
uncracked material, linear stress-strain relationships, and the mean value of the concrete modulus of elasticity. From 
this initial model two output *.lst files were obtained: one containing the geometry definition (nodal coordinates 
and element nodal incidence), and the other containing the complete stress field deriving from the analysis (nodal 
stresses). 
Step 2: Data processing – individual element RSM design. An application was developed with Java programming 
language for data treatment using Java Development Kit JDK 17. This application was built to: (i) read the data 
from the *.lst files created in step 1; (ii) treat the data, computing stress invariants, principal stresses and directions, 
and equivalent resisting stresses in each model node (both reinforcement stresses ftx, fty, ftz and concrete stresses); 
(iii) automatically assemble the calculated quantities into a *.vtk file to be later accessed by a post processor. The 
flowchart of the application structure is presented in Figure 11. 
Step3: Data analysis and structural member RSM design. The *.vtk file was loaded into the software Paraview 
version 5.9.1 from Kitware Inc. This software, described by Ahrens et al. [26], is an open-source software system 
for 3D computer graphics, modeling, volume rendering and information visualization by operations such as 
clipping, slicing, filtering, or generating contours from the loaded data. At this point, a thorough analysis of the 
reinforcement requirements and concrete stresses sufficed for the global structural design and subsequent detailing 
by delimitation of zones with constant reinforcement ratio. 
The methodology was applied to the RSM design of a structural component: a pile cap with dimension 1,90 m x 

1,90 m, 0,80 m depth, concrete C30, supported by four rectangular 0,30 m x 0,30 m piles, subjected to a design load of 
Pd = 1 380 kN acting on the top of a 0,30 m x 0,80 m rectangular column. Though less usual in design practice, 
rectangular piles were chosen to facilitate modelling and visualization. For step 1, the definition of a 0,10 m mesh size 
led to a structural model with 3 400 cubic solid elements, as shown in Figure 12. 

 
Figure 11. Flowchart of the developed application 
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Figure 12. Structural solid model of a four-pile cap for the step 1 of the methodology 

4 RESULTS AND DISCUSSIONS 

4.1 Results for the four-pile cap designed by the RSM 
The distribution of equivalent reinforcement stresses in the x- and y-directions, in cross sections passing through 

the center of gravity of the cap, are illustrated in Figure 13a and b, respectively. It should be noted that, according to 
the design, it was necessary to distribute reinforcement in the two lower thirds of the cap depth. It was proposed to 
reinforce the lower 0,25 m of the cap depth with reinforcement ratio ρx = ρy = 0,5∙(1,8+0,9)/435 = 0,31%, and the 
intermediate 0,25 m of the cap depth with ρx = ρy = 0,5∙(0,9+0)/435 = 0,10%. Doing so, the smeared total horizontal 
reinforcement amounted to Asx = Asy = 19,5 cm2. Equivalent reinforcement stresses were also detected in the z-direction, 
as shown in Figure 14a, mainly at the regions highlighted by the red color, which corresponded to the intersection 
between the mid-depth plane and the compression struts. The maximum ftz value was equal to 0,79 MPa and indicated 
the necessity of z-reinforcement at a ratio of ρz = 0,79/435 = 0,18%. The largest equivalent concrete principal stresses 
were clearly distributed following the direction of the compressive struts, as shown in Figure 14b, where the solid 
elements with σc3 = σIII < -1,0 MPa were filtered. 

 
Figure 13. Four-pile cap analysis: reinforcement equivalent stresses (a) ftx and (b) fty 
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Figure 14. Four-pile cap: (a) reinforcement equivalent stress ftz; (b) elements with concrete principal stress σIII lower than -1,0 MPa 

4.2 Validation of the RSM 
Numerical simulations of the four-pile cap were performed using the software ATENA 3D version 5.9.0 from 

Červenka Consulting [27] to validate the design achieved for the four-pile cap. A fracture-plastic material model based 
on the classical orthotropic smeared crack formulation (CC3NonLinCementitious2) was assigned to the concrete 
elements; reinforcement was modeled either by discrete or smeared bars, considering bilinear stress-strain law for steel, 
with maximum strain limited to 10‰. The partial factor method (as prescribed in the fib Model Code [4] and in 
Guidelines for Nonlinear Finite Element Analysis of Concrete Structures [28]) was selected as the safety format for the 
non-linear analyses, meaning that design values were assigned to the basis variables. The arc-length solution method 
was selected as the solution scheme. 

Five models were tested up to failure, two of which designed by the Strut and Tie Method (STM), and the other 
three designed by the Reinforced Solid Model (RSM). Model ⑤ was elaborated considering the discrete reinforcement 
designed by the STM; initially, we considered neglecting the concrete tensile strength just as it is done in the STM. 
However, for convergence purposes, a reduced fctd was set for concrete: fctd, reduced = 0,10 MPa ≈ 0,07 fctd. The ultimate 
load for this model, just 2% higher the design load (Pd = 1 412 kN), indicates the proper calibration of both material 
models and solution method chosen for the simulations. Model ③ was built with smeared reinforcement in three 
directions designed by the RSM, while in model ④ reinforcement in the z-direction was suppressed. Both models 
considered the reduced tensile strength so that a direct comparison could be established between the RSM and the STM 
results. The ultimate loads obtained by the simulations were, respectively, 1,54 x Pd and 1,46 x Pd. Model ① was built 
with smeared reinforcement designed by the RSM (see Figure 15a), and model ② with discrete reinforcement designed 
by the STM. Both considered fctd = 1,46 MPa as input value. The ultimate loads obtained by the simulations were, 
respectively, 1,78 Pd and 1,52 Pd. Figure 15b and Figure 16 plot the reinforcement stresses for the last step of the 
nonlinear analyses, where the x-reinforcement yielded with 10‰ strain. The load displacement curves for all performed 
numerical simulations are presented in Figure 17. 

