Acessibilidade / Reportar erro

Checklist and geographic distribution of Myrtaceae species occurring in campinaranas of the Brazilian Amazon

Checklist e distribuição geográfica das espécies de Myrtaceae que ocorrem em campinaranas da Amazônia brasileira

ABSTRACT

White-sand vegetation (campinarana) is a type of vegetation restricted to oligotrophic and highly leached white sand soils in the Amazon phytogeographic domain that includes grassland to forest phytophysiognomies. Campinaranas cover about 5% of this phytogeographic domain and are impacted by various anthropic activities that put plant species, especially endemic ones, at risk. Myrtaceae has significant representativeness in oligotrophic edaphic environments, but floristic and taxonomic studies on the family in campinaranas are still few and geographically limited. We present a checklist of Myrtaceae species known from campinaranas of the Brazilian Amazon based on the survey of herbarium specimens and literature data in order to assess the level of endemism of these species for this vegetation type. We compiled occurrence records of 72 species and six genera. Myrcia and Eugenia were the genera with the highest number of species. Overall, 38 species (53%) occurred only in the Amazon and two were endemic to campinaranas (Eugenia campina and Myrcia psammophila). Four species are new records for the Brazilian Amazon: Blepharocalyx salicifolius, Eugenia hatschbachii, Myrcia anceps and Myrcia racemosa. The specific richness of Myrtaceae in Brazilian campinaranas is likely to be underestimated since extensive areas, especially those farther from the riverbanks, in the states of Amazonas and Roraima, have not yet been intensively surveyed.

KEYWORDS:
white sand vegetation; floristics; oligotrophic soils; endemisms; Myrcia; Eugenia

RESUMO

Campinarana é um tipo de vegetação restrita a solos de areia branca oligotróficos e altamente lixiviados no domínio fitogeográfico amazônico, que inclui fitofisionomias campestres a florestais. Campinaranas cobrem aproximadamente 5% deste domínio fitogeográfico e estão sujeitas ao impacto de várias atividades antrópicas que colocam em risco as espécies vegetais, especialmente as endêmicas. Myrtaceae possui uma representatividade significativa em ambientes edáficos oligotróficos, mas estudos florísticos e taxonômicos sobre a família em campinaranas ainda são escassos e geograficamente limitados. Nós apresentamos um checklist de espécies de Myrtaceae em campinaranas da Amazônia Brasileira, com base no levantamento de espécimes de herbários e dados de literatura, com o objetivo de verificar o nível de endemismo dessas espécies para este tipo de vegetação. Nós compilamos registros de ocorrência de 72 espécies e seis gêneros. Myrcia e Eugenia foram os gêneros com maior riqueza específica. Do total de espécies, 38 (53%) ocorreram somente na Amazônia e duas foram endêmicas das campinaranas (Eugenia campina e Myrcia psammophila). Quatro espécies constituem novos registros para a Amazônia brasileira: Blepharocalyx salicifolius, Eugenia hatschbachii, Myrcia anceps e Myrcia racemosa. A riqueza específica de Myrtaceae nas campinaranas brasileiras provavelmente está subestimada, pois extensas áreas, especialmente aquelas mais distantes dos rios nos estados de Amazonas e Roraima, ainda não foram intensamente amostradas.

PALAVRAS-CHAVE:
vegetação de areia branca; florística; solos oligotróficos; endemismos; Myrcia; Eugenia

INTRODUCTION

Campinarana is the term used in Brazil to define a type of vegetation restricted to oligotrophic and highly leached white-sand soils in the Amazon phytogeographic domain that is formed by open vegetation, from grassland to forest phytophysiognomies, usually forming islands embedded in other types of vegetation (Fine and Bruna 2016Fine, P.V.A.; Baraloto, C. 2016. Habitat endemism in white-sand forests: Insights into the mechanisms of lineage diversification and community assembly of the Neotropical flora. Biotropica 48: 24-33.; Guimarães and Bueno 2016Guimarães, F.S.; Bueno, G.T. 2016. As campinas e campinaranas amazônicas/The amazonian campinas and campinaranas.Caderno de Geografia26: 113-133.). Campinaranas currently cover about 5% (335.000 km²) of the area of the Amazon phytogeographic domain and 2.8% (217.039 km²) of the Brazilian Amazon domain (Adeney et al. 2016Adeney, J.M.; Christensen, N.L.; Vicentini, A.; Cohn-Haft, M. 2016. White-sand ecosystems in Amazonia: What and where are white-sands. Biotropica 48: 7-23.; García-Villacorta et al. 2016García-Villacorta, R.; Dexter, K.G.; Pennington, T. 2016. Amazonian white-sand forests show strong floristic links with surrounding oligotrophic habitats and the Guiana Shield. Biotropica 48: 47-57.). They are impacted by anthropic activities such as sand extraction, deforestation and vegetation burning for cattle ranching and charcoal production, resulting in fragmentation and severe area reduction that lead to species extinction, especially endemic ones (Ferreira et al. 2013Ferreira, L. V; Chaves, P.P.; Cunha, D.A.; Rosário, A.S.; Parolin, P. 2013. A extração ilegal de areia como causa do desaparecimento de campinas e campinaranas no estado do Pará, Brasil. Pesquisas, Botânica 64: 157-173.; Adeney et al. 2016; Oliveira-Filho et al. 2021Oliveira-Filho, A.T.; Dexter, K.G.; Pennington, R.T.; Simon, M.F.; Bueno, M.L.; Neves, D.M. 2021. On the floristic identity of Amazonian vegetation types. Biotropica 53: 767-777.).

