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Abstract: The present work is concerned with the use of a Response Surface Model of
the reduced flexibility matrix for structural damage identification. A Response Surface
Model (RSM) is fitted with the aim at providing a polynomial relationship between
nodal cohesion parameters, used to describe the damage field within the structure, and
elements of the reduced flexibility matrix. A design of experiment built on combinations
of a relatively small number of nodal cohesion parameters is used to fit the RSM.
The damage identification problem is formulated within the Bayesian framework and
the Delayed Rejection Adaptive Metropolis method is used to sample the posterior
probability density function of the uncertain cohesion parameters. Numerical simulations
addressing damage identification in plates were carried out in order to assess the
proposed approach, which succeeded in the identification of the different damage
profiles considered. Besides, the use of a RSM, instead of a FEM of the structure, resulted
in reductions of up almost 78% in the required computational cost.
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INTRODUCTION

Damage identification (DI) approaches are of prime importance for maintaining the functionality and
even the integrity of engineering structures. In the last decades, vibration-based DI approaches have
received considerable attention from the scientific and engineering communities. Differently from
classical non-destructive testing, such as X-ray and ultrasound (Rens et al. 1997), vibration-based DI
approaches are based on global dynamic characteristics of the structure being evaluated, thus not
requiring a prior knowledge of the damage location nor that this portion of the structure is readily
accessible for inspection (Hou & Xia 2021, Ereiz et al. 2022, Randall 2021, Kong et al. 2017).

Vibration-based DI approaches are built on the premise that the presence of structural damages
alters the dynamic behavior of the structure, which in turn can be quantified through vibration
measurements and used to infer about its integrity. Damage identification problems are usually posed
as inverse problems of parameter estimation, where a set of parameters of a model of the structure is
estimated in order to ensure that predictions of the updated model resemble corresponding observed
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experimental data, as closely as possible (Hou & Xia 2021, Ereiz et al. 2022, Randall 2021, Kong et al.
2017).

Inverse problems of parameter estimation are typically ill-posed and ill-conditioned, due to the
limited information in the observed experimental data and the presence of measurement noise,
parameter uncertainties and model discrepancy (also known as inadequacy or bias) (Kirsch 1996,
Gardner et al. 2021). A robust probabilistic approach for the formulation of inverse problems of
parameter estimation, in special the damage identification problems, to handle measurement errors
and parameter and modelling uncertainties are provided by the Bayesian framework (Kong et al. 2017,
Kaipio & Somersalo 2004, Beck & Au 2002, Yuen & Kuok 2011). In the Bayesian statistical framework,
the uncertain parameters of the model are treated as random variables and the objective is to infer
about their joint posterior probability density function conditioned on observed experimental data.
The joint posterior probability density function describes all plausible values for the uncertain model
parameters based on the available experimental data. Further, the Bayesian framework also provides
robust probabilistic approaches for model class selection and model averaging. In the Bayesian
model class selection, given a set of probabilistic model classes, the plausibility of each probabilistic
model class to describe the system behaviour, based on measured data, is computed. Then, the most
plausible model class based on the available measured data is accessed. In cases where there are
more than one plausible model class, with the Bayesian model averaging, the expected value of any
quantity of interest, conditioned on the measured data and all the competing model classes, may be
computed (Beck & Au 2002, Yuen & Kuok 2011, Marwala et al. 2016, Huang et al. 2018, Ching & Chen
2007).

In practical Bayesian inference problems, the joint posterior probability density function of the
uncertain parameters is usually estimated by numerical sampling methods, such as the Markov
Chain Monte Carlo (MCMC) methods. In these methods, samples are drawn from an auxiliary density
function with the aim at generating an ergodic Markov chain whose stationary distribution is the
desired one. Due to its simplicity, the Metropolis-Hastings (MH) algorithm is one of the most used
MCMC methods (Kaipio & Somersalo 2004). However, the MH algorithm may become inefficient when
sampling multimodal posterior probability density functions, when the uncertain parameters are
highly correlated, or when they are defined in a highly dimensional space (Beck & Au 2002, Ching &
Chen 2007, Gamerman & Lopes 2006). In such cases, an extremely large number of samples along with
a long burn-in period may be required to sample the desired probability density function. Even so, a
poor sampling can be obtained. Therefore, with the aim at improving the sampling capabilities and/or
the computational efficiency of conventional sampling methods, several advanced MCMCmethods has
been proposed, such as Hamiltonian Monte Carlo methods (Neal 2011, Cheung & Beck 2009), Multiple
Try MCMC methods (Martino 2018, Martino & Read 2013), the Delayed Rejection Adaptive Metropolis
method (Haario et al. 2006), the Transitional Markov Chain Monte Carlo method (Ching & Chen 2007,
Ching & Wang 2016), and Sequential Monte Carlo Methods (Liu & Chen 1998, Dessi & Camerlengo 2015),
to cite a few.