 
Figure 15. Numerical model ①: (a) reinforcement zones; (b) x-reinf. stresses (MPa) with crack pattern (crack widths > 0,1 mm 

only) 
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Figure 16. Numerical model ①: (a) y-reinf. stresses (MPa); (b) z-reinf. stresses (MPa) 

 
Figure 17. Load displacement curves for the performed numerical simulations 

4.3 Discussion 
The methodology presented for the RSM was applied to the design of a simple structural component to confirm the 

applicability of the proposed design method and to facilitate the discussion on the design variables. 
Four-pile cap. The total required horizontal reinforcement for the RSM design was Asx = Asy = 19,5 cm2, higher 

than the required reinforcement for a STM design (Asx = Asy = 12,0 cm2) in which reinforcement in the x- and y-directions 
were all arranged at the bottom of the cap, maximizing the internal lever arm between tie and compression zone. The 
numerical simulations of models ③ and ④ indicated that reinforcement in the z-direction had little influence on the 
pile-cap collapse load, and this could be accounted on plastic redistribution of the equivalent reinforcement stresses in 
the z-direction. The pile cap could certainly be designed according to other well-established solutions. Brazilian design 
code [3] even explicitly recommends that the reinforcement be concentrated over the top of the piles when designing 
pile caps. However, the proposed application of methodology not only presents an alternative safe solution, but, more 
importantly, illustrates a procedure whose application may be efficiently extended to very complex structures. 

Benefits of the method. Four main aspects are herein highlighted on behalf of the RSM for the design of structures 
with solid elements. First, the method predicates that all the structure volume participates in the resisting scheme, 
differently from the STM or the SFM, where stress fields are developed quantitatively in a few elements, and stress-free 
zones are disregarded outside the strut/tie zones. Second, the method relies neither on the development of a strut-and-tie 
scheme (or combined strut-and-tie schemes), nor on the definition of nodal geometries, nor on the application of an 
iterative procedure for the adjustment of the truss internal arms. Third, the method is applicable to the design or assessment 
of structural elements with general geometry, from the simplest to the most complex, subjected to any loading condition, 
even in discontinuity regions. Last, the RSM does not require running nonlinear analyses as in the application of strength 
reduction numerical methods. Examples of these methods are those presented by Mergny et al. [29], Abra and Ftima [30], 
and Yun et al. [31], which allow for the degradation of concrete by gradually reducing its tensile strength during the 
analysis in an iterative finite element analysis framework. The RSM is yet believed to be an efficient alternative in 
engineering practice due to its non-iterative application. 
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Reinforcement layout. The application of the RSM provides the designer a field of required reinforcement 
throughout the structural volume, expressed in terms of a reinforcement ratio distribution. In this way, opposed to STM, 
where the reinforcement layout is often concentrated, the RSM leads to a distributed reinforcement layout. 

Plasticity. In the RSM design, since the final resisting model follows the elastic solution element by element, and 
reinforcement is provided throughout the structure volume, less stress redistribution and less plastic deformation are 
expected than in the STM design. Consequently, a more distributed crack pattern and smaller crack widths are also 
expected, improving the structural performance in both Ultimate and Serviceability Limit States. 

Design practice. Structural models in current design practice are predominantly composed of bar and shell 
elements, while the use of solid elements is still largely ignored. This condition may be ascribed to two main reasons: 
difficulties arisen in treating the large amount of data resulting from the finite element linear analysis and, probably, 
the lack of knowledge of the rules for proportioning the required reinforcement. This paper disclosures the established 
design rules and presents an example of an effective design tool for the application of the RSM. Finally, it is worth 
noting that a paragraph of the Model Code [5] entitled “3D Solids” is dedicated to this design method. Further studies 
of this subject, including those accounting on serviceability states and detailing aspects, though still missing in recent 
references, shall enhance its application. 

5 CONCLUSIONS 
The following conclusions have been derived from this research: 

• The RSM for the ULS design of structures is justified by the static method, based on the lower bound theorem of 
the Limit Analysis of the Theory of Plasticity, and yields safe solutions. It can be applied to any kind of structure, 
from the simplest to those with complex geometry and loading conditions, including discontinuity regions. 

• There is a full set of equations for the reinforcement design and concrete verification of individual solid elements 
from three-dimensional stress fields obtained from linear analyses. Any applied stress state can be resisted by 
equivalent stresses in the concrete and in the reinforcement distributed in up to three orthogonal directions. 

• A computational routine was developed for the automatic design of all set of individual elements within a structural model. 
• The utilization of a post processor for the visualization of the resistance system (i.e., concrete and reinforcement 

equivalent stresses) provided a clear understanding of both overall structural behavior and local effects. 
• Verifications assisted by numerical simulations confirmed the safety of the Reinforced Solid Method, as expected. In 

the case of the analyzed four-pile cap, the design resistance resulted approximately 50% higher than the design load. 
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