In recent decades, an increasing number of studies have focused on campinaranas and their importance for species diversity patterns, evolutionary processes and ecosystem services in the Brazilian Amazon, but they are still few and limited in scope (e.g., Ferreira et al. 2014Ferreira, L.V.; Chaves, P.P.; Cunha, D. A.; Parolin, P. 2014. Florística e estrutura das campinaranas do Baixo Rio Tocantins como subsídio para a criação de novas unidades de conservação no Estado do Pará. Pesquisas 65: 169-182.; Adeney et al. 2016Adeney, J.M.; Christensen, N.L.; Vicentini, A.; Cohn-Haft, M. 2016. White-sand ecosystems in Amazonia: What and where are white-sands. Biotropica 48: 7-23.; Daly et al. 2016Daly, D.C.; Silveira, M.; Medeiros, H.; Castro, W.; Obermüller, F.A. 2016. The white-sand vegetation of Acre, Brazil. Biotropica 48: 81-89.; Demarchi et al. 2022Demarchi, L.O.; Klein, V.P.; Aguiar, D.P.P.; Marinho, L.C.; Ferreira, M.J.; Lopes, A.; et al. 2022. The specialized white-sand flora of the Uatumã Sustainable Development Reserve, central Amazon, Brazil. Check List 18: 187-217.). Floristic and taxonomic studies have shown that Myrtaceae is one of the most well-represented botanical families in campinaranas (e.g., Ferreira 2009; Demarchi et al. 2022). Myrtaceae is also frequently represented in other Amazonian oligotrophic environments (e.g., Amazonian savannas and sandy coastal vegetation known in Brazil as restinga), where Eugenia L. and Myrcia DC. are the genera with the highest species richness (Silva et al. 2010Silva, R.M. da; Mehlig, U.; Santos, J.U.M. dos; Menezes, M.P.M. de. 2010. The coastal restinga vegetation of Pará, Brazilian Amazon: a synthesis. Brazilian Journal of Botany 33: 563-573.; Da Rocha and Da Costa Neto 2019Da Rocha, A.E.S.; Da Costa Neto, S.V. 2019. Florística e fitossociologia do estrato herbáceo/arbustivo em 19 áreas de savanas amazônicas, Brasil. Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais 14: 159-181.; Da Silva e Silva et al. 2021Da Silva e Silva, W.L.; da Silva, M.F.; do Amaral, D.D.; de Nazaré Lima do Carmo, M.; Gurgel, E.S.C.; dos Santos, J.U.M. 2021. Checklist of angiosperms in the restingas of Pará state, Brazil, with comments on floristic affinities and phytophysiognomies. Rodriguesia 72: e01532019.2021). The occurrence of these genera in limiting environments such as campinaranas has been associated with adaptations in anatomical traits and morphological plasticity, such as reduction in leaf area and parenchyma tissue, and a well-developed cuticle, which enhance resistance to high light incidence, and clustering and diameter change of stem vessels, which indicate an investment in hydraulic efficiency (Amorim and Júnior 2016Amorim, M.W.; Júnior, J.C.F. de M. 2016. Plasticidade morfológica de Myrcia splendens (S.w.) CD. (Myrtaceae) ocorrente em Mata Atlântica e Cerrado. Iheringia 71: 261-268.; Lemos et al. 2019Lemos, V. de O.T.; de Lucena, E.M.P.; Bonilla, O.H.; Edson-Chaves, B. 2019. Ecological anatomy of Eugenia punicifolia (Kunth) dc. (Myrtaceae) in the restinga region, state of Ceará. Revista Brasileira de Fruticultura 41: 1-11. doi: 10.1590/0100-29452019503
https://doi.org/10.1590/0100-29452019503...
, 2020Lemos, V. de O.T.; de Lucena, E.M.P.; Bonilla, O.H.; Edson-Chaves, B.; Freitas, M.A. 2020. Ecological anatomy of Myrcia guianensis (Aubl.) DC. leaf in restinga in Ceará state. Ciencia Florestal 30: 307-322.).

Considering the scarcity of published information on the identification and distribution of Myrtaceae in Brazilian campinaranas, and its importance for the biogeography, conservation and ecological restoration policies of these environments, the objective of the present study was to provide a checklist of Myrtaceae species that occur in campinaranas in the Brazilian Amazon with emphasis on endemic species.

MATERIAL AND METHODS

Study area

The campinarana areas considered in this study are distributed in the states of Acre, Amapá, Amazonas, Pará, Rondônia and Roraima, corresponding to 27 localities in the Brazilian Amazon (Figure 1; Supplementary Material, Table S1). The climate in Brazilian campinaranas is predominantly of the Af type (humid tropical, without a pronounced dry season) according to the Köppen classification (Alvares et al. 2013Alvares, C.A.; Stap, J.L.; Sentalhes, P.C; Gonçalves, J.L.M; Sparovek, G. 2013 Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711-728. doi:10.1127/0941-2948/2013/0507.
https://doi.org/10.1127/0941-2948/2013/0...
). Annual precipitation ranges from 1,800 to 3,000 mm and average annual temperature ranges from 24 to 28 °C (INMET 2024INMET. 2024. Instituto Nacional de Meteorologia. Dados de estações convencionais do Banco de Dados Meterologicos do INMET. ( (https://bdmep.inmet.gov.br/ ). Accessed on 15 Jan 2024.
https://bdmep.inmet.gov.br/...
). The types of soil found in campinaranas are commonly sandy, classified as sposols or neosols, which undergo high leaching, resulting in a low nutrient content, which characterizes them as oligotrophic (Mendonça et al. 2015Mendonça, B.A.F. de; Fernandes Filho, E.I.; Schaefer, C.E.G.R.; Simas, F.N.B.; Paula, M.D. de. 2015. Os solos das campinaranas na Amazônia brasileira: ecossistemas arenícolas oligotróficos. Ciência Florestal 25: 827-839.; Atwell et al. 2023Atwell, M.A.; Wuddivira, M.N.; Fiedler, S.;Oatham, M.; Herrmann, L.; Glasner, B.; et al. 2023. Influence of soil geomorphic factors on vegetation patterns in a model white sands ecosystem complex.Catena 225: 107044. doi: 10.1016/j.catena.2023.107044
https://doi.org/10.1016/j.catena.2023.10...
).

Figure 1
Locality records of specimens of Myrtaceae collected in campinaranas in the Brazilian Amazon phytogeographic domain and number of species per locality.