The use of finite element models (FEMs) in damage identification approaches is popular, because
they provide information about damage location and damage extent. In some cases, they can also
allow for response prediction and damage prognosis (Prakash & Narasimhan 2018, Kong et al. 2017).
However, since the numerical sampling of the posterior probability density function of the uncertain
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parameters requires the computation of the model response at each sample drawn, the use of a
FEM of the structure may yield an extremely high computational cost. Hence, in order to obtain
a computationally more efficient damage identification approach, the FEM of the structure may be
replaced by a surrogate model. Different surrogate models have been successfully applied in damage
identification problems, such as Artificial Neural Networks (Sbarufatti et al. 2013, Rocchetta et al.
2018, Lye et al. 2021), Kriging surrogate models (Jin & Jung 2016, Ghiasi et al. 2018), Gaussian Process
Regression (Ramancha et al. 2022, Talaei et al. 2018, Ni et al. 2021) and Response Surface Models (Stutz
et al. 2018, Fang & Perera 2011, Umar et al. 2018).

The present work addresses the structural damage identification problem in plates, which are
important structural components in automotive, aeronautical, civil and naval engineering (Huang &
Schröder 2021, Fu et al. 2013, Simoen et al. 2015, Silva et al. 2020, 2021, Li et al. 2022, Chen et al.
2018). The proposed damage identification approach is formulated within the Bayesian framework
and it is built on a RSM (Myers et al. 2009) of the reduced flexibility matrix of the structure. Here, the
damage state of the structure is described by a set of cohesion parameters and the RSM provides a
polynomial relationship between these parameters and elements of the reduced flexibility matrix of
the structure, yielding a computationally more efficient damage identification approach. The Delayed
Rejection Adaptive Metropolis (DRAM) (Haario et al. 2006) is used to sample the joint posterior
probability density function of the uncertain parameters. Basically, the DRAM combines two strategies:
the Adaptive Metropolis (AM) (Haario et al. 2001) and the Delayed Rejection (DR) (Mira 2001). The
adaptive strategy of the method allows the tuning of the auxiliary density function based on past
samples in order to better reflect the target probability distribution, whereas the delayed rejection
allows multiple stages of proposal samples at each iteration, which can help explore multimodal
distributions more effectively (Warner et al. 2016).

The proposed approach is numerically assessed considering damage identification problems in
a simply supported Kirchhoff plate. Three different damage scenarios and three different noise levels
corrupting the synthetic experimental mode shapes of the structure are addressed. The numerical
results show that the adopted strategy for training the RSM of the structure requires a considerably
small number of numerical simulations in order to provide the corresponding training data, increasing,
therefore, the applicability of RSM-based damage identification approaches. Besides, the numerical
results also show that the proposed damage identification approach succeeded in providing accurate
information about the existence, location and extent of structural damages in all addressed cases.

MATHEMATICAL MODELLING

This section is devoted to present the basic concepts related to the synthesis of a Response Surface
Model of the reduced flexibility matrix of a damaged plate, whose integrity is continuously described
by a cohesion field.

Damage model

It is assumed that the stiffness properties of a supposedly damaged structure may be used to assess
its structural integrity (Randall 2021, Kong et al. 2017). In addition, it is also assumed that the dynamic
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tests required for damage identification do not suffice to alter the structural integrity of the tested
structure.

The flexural stiffness of a plate, at a point (𝑥, 𝑦) within its middle surface in undeformed position,
is defined as

𝐷(𝑥, 𝑦) =
𝐸(𝑥, 𝑦)ℎ(𝑥, 𝑦)3

12 [1 − 𝜈(𝑥, 𝑦)2]
, (1)

where 𝐸 is the Young’s modulus, ℎ is the thickness of the plate, 𝜈 is the Poisson’s ratio (Leissa & Qatu
2011).

