Acessibilidade / Reportar erro

Atmospheric chemistry in Amazonia: the forest and the biomass burning emissions controlling the composition of the Amazonian atmosphere

The understanding of the natural processes that regulate atmospheric composition in Amazonia is critical to the establishment of a sustainable development strategy in the region. The large emissions of trace gases and aerosols during the dry season, as a result of biomass burning, profoundly change the composition of the atmosphere in most of its area. The concentration of trace gases and aerosols increases by a factor of 2 to 8 over large areas, affecting the natural mechanisms of several key atmospheric processes in the region. Cloud formation mechanisms, for instance, are strongly affected when the concentration of cloud condensation nuclei (CCN) changes from 200-300 CCN/cc in the wet season to 5,000-10,000 CCN/cc in the dry season. The cloud droplet radius is reduced from values of 18 to 25 micrometers in the wet season to 5 to 10 micrometers in the dry season, suppressing cloud formation and the occurrence of precipitation under some conditions. Ozone is a key trace gas for changes in the forest health, with concentrations increasing from 12 parts per billion (ppb), at the wet season, to values as high as 100 ppb (in the dry season in areas strongly affected by biomass burning emissions). At this level, ozone could be damaging the vegetation in regions far from the emissions. The atmospheric radiation balance is also strongly affected, with a net loss of up to 70% of photosynthetic active radiation at the surface.

Aerosol particles; clouds; precipitation; atmospheric chemistry; trace gases; ozone


Instituto Nacional de Pesquisas da Amazônia Av. André Araujo, 2936 Aleixo, 69060-001 Manaus AM Brasil, Tel.: +55 92 3643-3030, Fax: +55 92 643-3223 - Manaus - AM - Brazil
E-mail: acta@inpa.gov.br