Data collection and treatment

Specimens of Myrtaceae species from campinaranas were compiled through consultation in person to the herbaria HBRA, HCP, HIFPA, HF, IAN and MG (acronyms according to Thiers 2023Thiers, B. 2023. [continuously updated]. Index Herbariorum: A global directory of public her baria and associated staff. New York Botanical Garden’s Virtual Herbarium. ( (http://sweetgum.nybg.org/scence/ih/ ). Accessed on 09 Feb 2023.
http://sweetgum.nybg.org/scence/ih/...
). Online herbarium records were also obtained from SpeciesLink (https://specieslink.net, accessed on 29 Feb 2023) using “campina” (an obsolete term for campinarana), “campinarana” and/or “white sand” as search terms. We considered published floristic surveys conducted in Brazilian Amazonian campinaranas by Anderson et al. (1975Anderson, A. B.; Prance, G.T.; Albuquerque, B.W.P. 1975. Estudos sobre a vegetação das campinas amazônicas. Acta Amazonica 6: 193-211.), Ferreira et al. (2013Ferreira, L. V; Chaves, P.P.; Cunha, D.A.; Rosário, A.S.; Parolin, P. 2013. A extração ilegal de areia como causa do desaparecimento de campinas e campinaranas no estado do Pará, Brasil. Pesquisas, Botânica 64: 157-173.), Ferreira et al. (2014), Daly et al. (2016Daly, D.C.; Silveira, M.; Medeiros, H.; Castro, W.; Obermüller, F.A. 2016. The white-sand vegetation of Acre, Brazil. Biotropica 48: 81-89.) and Demarchi et al. (2022Demarchi, L.O.; Klein, V.P.; Aguiar, D.P.P.; Marinho, L.C.; Ferreira, M.J.; Lopes, A.; et al. 2022. The specialized white-sand flora of the Uatumã Sustainable Development Reserve, central Amazon, Brazil. Check List 18: 187-217.), and also the technical report by Silveira (2003Silveira, M. 2003. Vegetação e Flora das Campinaranas do Sudoeste Amazônico. Unpublished technical scientific report to SOS Amazônia, New York Botanical Garden, New York, 26p. (https://www.nybg.org/bsci/acre/pdfs/VegetacaoeFloraCampinaranas.pdf).
https://www.nybg.org/bsci/acre/pdfs/Vege...
) and the doctoral thesis by Ferreira (2009). The species names used in these sources were revised and are cited here according to Flora e Funga do Brasil (https://floradobrasil.jbrj.gov.br/, accessed on 26 Feb 2023). Only herborized specimens were analyzed for this study. The identity of species that constitute new occurrences for Brazilian Amazonian campinaranas were confirmed by Myrtaceae taxonomists (see Acknowledgments). Geographic distribution data, including distribution in phytogeographic domains, were obtained from Flora e Funga do Brasil (https://floradobrasil.jbrj.gov.br/, accessed on 26 Feb 2023) and Global Biodiversity Information Facility (https://gbif.org, accessed on 09 Feb 2023). We adopted the classification of vegetation types by Flora e Funga do Brasil. The resulting list of Myrtaceae is presented in alphabetical order of genera and species and testimonial material is provided for each record. We also elaborated a Venn diagram showing the number of Myrtaceae species shared among the sampled Brazilian Amazonian campinaranas and other phytogeographic domains in Brazil, as well as a diagram showing the occurrence of Myrtaceae species found in Brazilian Amazonian campinaranas in other Brazilian vegetation types. For this, we used PowerPoint software version 2016 of the Office package (https://www.microsoft.com/pt-br/microsoft-365/ previous -versions/microsoft-office-2016) and the Illustration software (https://www.adobe.com/br/products/illustrator.html).

RESULTS

We recorded 72 Myrtaceae species distributed in six genera in the 27 campinarana localities (Table 1). The genera with the greatest number of species were Myrcia (38 species) and Eugenia (21), both representing 82% of all recorded species, followed by Psidium L. and Calycolpus O.Berg (4 each), Blepharocalyx O.Berg and Myrciaria O.Berg (2 each) and Siphoneugena O.Berg (1).

Table 1
Species of Myrtaceae recorded in 27 campinarana sites throughout the Brazilian Amazon and their occurrence in Brazilian phytogeographic domains and vegetation types. New occurrences for the Brazilian Amazon are marked with an asterisk (*).

The number of recorded species ranged from one to 27 species per locality (Figure 1), with highest numbers in the municipalities of Caracaraí (Roraima) and Manaus (Amazonas) with 22 and 27 species, respectively (Supplementary Material, Table S1). Overall, 38 (53%) species were endemic to the Amazon, although most were not restricted to campinaranas. The remaining species had a wide geographic distribution in Brazil, 19 species (26%) occurring in three or more phytogeographic domains. Cerrado (Brazilian savanna) and Atlantic Forest were the domains with the highest number of species shared with campinaranas (27 and 25, respectively). Species occurring in campinaranas rarely occurred in the Pantanal (3) or Pampa (southern Brazilian grasslands) (2) (Figure 2).

Figure 2
Venn diagram showing the number of Myrtaceae species shared among campinaranas of the Brazilian Amazon and other phytogeographic domains in Brazil.

Almost all species that occurred in campinaranas also occurred in other types of vegetation in Brazil (Figure 3), mostly in terra firme forest (65% of the 72 species), followed by seasonally flooded forests, including várzea (forests periodically flooded by white water rivers), igapó (forests flooded by black water rivers) and gallery forests (48%), and ombrophilous forest (rainforest) (31%). Two species occurred exclusively in campinaranas: Eugenia campina Sobral & M.A.D. Souza and Myrcia psammophila Gaem & Farroñay. However, both species have a punctual distribution: E. campina was recorded in two localities, one in the state of Pará and another in the state of Amazonas, and M. psammophila was found only in a single site in Amazonas. In addition to the latter two species, Eugenia hatschbachii Mazine, Myrcia cuprea (O.Berg) Kiaersk. and Myrcia saxatilis (Amshoff) McVaugh were recorded only in campinarana and in vegetation types that develop in oligotrophic soils (restingas, cerrado (lato sensu) or Amazonian savanna). We report four species as new records for the Brazilian Amazon: Blepharocalyx salicifolius (Kunth) O.Berg, E. hatschbachii, Myrcia anceps (Spreng.) O.Berg and Myrcia racemosa (O.Berg) Kiaersk.

Figure 3
Diagram showing the occurrence of 72 Myrtaceae species found in campinaranas of the Brazilian Amazon and other Brazilian vegetation types. Each species occurred in one to eleven other vegetation types besides campinaranas.