Aiming at describing the damage as a stiffness loss in the structure, the flexural stiffness may be
rewritten as

𝐷(𝑥, 𝑦) = 𝛽(𝑥, 𝑦)𝐷0, (2)

where the cohesion filed 𝛽(𝑥, 𝑦) is the function used to describe the damage within the structure, and
𝐷0 is the nominal flexural stiffness of the undamaged plate, given by

𝐷0 =
𝐸0ℎ

3
0

12 (1 − 𝜈20)
, (3)

where 𝐸0 is the nominal Young’s modulus, ℎ0 is the nominal thickness of the plate, 𝜈0 is the nominal
Poisson’s ratio.

Considering Eq. (2), the elemental stiffness matrix of a rectangular finite element of a Kirchhoff
plate may be written as

K𝑒 = ∫
Ω𝑒

𝛽𝑒(�̄�, �̄�)
𝐸0ℎ

3
0

12 (1 − 𝜈20)
B𝑇D̄B𝑑�̄�𝑑�̄�, (4)

where 𝛽𝑒(�̄�, �̄�) stands for the cohesion field within the finite element, �̄� and �̄� are in-plane local
coordinates, Ω𝑒 stands for the elastic domain of the element and the matrices D̄ and B are,
respectively, given by

̄D = ⎡⎢

⎣

1 𝜈 0

𝜈 1 0

0 0 1−𝜈
2

⎤⎥

⎦

, (5)

B = ⎡⎢

⎣

𝜕2𝑁1(�̄�,�̄�)
𝜕�̄�2

𝜕2𝑁2(�̄�,�̄�)
𝜕�̄�2 … 𝜕2𝑁12(�̄�,�̄�)

𝜕�̄�2

𝜕2𝑁1(�̄�,�̄�)
𝜕�̄�2

𝜕2𝑁2(�̄�,�̄�)
𝜕�̄�2 … 𝜕2𝑁12(�̄�,�̄�)

𝜕�̄�2

𝜕2𝑁1(�̄�,�̄�)
𝜕�̄�𝜕�̄�

𝜕2𝑁2(�̄�,�̄�)
𝜕�̄�𝜕�̄� … 𝜕2𝑁12(�̄�,�̄�)

𝜕�̄�𝜕�̄�

⎤⎥

⎦

, (6)

where 𝑁𝑖, 𝑖 = 1, … , 12 are appropriate interpolation functions (Reddy 1984).
In the present work, the same finite element mesh was used to spatially discretize both the

displacement and the cohesion fields. Besides, within a finite element, the cohesion field was
interpolated as

𝛽𝑒(�̄�, �̄�) ≈ 𝑅𝑒1(�̄�, �̄�)𝛽
𝑒
1 + 𝑅

𝑒
2(�̄�, �̄�)𝛽

𝑒
2 + 𝑅

𝑒
3(�̄�, �̄�)𝛽

𝑒
3 + 𝑅

𝑒
4(�̄�, �̄�)𝛽

𝑒
4, (7)
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where 𝑅𝑒𝑖 (�̄�, �̄�) and 𝛽
𝑒
𝑖 , 𝑖 = 1, … , 4, are, respectively, bilinear shape functions and nodal cohesion

parameters, that is, values of the cohesion field at the corner nodes of the finite element.
Considering the spatial discretization of the cohesion field, the damage state of the structure is,

therefore, described by the vector of nodal cohesion parameters

𝛽 = [𝛽1 𝛽2 … 𝛽𝑛𝑝]
𝑇
, (8)

where 𝛽𝑖 represents the value of the cohesion parameter at the i-th global node of the spatial
discretization of this field and 𝑛𝑝 is the total number of nodes.

Flexibility matrix

The flexibility matrix of a structure is defined as the inverse of the stiffness matrix and it can be written
in terms of the modal parameters as

G = ΦΛ−1Φ𝑇 =
𝑛

∑
𝑖=1

1
𝜔2
𝑖
𝜙𝑖 𝜙

𝑇
𝑖 , (9)

where Λ = diag[𝜔2
1, 𝜔

2
2, … , 𝜔

2
𝑛] is a diagonal matrix containing the squared undamped natural

frequencies of the structure, 𝑛 is the number of degrees of freedom (DOFs), Φ = [𝜙1 𝜙2 … 𝜙𝑛] is
the corresponding modal matrix, whose columns are the mass-normalized undamped mode shapes
and 𝑇 stands for the matrix transpose operator.

The undamped modal parameters of the structure may be obtained from the generalized
eigenvalue problem

(K − 𝜔2
𝑖 M)𝜙𝑖 = 0, 𝑖 = 1, 2, … , 𝑛, (10)

where M and K are, respectively, the 𝑛 × 𝑛 mass and stiffness matrices of the finite element model
of the structure (FEM) (Meirovitch 1986). Besides, for mass-normalized mode shapes, one has

Φ𝑇MΦ = I;
Φ𝑇KΦ = Λ.

(11)

Due to practical limitations inherent to modal tests, as the limited number of measured DOFs
and the limited number of excited modes of vibration, the following approximation for the flexibility
matrix may be experimentally obtained

G𝐸 =
𝑛𝐸

∑
𝑖=1

1
𝜔2
𝑖𝐸
𝜙𝑖𝐸 𝜙

𝑇
𝑖𝐸, (12)

where 𝑛𝐸 < 𝑛 is the number of modes obtained from the modal test, 𝜔𝑖𝐸 and 𝜙𝑖𝐸 are, respectively, the
i-th undamped natural frequency and corresponding undampedmode shape experimentally obtained
(Alvin et al. 2003).

It must be emphasized that if only 𝑚 DOFs of the structure are measured in the modal test, the
experimental mode shapes 𝜙𝑖𝐸, 𝑖 = 1, … , 𝑛𝐸, are vectors with dimension 𝑚 × 1. Therefore, according
to Eq. (12), despite the number 𝑛𝐸 of obtained modes, the experimentally derived flexibility matrix G𝐸
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has order𝑚. Since the structural flexibility matrixG, defined in Eq. (9), has order 𝑛, for the formulation
of the damage identification problem, the following reduced order flexibility matrix is required.

̄G =
𝑛𝐸

∑
𝑖=1

1
𝜔2
𝑖
�̄�𝑖 �̄�

𝑇
𝑖 , (13)

where �̄�𝑖 represents the i-thmode shape of the structure, provided by the FEM, and whose components
are only the 𝑚 DOFs related with the corresponding ones measured in the modal test.

Response Surface Model of the flexibility matrix

With the aim at obtaining a computationally more efficient approach for solving the damage
identification problem, the reduced flexibility matrix of the FEM of the structure, given by Eq. (13), is
replaced by a corresponding Response Surface Model (RSM) in the formulation of the inverse problem.
Therefore, a RSM is defined here so as to provide explicit relations between nodal cohesion parameters
of the structure and elements of the reduced flexibility matrix. The synthesis of the RSM is presented
next and it is in accordance with the one presented in (Stutz et al. 2018).

Given an element �̄�𝑖𝑗 of the reduced flexibility matrix, one defines

�̄�𝑖𝑗 = 𝑓(�̄�1, �̄�2, … , �̄�𝑛𝑝) + 𝜀, (14)

where 𝑓 is a response surface, 𝜀 represents the error in the model prediction, and �̄�𝑖 ∈ [−1, 1] are
coded nodal cohesion parameters, which are defined as

�̄�𝑖 =
𝛽𝑖 − 0.5 (𝛽low + 𝛽high)

0.5 (𝛽high − 𝛽low)
, 𝑖 = 1, 2, … , 𝑛𝑝, (15)

where 𝛽low and 𝛽high are, respectively, the low and high values of the cohesion parameters considered
in the definition of the Response Surface Model.

The following response surface, given by a second order polynomial accounting for interaction
effects between two arbitrary coded parameters, is adopted.

𝑓(�̄�1, �̄�2, … , �̄�𝑛𝑝) = 𝛼0 +
𝑛𝑝

∑
𝑖=1
𝛼𝑖�̄�𝑖 +

𝑛𝑝

∑
𝑖=1
𝛼𝑖𝑖�̄�

2
𝑖 +∑

𝑖<𝑗

𝑛𝑝

∑
𝑗=2
𝛼𝑖𝑗�̄�𝑖�̄�𝑗, (16)

where 𝛼𝑖, 𝛼𝑖𝑖 e 𝛼𝑖𝑗 are the coefficients of the adopted response surface, which are determined as
follows.