DISCUSSION

Myrtaceae frequently occur in environments of the Amazonian phytogeographic domain with limiting conditions, such as savannas and restingas (Silva et al. 2010Silva, R.M. da; Mehlig, U.; Santos, J.U.M. dos; Menezes, M.P.M. de. 2010. The coastal restinga vegetation of Pará, Brazilian Amazon: a synthesis. Brazilian Journal of Botany 33: 563-573.; Da Rocha and Da Costa Neto 2019Da Rocha, A.E.S.; Da Costa Neto, S.V. 2019. Florística e fitossociologia do estrato herbáceo/arbustivo em 19 áreas de savanas amazônicas, Brasil. Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais 14: 159-181.; Da Silva e Silva et al. 2021Da Silva e Silva, W.L.; da Silva, M.F.; do Amaral, D.D.; de Nazaré Lima do Carmo, M.; Gurgel, E.S.C.; dos Santos, J.U.M. 2021. Checklist of angiosperms in the restingas of Pará state, Brazil, with comments on floristic affinities and phytophysiognomies. Rodriguesia 72: e01532019.2021). Myrcia and Eugenia were the genera with the highest richness of species recorded both in campinaranas (Ferreira 2009Ferreira, C.A.C. 2009. Análise comparativa de vegetação lenhosa do ecossistema campina na Amazônia brasileira. Doctoral thesis, Universidade Federal do Amazonas, Brazil, 277p. (https://repositorio.inpa.gov.br/handle/1/12804).
https://repositorio.inpa.gov.br/handle/1...
; Demarchi et al. 2022Demarchi, L.O.; Klein, V.P.; Aguiar, D.P.P.; Marinho, L.C.; Ferreira, M.J.; Lopes, A.; et al. 2022. The specialized white-sand flora of the Uatumã Sustainable Development Reserve, central Amazon, Brazil. Check List 18: 187-217.; this study) and restingas (Amaral et al. 2008Amaral, D.D. do; Prost, M.T.; Bastos, M. de N. do C.; Neto, S.V.C.; Santos, J.U.M. dos. 2008. Restingas do litoral amazônico, estados do Pará e Amapá, Brasil. Boletim do Museu Paraense Emílio Goeldi, Ciências Naturais 3: 35-67.; Silva et al. 2010; Lourenço and Barbosa 2012Lourenço, A.R. de L.; Barbosa, M.R. de V. 2012. Myrtaceae em restingas no limite norte de distribuição da Mata Atlântica, Brasil. Rodriguésia 63: 373-393.) in Brazil. However, our results indicate a higher number of Myrtaceae species in campinaranas than in Amazonian restingas (Amaral et al. 2008; Silva et al. 2010; Da Silva e Silva et al. 2021Da Silva e Silva, W.L.; da Silva, M.F.; do Amaral, D.D.; de Nazaré Lima do Carmo, M.; Gurgel, E.S.C.; dos Santos, J.U.M. 2021. Checklist of angiosperms in the restingas of Pará state, Brazil, with comments on floristic affinities and phytophysiognomies. Rodriguesia 72: e01532019.2021; Flora e Funga do Brasil (https://is.gd/VtfAvj) and Amazonian savannas (Magnusson et al. 2008Magnusson, W.E.; Lima, A.P.; Albernaz, A.L.K.M.; Sanaiotti, T.M.; Guillaumet, J.-L. 2008. Composição florística e cobertura vegetal das savanas na região de Alter do Chão, Santarém - PA. Revista Brasileira de Botânica 31: 165-177.; Da Rocha and Da Costa Neto 2019; Campos et al. 2021Campos, A.C. de Souza; Costa-Neto, S.V. da; Jardim, M.A.G. 2021. Floristica, estrutura e formas de vida da regeneração de uma savana amazônica, Pará, Brasil. Revista Brasileira de Geografia 2: 758-769.; Flora e Funga do Brasil (https://is.gd/07yG7L). This is likely related to the less hostile conditions of campinaranas compared to Amazonian savannas, which undergo seasonal fire regimes, and restingas, influenced by saline and windy coastal conditions.