For a specific damage scenario, described by the vector of cohesion parameters 𝛽, one may
compute the elements of the reduced flexibility matrix �̄�𝑖𝑗, provided by the FEM of the structure,
and the corresponding coded parameters �̄�𝑖, 𝑖 = 1, … , 𝑛𝑝, according to Eqs. (13) and (15), respectively.
Therefore, for a given element of the reduced flexibility matrix, one has a training datum given by
(�̄�1, … , �̄�𝑛𝑝; �̄�𝑖𝑗) for the synthesis of the response surface. Hence, considering a set of 𝑛𝑑 training data,
obtained from 𝑛𝑑 different damage scenarios, one has

g = X𝛼 + 𝜀, (17)
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where g is the vector composed with the 𝑛𝑑 values of the considered element �̄�𝑖𝑗 of the reduced
flexibility matrix, X is the project matrix, whose elements are obtained from the coded parameters �̄�𝑖,
𝛼 is the vector with the coefficients of the response surface given by Eq. (16), and 𝜀 is the vector with
the corresponding errors in the model predictions.

According to Eq. (16), the number of coefficients of the adopted response surface is given by
𝑛𝑐 = (𝑛𝑝 + 1)(𝑛𝑝 + 2)/2. Therefore, one must have a number of training data 𝑛𝑑 greater than or equal
to 𝑛𝑐 for a proper estimation of the response surface coefficients. Considering Eq. (17), an unbiased
estimate for the vector of coefficients 𝛼 is given by (Myers et al. 2009)

�̂� = (X𝑇X)−1 X𝑇g. (18)

Therefore, the RSM of the element �̄�𝑖𝑗 of the reduced flexibility matrix is given by

̂�̄�𝑖𝑗 = �̂�0 +
𝑛𝑝

∑
𝑖=1
�̂�𝑖�̄�𝑖 +

𝑛𝑝

∑
𝑖=1
�̂�𝑖𝑖�̄�

2
𝑖 +∑

𝑖<𝑗

𝑛𝑝

∑
𝑗=2
�̂�𝑖𝑗�̄�𝑖�̄�𝑗. (19)

Aiming at the formulation of the damage identification problem, the generalized response vector,
comprised of elements of the reduced flexibility matrix provided by the RSM, is defined as

̂z = [ ̂�̄�11
̂�̄�12…

̂�̄�1𝑚
̂�̄�22

̂�̄�23 …
̂�̄�2𝑚 … ̂�̄�𝑚𝑚]

𝑇
, (20)

where 𝑚 is the number of columns (or lines) of the reduced flexibility matrix. One should note that,
due to the symmetry of the reduced flexibility matrix, not all of its components are considered in the
definition of the generalized response vector ̂z in Eq. (20).

Training data of the RMS

Fitting a Response Surface Model requires an appropriate choice of training data. As aforementioned,
in the present case, for fitting a RSM of a given element of the reduced flexibility matrix, one requires 𝑛𝑑
training data, where one training datum is given by (�̄�1, … , �̄�𝑛𝑝; �̄�𝑖𝑗), where �̄�𝑖, 𝑖 = 1, … , 𝑛𝑝, are the coded
values of the components of a prescribed vector of cohesion parameters, which describes a specific
damage scenario, and �̄�𝑖𝑗 is the corresponding element of the reduced flexibility matrix provided by
the FEM of the structure. Once the training data are obtained, the coefficients of the RSM of an element
of the reduced flexibility matrix are computed according to Eq. (18).

Different design of experiments are presented in the specialized literature with the aim at
designing experiments (or numerical simulations) to provide meaningful training data for the
synthesis of RSMs and other surrogate models. Among them, the Center Composite Design (CCD) is
the most popular design of experiment used to fit second-order polynomial response surface models
(Myers et al. 2009). However, depending on the number of model parameters (the nodal cohesion
parameters, in the present case), the CCD may require a prohibitively great number of experimental
tests (or numerical simulation runs) in order to provide the desired training data. For instance,
considering a model with 𝑛𝑝 parameters, the number of training data required for a CCD is given
by 2𝑛𝑝 factorial points, added with 2𝑛𝑝 axial points and 𝑛0 central points (Montgomery 2006).

The training data of the RSM are chosen based on the following practical assumptions: 1. The
damage identification approach is capable of identifying structural damages in an early stage; 2. The
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structural damages are localized events, which means that damaged regions occupy relatively small
portions of the structure domain. Therefore, the damage state is supposed to be described by a
relatively very small number of nodal cohesion parameters that will take values different from unity.
Hence, the training data of the RSM may be obtained based on Combinations of a relatively small
number of cohesion parameters (Montgomery & Runger 2014), which will require a considerably lower
number of experimental tests (or numerical simulations) in order to generate the corresponding data,
when compared with the CCD method.