The high number of species of Myrtaceae in campinaranas can also be associated with anatomical adaptations in this family that enable different mechanisms of colonization, establishment and development, conferring phenotypic plasticity to successfully resist limiting environmental conditions (Arruda et al. 2009Arruda, R. do C. de O.; Viglio, N.S.F.; Barros, A.A.M. de. 2009. Anatomia foliar de halófitas e psamófilas reptantes ocorrentes na Restinga de Ipitangas, Saquarema, Rio de Janeiro, Brasil. Rodriguésia 60: 333-352.; Melo Júnior and Torres Boeger 2015Melo Júnior, J.C.F.; Torres Boeger, M.R. 2015. Leaf traits and plastic potential of plant species in a light-edaphic gradient from restinga in Southern Brazil. Acta Biológica Colombiana 21: 51-62.; Amorim and Melo Júnior 2017Amorim, M.W.; Melo Júnior, J.C.F. de. 2017. Plasticidade morfoanatômica foliar de Tibouchina clavata (Melastomataceae) ocorrente em duas formações de restinga. Rodriguésia 68: 545-555.; Lemos et al. 2018Lemos, V. de O.T.; Lucena, E.M.P. de; Bonilla, O.H.; Edson-Chaves, B.; Castro, M.A. de; Sampaio, V. da S. 2018. Ecological anatomy of Eugenia luschnathiana (O.Berg) Klotzsch ex B.D.Jacks. (Myrtaceae) leaves in the Restinga region, state of Ceara. Revista Brasileira de Fruticultura 40: e-696.; Gavilanes et al. 2020Gavilanes, M.L.; Silva, A.M. da; Dias, M.V. de F.; Oliveira, J.A. de; Corrêa, F.F.; Rodrigues, L.C. de A.; et al. 2020. Leaf structure of Byrsonima coccolobifolia Kunth. (Malpighiaceae) in a savannah and rupestrian field environment. Research, Society and Development 9: e14991210077.; Radersma et al. 2020Radersma, R.; Noble, D.W.A.; Uller, T. 2020. Plasticity leaves a phenotypic signature during local adaptation. Evolution Letters 4: 360-370.; Amboni et al. 2022Amboni, A.; Soffiatti, P.; Melo Júnior, J.C.F. de. 2022. Structural adjustment of Schwartzia brasiliensis (Marcgraviaceae) in two restinga formations. Rodriguésia 73: e00342022. ). For example, changes in leaf anatomy are decisive in the acclimatization capacity of species exposed to different environmental conditions (Donato and De Morretes 2009Donato, A.M.; De Morretes, B.L. 2009. Foliar anatomy of Eugenia florida DC. (Myrtaceae). Revista Brasileira de Farmacognosia 19: 759-770.; Amorim and Melo Júnior 2017; Lemos et al. 2018). The leaves of Eugenia glazioviana Kiaersk developed xeromorphic anatomical features in response to water stress (Esposito-Polesi et al. 2011Esposito-Polesi, N.P.; Rodrigues, R.R.; Almeida, M. de. 2011. Anatomia ecológica da folha de Eugenia glazioviana Kiaersk (MYRTACEAE). Revista Árvore 35: 255-263.) and similar results have been observed in Eugenia luschnathiana (O.Berg) Klotzsch ex B.D.Jacks. Also, morphological data of Myrcia splendens (Sw.) DC. (Amorim and Júnior 2016) and Myrcia guianenses (Aubl.) DC. (Lemos et al. 2020Lemos, V. de O.T.; de Lucena, E.M.P.; Bonilla, O.H.; Edson-Chaves, B.; Freitas, M.A. 2020. Ecological anatomy of Myrcia guianensis (Aubl.) DC. leaf in restinga in Ceará state. Ciencia Florestal 30: 307-322.) showed that plasticity is an advantageous feature in response to certain abiotic factors, such as increased temperature and water deficit. The presence in campinaranas of species with a preference for oligotrophic soils, such as E. hatschbachii, M. cuprea and M. saxatilis, reinforces the existence of specialist species in these environments, as previously reported (Fine et al. 2010Fine, P.V.A.; Garca-Villacorta, R.; Pitman, N.C.A.; Mesones, I.; Kembel, S.W. 2010. A floristic study of the white-sand forests of Peru. Annals of the Missouri Botanical Garden 97: 283-305.; Silva et al. 2010Silva, R.M. da; Mehlig, U.; Santos, J.U.M. dos; Menezes, M.P.M. de. 2010. The coastal restinga vegetation of Pará, Brazilian Amazon: a synthesis. Brazilian Journal of Botany 33: 563-573.; Ferreira et al. 2013Ferreira, L. V; Chaves, P.P.; Cunha, D.A.; Rosário, A.S.; Parolin, P. 2013. A extração ilegal de areia como causa do desaparecimento de campinas e campinaranas no estado do Pará, Brasil. Pesquisas, Botânica 64: 157-173.; Adeney et al. 2016Adeney, J.M.; Christensen, N.L.; Vicentini, A.; Cohn-Haft, M. 2016. White-sand ecosystems in Amazonia: What and where are white-sands. Biotropica 48: 7-23.; Daly et al. 2016Daly, D.C.; Silveira, M.; Medeiros, H.; Castro, W.; Obermüller, F.A. 2016. The white-sand vegetation of Acre, Brazil. Biotropica 48: 81-89.; Fine and Baraloto 2016; García-Villacorta et al. 2016García-Villacorta, R.; Dexter, K.G.; Pennington, T. 2016. Amazonian white-sand forests show strong floristic links with surrounding oligotrophic habitats and the Guiana Shield. Biotropica 48: 47-57.; Demarchi et al. 2022Demarchi, L.O.; Klein, V.P.; Aguiar, D.P.P.; Marinho, L.C.; Ferreira, M.J.; Lopes, A.; et al. 2022. The specialized white-sand flora of the Uatumã Sustainable Development Reserve, central Amazon, Brazil. Check List 18: 187-217.). Anatomical and physiological plasticity in plant species confers the ability to adjust and achieve high fitness under different environmental conditions (Sultan 2000Sultan, S.E. 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5: 537-542.) and provide insights into how species can deal with possible natural or anthropogenic climatic and environmental changes (Valladares et al. 2014Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araújo, M.B.; Balaguer, L.; Benito-Garzón, M.; et al. 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters 17: 1351-1364.).

The highest number of species recorded in the campinaranas of Amazonas and Roraima is likely related to the larger size of the campinarana areas and the greater number of floristic studies conducted in these states (Adeney et al. 2016Adeney, J.M.; Christensen, N.L.; Vicentini, A.; Cohn-Haft, M. 2016. White-sand ecosystems in Amazonia: What and where are white-sands. Biotropica 48: 7-23.). It is also notable that collections are concentrated in areas near the riverbanks (Figure 1), which helps to understand why these species are well distributed among the wetlands (Figure 3). However, this sampling concentration may mask the true richness of campinarana flora, since vegetation islands farther from the riverbank will have less influence from flooded areas, and other species may compose these landscapes (García-Villacorta et al. 2016García-Villacorta, R.; Dexter, K.G.; Pennington, T. 2016. Amazonian white-sand forests show strong floristic links with surrounding oligotrophic habitats and the Guiana Shield. Biotropica 48: 47-57.; Demarchi et al. 2022Demarchi, L.O.; Klein, V.P.; Aguiar, D.P.P.; Marinho, L.C.; Ferreira, M.J.; Lopes, A.; et al. 2022. The specialized white-sand flora of the Uatumã Sustainable Development Reserve, central Amazon, Brazil. Check List 18: 187-217.).

Most species in our checklist are restricted to the Amazon phytogeographic domain (53%), corroborating that most woody species in the Amazon are endemic or rare (ter Steege et al. 2013ter Steege, H.; Pitman, N.C.A.; Sabatier, D.; Baraloto, C.; Salomão, R.P.; Guevara, J.E.; et al. 2013. Hyperdominance in the Amazonian tree flora. Science 342: 1243092). On the order hand, the greatest diversity of the family is concentrated in the Atlantic Forest (Santos et al. 2017Santos, M.F.; Lucas, E.; Sano, P.T; Buerki, S.; Staggemeier, V.G; Forest, F. 2017. Biogeographical patterns of Myrcia s.l. (Myrtaceae) and their correlation with geological and climatic history in the Neotropics. Molecular Phylogenetics and Evolution 108: 34-48), and plant species originating from Cerrado are often found in campinaranas (Guimarães and Bueno 2016Guimarães, F.S.; Bueno, G.T. 2016. As campinas e campinaranas amazônicas/The amazonian campinas and campinaranas.Caderno de Geografia26: 113-133.). This scenario, combined with the high dispersal capacity of Myrtaceae (Gressler et al. 2006Gressler, E.; Pizo, M.A.; Morellato, L.P.C. 2006. Polinização e dispersão de sementes em Myrtaceae do Brasil. Revista Brasileira de Botânica 29: 509-530.), justifies Cerrado and Atlantic Forest as the domains with the highest number of species shared with campinaranas. Campinaranas are embedded mainly in terra firme forests (Adeney et al. 2016Adeney, J.M.; Christensen, N.L.; Vicentini, A.; Cohn-Haft, M. 2016. White-sand ecosystems in Amazonia: What and where are white-sands. Biotropica 48: 7-23.), which probably explains why terra firme forest was the type of vegetation with the highest number of species shared with campinaranas. However, campinaranas are also expected to be strongly influenced by other vegetation types due to factors such as geographic proximity (Vicentini 2004Vicentini, A. 2004. A vegetação ao longo de um gradiente edáfico no Parque Nacional do Jaú. In: Borges, S.H.; Iwanaga, S.; Durigan, C.C.; Pinheiro, M.R. (Eds.). Janelas Para a Biodiversidade no Parque Nacional do Jaú: Uma Estratégia Para o Estudo da Biodiversidade na Amazônia. Fundação Vitória Amazônica (FVA), WWF, IBAMA, Manaus, p.117-143.; Adeney et al. 2016), variation in abiotic conditions within campinarana islands, such as the increase in temperature and decrease in humidity in more open physiognomies and variation in water table position (García Villacorda et al. 2016; Demarchi et al. 2018Demarchi, L.O.; Scudeller, V.V.; Moura, L.C.; Dias-Terceiro, R.G.; Lopes, A.; Wittmann, F.K.; et al. 2018. Floristic composition, structure and soil-vegetation relations in three white-sand soil patches in central Amazonia. Acta Amazonica 48: 46-56.).

Little is known about the conservation status of Myrtaceae. For the two endemic species recorded in our study, only E.campina was evaluated for its preliminary conservation status, being classified as of Least Concern (LC) (De Souza and Sobral 2018De Souza, M.A.D.; Sobral, M. 2018. Six new Eugenia (Myrtaceae) from Amazonas, Brazil. Phytotaxa 349: 18-30. ). Species endemic to campinaranas were also recorded for Clusiaceae (Demarchi et al. 2021Demarchi, L.O.; Piedade, M.T.F.; Marinho, L.C. 2021. Tovomita cornuta (Clusiaceae): a new and threatened species from the Amazonian campinaranas revealed by ecological field research. Acta Botanica Brasilica 35: 554-561.), Fabaceae (Rando and De Lima 2020Rando, J.G.; De Lima, H.C. 2020. A new arborescent Chamaecrista (Leguminosae) from Amazon, Brazil. Phytotaxa 433: 161-166.) and Malvaceae (Guevara Andino and Fernández-Alonso 2018Guevara Andino, J.E.; Fernández-Alonso, J.L. 2018. A remarkable new species of Pachira (Malvaceae: Bombacoideae) from an Amazonian hotspot of endemism. Systematic Botany 43: 993-999.), highlighting the need for further floristic and taxonomic surveys to assess the species diversity and composition in this vegetation type.

CONCLUSIONS

We conclude that Myrtaceae species in Brazilian Amazonian campinaranas are mostly endemic to the Amazonian phytogeographical domain. Four species of Myrtaceae were recorded for the first time in the Brazilian Amazon. Some species are specialists in soils with limiting conditions and a significant portion has plastic anatomical and morphological characteristics, in addition to long-distance dispersal mechanisms, that favor occupation and survival in campinaranas. The specific richness of Myrtaceae (72 species) recoredd for Brazilian campinaranas is relatively high, but is probably underestimated, since extensive areas of campinaranas, especially those further away from riverbanks in the states of Amazonas and Roraima, have not yet been intensively surveyed. Therefore, we emphasize the need to know the floristic diversity of campinaranas (not only Myrtaceae) to identify areas of special interest for conservation.

ACKNOWLEDGMENTS

The authors thank the curators of the consulted herbaria; Universidade Federal do Pará (UFPA) for the undergraduate grant awarded to the first author through Subprograma de Apoio à Infraestrutura de Laboratórios de Ensino of Programa de Apoio à Qualificação do Ensino de Graduação (PGRAD-LABINFRA) (proc. # PGRAD1900349090); and Maria Anália Duarte de Souza and Marcos Sobral, who helped us identify some species.