DAMAGE IDENTIFICATION PROBLEM

Formulation of the Bayesian damage identification problem

In the present work, the inverse problem of damage identification is posed as a Bayesian inference
problem. Therefore, the vector of unknown parameters 𝜃, which is composed of the total or a subset
of the nodal cohesion parameters of the structure, is assumed as a random variable and the main
objective is to determine the posterior joint probability density function (PDF) of these unknown
parameters.

According to Bayes theorem, the joint posterior PDF of the unknown parameters is given by

𝑝(𝜃|z𝐸) =
𝑝(z𝐸|𝜃)𝑝(𝜃)

𝑝(z𝐸)
(21)

where z𝐸 is the generalized experimental response vector, whose components are elements of the
experimental flexibility matrix, given by Eq. (12), 𝑝(z𝐸|𝜃) is the likelihood function, 𝑝(𝜃) is the prior
probability density function, which describes the information one has about the parameters before
considering any information about the experimental data, and 𝑝(z𝐸) represents the distribution of the
experimental data,

𝑝(z𝐸) = ∫
Θ
𝑝(z𝐸|𝜃)𝑝(𝜃)𝑑𝜃, (22)

which acts as a normalizing constant in a parameter estimation problem of a given model (Kaipio &
Somersalo 2004).

The observation model is assumed as

z𝐸 = ẑ(𝜃) + 𝜖, (23)

where 𝜖 is a vector accounting for measurement errors. Therefore, according to the adopted
observationmodel, the experimental response z𝐸 is supposed to be explained by themodel prediction
ẑ(𝜃) and the measurement error vector 𝜖.

Assuming that the measurement error 𝜖 is independent of the unknown parameter 𝜃 and that it
is normally distributed, with zero mean and a covariance matrix W, the likelihood function is given
by

𝑝(z𝐸|𝜃) =
1

√(2𝜋)𝑛𝑧 det (W)
exp [−1

2
(z𝐸 − ẑ(𝜃))𝑇 W−1 (z𝐸 − ẑ(𝜃))] , (24)

where 𝑛𝑧 is the number of components in the response vectors z𝐸 and ̂z(𝜃).
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In the present work, a Markov Chain Monte Carlo (MCMC) method was used to infer about the joint
posterior PDF of the unknown parameters 𝑝(𝜃|z𝐸) (Kaipio & Somersalo 2004). Samples of the target
PDF were drawn by the Delayed Rejection Adaptive Metropolis algorithm.

Delayed Rejection Adaptive Metropolis

The Delayed Rejection Adaptive Metropolis (DRAM) algorithm, proposed by Haario et al. (2006),
basically combines two strategies: the Adaptive Metropolis (AM) (Haario et al. 2001) and the Delayed
Rejection (DR) (Mira 2001). The algorithm is briefly described in what follows.

Given a current state 𝜃𝑛 of the Markov Chain, the auxiliary probability density function of the first
stage of the DR algorithm is a multivariate Gaussian, centred at the current state and with covariance
matrix C1

𝑛 given by the AM strategy

C1
𝑛 = {

C0, 𝑛 ≤ 𝑛0
𝑠𝑑Cov(𝜃0, 𝜃1, ..., 𝜃𝑛−1) + 𝑠𝑑𝜆I𝑑, 𝑛 > 𝑛0

(25)

where 𝑛0 is the length of the initial non-adaptation period, C0 is an arbitrary strictly positive
definite matrix, representing the covariance matrix of the auxiliary density during the non-adaptation
period, 𝑠𝑑 is a parameter that depends only on the dimension of the domain of the posterior,
Cov(𝜃0, 𝜃1, ..., 𝜃𝑛−1) is the covariance matrix computed from the previous states of the chain, 𝜆 is an
arbitrarily small positive constant and I𝑑 is the 𝑑−dimensional identity matrix.

Therefore, given a current state 𝜃𝑛 of the Markov Chain, a candidate 𝜃
∗
1 is generated, from an

auxiliary probability density function 𝑞1(𝜃
∗
1|𝜃𝑛), and it is accepted with probability 𝛼1 given as follows

𝛼1(𝜃𝑛, 𝜃
∗
1) = min {1,

𝜋(𝜃∗1|z𝐸) 𝑞1(𝜃𝑛|𝜃
∗
1)

𝜋(𝜃𝑛|z𝐸) 𝑞1(𝜃
∗
1|𝜃𝑛)

} (26)

where 𝜋(𝜃|z𝐸) is the target probability density function.
Upon acceptance, the candidate is the new state of the chain, 𝜃𝑛+1 = 𝜃∗1. Otherwise, upon

rejection of the candidate 𝜃∗1, instead of retaining the current state, as it is done in the standard
Metropolis-Hastings algorithm, a second candidate 𝜃∗2 is proposed from the auxiliary probability
density function 𝑞2(𝜃

∗
2|𝜃𝑛, 𝜃

∗
1). Then, the second candidate is accepted with probability 𝛼2 given as

𝛼2(𝜃𝑛, 𝜃
∗
1, 𝜃

∗
2) = min {1,

𝜋(𝜃∗2|z𝐸) 𝑞1(𝜃
∗
1|𝜃

∗
2) 𝑞2(𝜃𝑛|𝜃

∗
2, 𝜃

∗
1) [1 − 𝛼1(𝜃

∗
2, 𝜃

∗
1)]

𝜋(𝜃𝑛|z𝐸) 𝑞1(𝜃
∗
1|𝜃𝑛) 𝑞2(𝜃

∗
2|𝜃𝑛, 𝜃

∗
1) [1 − 𝛼1(𝜃𝑛, 𝜃

∗
1)]
} (27)

In the DR strategy, within a step of the Markov Chain, the process of generating new candidates
from the current state and previously rejected candidates, may be performed for a fixed or random
number of stages. Therefore, at the 𝑖-th stage of the DR strategy, the candidate 𝜃∗𝑖 is accepted with
probability

𝛼𝑖(𝜃𝑛, 𝜃
∗
1, … , 𝜃

∗
𝑖 ) =

min {1,
𝜋(𝜃∗𝑖 |z𝐸)𝑞1(𝜃

∗
𝑖−1|𝜃

∗
𝑖 ) 𝑞2(𝜃

∗
𝑖−2|𝜃

∗
𝑖 , 𝜃

∗
𝑖−1) … 𝑞𝑖(𝜃𝑛|𝜃

∗
𝑖 , 𝜃

∗
𝑖−1, …)

𝜋(𝜃𝑛|z𝐸)𝑞1(𝜃
∗
1|𝜃𝑛) 𝑞2(𝜃

∗
2|𝜃𝑛, 𝜃

∗
1) … 𝑞𝑖(𝜃

∗
𝑖 |𝜃𝑛, 𝜃

∗
1, …)

[1 − 𝛼1(𝜃
∗
𝑖 , 𝜃

∗
𝑖−1)][1 − 𝛼2(𝜃

∗
𝑖 , 𝜃

∗
𝑖−1, 𝜃

∗
𝑖−2)] … [1 − 𝛼𝑖−1(𝜃

∗
𝑖 , … , 𝜃

∗
1)]

[1 − 𝛼1(𝜃𝑛, 𝜃
∗
1)][1 − 𝛼2(𝜃𝑛, 𝜃

∗
1, 𝜃

∗
2)] … [1 − 𝛼𝑖−1(𝜃𝑛, 𝜃

∗
1, … , 𝜃

∗
𝑖−1)]

}

(28)
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In the higher stages of the DR algorithm, the auxiliary probability density functions are also
multivariate Gaussians centred at the current state of the chain and with covariance matrices given
by scaled versions of the covariance matrix of the fist stage, that is, 𝑞𝑖 ∼ 𝑁(𝜃𝑛, 𝛾𝑖C

1
𝑛) where 𝛾𝑖 is a

shrinkage factor.
The procedure previously describe is repeated until a Markov chain is generated with an arbitrary

number 𝑁𝑠 of states, in the form {𝜃1, 𝜃2, ..., 𝜃𝑁𝑠}. In practice, the initial states of the generated chain,
named burn-in states, are not a representative sample of the target posterior probability density
function and, therefore, are discarded for further analyses. After discarding the 𝑁𝑏 burn-in states,
the resulting chain {𝜃𝑁𝑏+1, 𝜃𝑁𝑏+2, ..., 𝜃𝑁𝑠} is supposed to reach stationarity and, therefore, is used for
inference of the target posterior probability density function.

NUMERICAL RESULTS

This section is concerned with the numerical assessment of the proposed Bayesian damage
identification approach based on a RSM of the reduced flexibility matrix of the structure. Damage
identification problems in a rectangular simply supported steel plate are considered. The nominal
geometric and material properties of the plate are presented in Table I.