REFERENCES

  • Adeney, J.M.; Christensen, N.L.; Vicentini, A.; Cohn-Haft, M. 2016. White-sand ecosystems in Amazonia: What and where are white-sands. Biotropica 48: 7-23.
  • Amaral, D.D. do; Prost, M.T.; Bastos, M. de N. do C.; Neto, S.V.C.; Santos, J.U.M. dos. 2008. Restingas do litoral amazônico, estados do Pará e Amapá, Brasil. Boletim do Museu Paraense Emílio Goeldi, Ciências Naturais 3: 35-67.
  • Alvares, C.A.; Stap, J.L.; Sentalhes, P.C; Gonçalves, J.L.M; Sparovek, G. 2013 Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711-728. doi:10.1127/0941-2948/2013/0507.
    » https://doi.org/10.1127/0941-2948/2013/0507
  • Amboni, A.; Soffiatti, P.; Melo Júnior, J.C.F. de. 2022. Structural adjustment of Schwartzia brasiliensis (Marcgraviaceae) in two restinga formations. Rodriguésia 73: e00342022.
  • Amorim, M.W.; Júnior, J.C.F. de M. 2016. Plasticidade morfológica de Myrcia splendens (S.w.) CD. (Myrtaceae) ocorrente em Mata Atlântica e Cerrado. Iheringia 71: 261-268.
  • Amorim, M.W.; Melo Júnior, J.C.F. de. 2017. Plasticidade morfoanatômica foliar de Tibouchina clavata (Melastomataceae) ocorrente em duas formações de restinga. Rodriguésia 68: 545-555.
  • Anderson, A. B.; Prance, G.T.; Albuquerque, B.W.P. 1975. Estudos sobre a vegetação das campinas amazônicas. Acta Amazonica 6: 193-211.
  • Arruda, R. do C. de O.; Viglio, N.S.F.; Barros, A.A.M. de. 2009. Anatomia foliar de halófitas e psamófilas reptantes ocorrentes na Restinga de Ipitangas, Saquarema, Rio de Janeiro, Brasil. Rodriguésia 60: 333-352.
  • Atwell, M.A.; Wuddivira, M.N.; Fiedler, S.;Oatham, M.; Herrmann, L.; Glasner, B.; et al. 2023. Influence of soil geomorphic factors on vegetation patterns in a model white sands ecosystem complex.Catena 225: 107044. doi: 10.1016/j.catena.2023.107044
    » https://doi.org/10.1016/j.catena.2023.107044
  • Campos, A.C. de Souza; Costa-Neto, S.V. da; Jardim, M.A.G. 2021. Floristica, estrutura e formas de vida da regeneração de uma savana amazônica, Pará, Brasil. Revista Brasileira de Geografia 2: 758-769.
  • Da Rocha, A.E.S.; Da Costa Neto, S.V. 2019. Florística e fitossociologia do estrato herbáceo/arbustivo em 19 áreas de savanas amazônicas, Brasil. Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais 14: 159-181.
  • Da Silva e Silva, W.L.; da Silva, M.F.; do Amaral, D.D.; de Nazaré Lima do Carmo, M.; Gurgel, E.S.C.; dos Santos, J.U.M. 2021. Checklist of angiosperms in the restingas of Pará state, Brazil, with comments on floristic affinities and phytophysiognomies. Rodriguesia 72: e01532019.2021
  • Da Silva, R.M.; Reis, Â.C.A.; Mehlig, U. 2018. Diversity and dominance patterns in Amazon coast dune forest island tree communities. Plant Ecology 219: 343-357.
  • Daly, D.C.; Silveira, M.; Medeiros, H.; Castro, W.; Obermüller, F.A. 2016. The white-sand vegetation of Acre, Brazil. Biotropica 48: 81-89.
  • De Souza, M.A.D.; Sobral, M. 2018. Six new Eugenia (Myrtaceae) from Amazonas, Brazil. Phytotaxa 349: 18-30.
  • Demarchi, L.O.; Klein, V.P.; Aguiar, D.P.P.; Marinho, L.C.; Ferreira, M.J.; Lopes, A.; et al. 2022. The specialized white-sand flora of the Uatumã Sustainable Development Reserve, central Amazon, Brazil. Check List 18: 187-217.
  • Demarchi, L.O.; Piedade, M.T.F.; Marinho, L.C. 2021. Tovomita cornuta (Clusiaceae): a new and threatened species from the Amazonian campinaranas revealed by ecological field research. Acta Botanica Brasilica 35: 554-561.
  • Demarchi, L.O.; Scudeller, V.V.; Moura, L.C.; Dias-Terceiro, R.G.; Lopes, A.; Wittmann, F.K.; et al. 2018. Floristic composition, structure and soil-vegetation relations in three white-sand soil patches in central Amazonia. Acta Amazonica 48: 46-56.
  • Donato, A.M.; De Morretes, B.L. 2009. Foliar anatomy of Eugenia florida DC. (Myrtaceae). Revista Brasileira de Farmacognosia 19: 759-770.
  • Esposito-Polesi, N.P.; Rodrigues, R.R.; Almeida, M. de. 2011. Anatomia ecológica da folha de Eugenia glazioviana Kiaersk (MYRTACEAE). Revista Árvore 35: 255-263.
  • Ferreira, C.A.C. 2009. Análise comparativa de vegetação lenhosa do ecossistema campina na Amazônia brasileira Doctoral thesis, Universidade Federal do Amazonas, Brazil, 277p. (https://repositorio.inpa.gov.br/handle/1/12804).
    » https://repositorio.inpa.gov.br/handle/1/12804
  • Ferreira, L. V; Chaves, P.P.; Cunha, D.A.; Rosário, A.S.; Parolin, P. 2013. A extração ilegal de areia como causa do desaparecimento de campinas e campinaranas no estado do Pará, Brasil. Pesquisas, Botânica 64: 157-173.
  • Ferreira, L.V.; Chaves, P.P.; Cunha, D. A.; Parolin, P. 2014. Florística e estrutura das campinaranas do Baixo Rio Tocantins como subsídio para a criação de novas unidades de conservação no Estado do Pará. Pesquisas 65: 169-182.
  • Fine, P.V.A.; Baraloto, C. 2016. Habitat endemism in white-sand forests: Insights into the mechanisms of lineage diversification and community assembly of the Neotropical flora. Biotropica 48: 24-33.
  • Fine, P.V.A.; Garca-Villacorta, R.; Pitman, N.C.A.; Mesones, I.; Kembel, S.W. 2010. A floristic study of the white-sand forests of Peru. Annals of the Missouri Botanical Garden 97: 283-305.
  • Gaem, P.H.; Farroñay, F.; Mazine, F.F.; Vicentini, A. 2019. Myrcia psammophila (Myrtaceae), a new species from the Amazonian white-sand vegetation. Phytotaxa 414: 253-261.
  • García-Villacorta, R.; Dexter, K.G.; Pennington, T. 2016. Amazonian white-sand forests show strong floristic links with surrounding oligotrophic habitats and the Guiana Shield. Biotropica 48: 47-57.
  • Gavilanes, M.L.; Silva, A.M. da; Dias, M.V. de F.; Oliveira, J.A. de; Corrêa, F.F.; Rodrigues, L.C. de A.; et al. 2020. Leaf structure of Byrsonima coccolobifolia Kunth. (Malpighiaceae) in a savannah and rupestrian field environment. Research, Society and Development 9: e14991210077.
  • Gressler, E.; Pizo, M.A.; Morellato, L.P.C. 2006. Polinização e dispersão de sementes em Myrtaceae do Brasil. Revista Brasileira de Botânica 29: 509-530.
  • Guevara Andino, J.E.; Fernández-Alonso, J.L. 2018. A remarkable new species of Pachira (Malvaceae: Bombacoideae) from an Amazonian hotspot of endemism. Systematic Botany 43: 993-999.
  • Guimarães, F.S.; Bueno, G.T. 2016. As campinas e campinaranas amazônicas/The amazonian campinas and campinaranas.Caderno de Geografia26: 113-133.
  • INMET. 2024. Instituto Nacional de Meteorologia. Dados de estações convencionais do Banco de Dados Meterologicos do INMET. ( (https://bdmep.inmet.gov.br/ ). Accessed on 15 Jan 2024.
    » https://bdmep.inmet.gov.br/
  • Lemos, V. de O.T.; de Lucena, E.M.P.; Bonilla, O.H.; Edson-Chaves, B. 2019. Ecological anatomy of Eugenia punicifolia (Kunth) dc. (Myrtaceae) in the restinga region, state of Ceará. Revista Brasileira de Fruticultura 41: 1-11. doi: 10.1590/0100-29452019503
    » https://doi.org/10.1590/0100-29452019503
  • Lemos, V. de O.T.; de Lucena, E.M.P.; Bonilla, O.H.; Edson-Chaves, B.; Freitas, M.A. 2020. Ecological anatomy of Myrcia guianensis (Aubl.) DC. leaf in restinga in Ceará state. Ciencia Florestal 30: 307-322.
  • Lemos, V. de O.T.; Lucena, E.M.P. de; Bonilla, O.H.; Edson-Chaves, B.; Castro, M.A. de; Sampaio, V. da S. 2018. Ecological anatomy of Eugenia luschnathiana (O.Berg) Klotzsch ex B.D.Jacks. (Myrtaceae) leaves in the Restinga region, state of Ceara. Revista Brasileira de Fruticultura 40: e-696.
  • Lourenço, A.R. de L.; Barbosa, M.R. de V. 2012. Myrtaceae em restingas no limite norte de distribuição da Mata Atlântica, Brasil. Rodriguésia 63: 373-393.
  • Magnusson, W.E.; Lima, A.P.; Albernaz, A.L.K.M.; Sanaiotti, T.M.; Guillaumet, J.-L. 2008. Composição florística e cobertura vegetal das savanas na região de Alter do Chão, Santarém - PA. Revista Brasileira de Botânica 31: 165-177.
  • Melo Júnior, J.C.F.; Torres Boeger, M.R. 2015. Leaf traits and plastic potential of plant species in a light-edaphic gradient from restinga in Southern Brazil. Acta Biológica Colombiana 21: 51-62.
  • Mendonça, B.A.F. de; Fernandes Filho, E.I.; Schaefer, C.E.G.R.; Simas, F.N.B.; Paula, M.D. de. 2015. Os solos das campinaranas na Amazônia brasileira: ecossistemas arenícolas oligotróficos. Ciência Florestal 25: 827-839.
  • Oliveira-Filho, A.T.; Dexter, K.G.; Pennington, R.T.; Simon, M.F.; Bueno, M.L.; Neves, D.M. 2021. On the floristic identity of Amazonian vegetation types. Biotropica 53: 767-777.
  • Radersma, R.; Noble, D.W.A.; Uller, T. 2020. Plasticity leaves a phenotypic signature during local adaptation. Evolution Letters 4: 360-370.
  • Rando, J.G.; De Lima, H.C. 2020. A new arborescent Chamaecrista (Leguminosae) from Amazon, Brazil. Phytotaxa 433: 161-166.
  • Silva, R.M. da; Mehlig, U.; Santos, J.U.M. dos; Menezes, M.P.M. de. 2010. The coastal restinga vegetation of Pará, Brazilian Amazon: a synthesis. Brazilian Journal of Botany 33: 563-573.
  • Silveira, M. 2003. Vegetação e Flora das Campinaranas do Sudoeste Amazônico Unpublished technical scientific report to SOS Amazônia, New York Botanical Garden, New York, 26p. (https://www.nybg.org/bsci/acre/pdfs/VegetacaoeFloraCampinaranas.pdf).
    » https://www.nybg.org/bsci/acre/pdfs/VegetacaoeFloraCampinaranas.pdf
  • Sultan, S.E. 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5: 537-542.
  • Santos, M.F.; Lucas, E.; Sano, P.T; Buerki, S.; Staggemeier, V.G; Forest, F. 2017. Biogeographical patterns of Myrcia s.l. (Myrtaceae) and their correlation with geological and climatic history in the Neotropics. Molecular Phylogenetics and Evolution 108: 34-48
  • ter Steege, H.; Pitman, N.C.A.; Sabatier, D.; Baraloto, C.; Salomão, R.P.; Guevara, J.E.; et al. 2013. Hyperdominance in the Amazonian tree flora. Science 342: 1243092
  • Thiers, B. 2023. [continuously updated]. Index Herbariorum: A global directory of public her baria and associated staff. New York Botanical Garden’s Virtual Herbarium. ( (http://sweetgum.nybg.org/scence/ih/ ). Accessed on 09 Feb 2023.
    » http://sweetgum.nybg.org/scence/ih/
  • Vicentini, A. 2004. A vegetação ao longo de um gradiente edáfico no Parque Nacional do Jaú. In: Borges, S.H.; Iwanaga, S.; Durigan, C.C.; Pinheiro, M.R. (Eds.). Janelas Para a Biodiversidade no Parque Nacional do Jaú: Uma Estratégia Para o Estudo da Biodiversidade na Amazônia Fundação Vitória Amazônica (FVA), WWF, IBAMA, Manaus, p.117-143.
  • Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araújo, M.B.; Balaguer, L.; Benito-Garzón, M.; et al. 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters 17: 1351-1364.
  • CITE AS:

    Natividade, P.H.S. da; Barberena, F.F.V.A.; SILVA, R.M. da. 2024. Checklist and geographic distribution of Myrtaceae species occurring in campinaranas of the Brazilian Amazon. Acta Amazonica 54: e54bc23294.

Data availability

All data supporting the results of this study have been published in this article. All species records mentioned have a voucher number listed in Table 1 and can be accessed at https://specieslink.net/ or in the respective herbaria. The coordinates of each locality and species per locality are in the supplementary material.

SUPPLEMENTARY MATERIAL

Natividade et al. Checklist and geographic distribution of Myrtaceae species occurring in campinaranas of the Brazilian Amazon

Table S1
Species of Myrtaceae recorded in each of 27 localities of campinarana in six states of the Brazilian Amazon.

Edited by

ASSOCIATE EDITOR:

Natália Ivanauskas

Publication Dates

  • Publication in this collection
    08 July 2024
  • Date of issue
    Apr-Jun 2024

History

  • Received
    16 Oct 2023
  • Accepted
    30 May 2024
Instituto Nacional de Pesquisas da Amazônia Av. André Araujo, 2936 Aleixo, 69060-001 Manaus AM Brasil, Tel.: +55 92 3643-3030, Fax: +55 92 643-3223 - Manaus - AM - Brazil
E-mail: acta@inpa.gov.br