Table I. Nominal geometric and
material properties of the plate.

Length 0.6 m

Width 0.6 m

Thickness (ℎ0) 0.002 m

Mass density 7851 kg/m3

Young modulus 210 GPa

Poisson ratio 0.33

The flexibility matrix of the structure was derived considering the Kirchhoff plate theory and a
spatial discretization of the plate into 6 × 6 hermitian rectangular finite elements with four corner
nodes. The displacement and the cohesion fields were approximated by the same finite element mesh
and, therefore, in each node of a finite element, one has three DOF – one translational, one rotational
about 𝑥 and one rotational about 𝑦 – and one nodal cohesion parameter. Hence, the present FEM of
the plate has 𝑛𝑝 = 49 nodal cohesion parameters for the description of its structural integrity.

Without loss of generality and for the sake of simplicity, in the numerical analyses that follow, it
is assumed that structural damages only alter the thickness of the plate. Hence, the Young’s modulus
and the Poisson’s ratio are assumed as known and uniform within the plate, that is 𝐸(𝑥, 𝑦) = 𝐸0 and
𝜈(𝑥, 𝑦) = 𝜈0. Therefore, considering Eqs. (1) to (3), the cohesion filed may be written as a function only
of the relative thickness of the plate, viz.

𝛽(𝑥, 𝑦) = (
ℎ(𝑥, 𝑦)
ℎ0

)
3

. (29)
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Due to the considered bilinear shape functions used to interpolate the cohesion field, a damage
scenario prescribed by only one nodal cohesion parameter different from unity and away from the
boundary of the plate has a pyramid shape, and it encompass four finite elements. On the other hand,
a damage prescribed by only one nodal cohesion parameter different from unity at the boundary of
the plate encompass only two finite elements and has, therefore, a half pyramid shape.

Due to the simply supported boundary condition, the responses of the plate present very low
sensitivities with respect to the nodal cohesion parameters at its edges. Therefore, these parameters
were not estimated in the damage identification problems that follow, yielding a vector of uncertain
parameters 𝜃 with 25 nodal parameters.

A RSM of the reduced flexibility matrix, built on the second order polynomial in Eq. (19), was
used in the Bayesian inverse problems of damage identification present in what follows. The nodal
cohesion parameters and the corresponding coded parameters, according to Eq. (15), used to generate
the training data of the RSM are presented in Table II. In order to give some insight about the damage
severities, the corresponding relative thicknesses of the plate, where the damages aremore severe, are
also presented. For the synthesis of the RSM it was assumed that the damage identification approach
is capable of identifying structural damages in an early stage and that the structural damages are
localized events. Based on these assumptions, in the present work, it was considered that the damage
state of the structure may be described by up to three nodal cohesion parameters different from unity.
Hence, considering the values presented in Table II, the training data of the RSM were obtained by
combinations of 25 nodal cohesion parameters taken up to three at a time (𝐶251 +𝐶252 +𝐶253 ) added with
2𝑛𝑝 axial points, one point corresponding to the undamaged state (all cohesion parameters equal to
the unity) and one central point (all cohesion parameters equal to 0.756). In the combination 𝐶25𝑟 , 𝑟
nodal cohesion parameters were set at the value 0.512 and the others were set at 1. A total of 2677
training data were used to train the RSM of the reduced flexibility matrix. It is worth emphasizing that
a Centre Composite Design would require a total of 33554483 training data.

Table II. Nodal cohesion parameters and coded parameters
adopted in the synthesis of the RSM.

Cohesion Parameter Relative Thickness Coded Parameter

(𝛽𝑑) (ℎ𝑑/ℎ0) (𝑥)

0.189 0.57 −2.325

0.512 0.80 −1

0.756 0.91 0

1.000 1.00 +1

1.323 1.10 +2.325

The damage scenarios considered in the numerical simulations that follow are presented in
Table III. The damage position means the location of the vertex of the pyramid shape notch and
𝛽𝑑 and ℎ𝑑/ℎ0 are, respectively, the nodal cohesion parameter and the relative thickness of the plate
at this position.
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Table III. Damage scenarios.

Scenario Damage Position (𝑥𝑑, 𝑦𝑑) (m) 𝛽𝑑 ℎ𝑑/ℎ0
A (0.3, 0.3) 0.512 0.8

B (0.3, 0.2);(0.2, 0.5) 0.512; 0.729 0.8; 0.9

C (0.2, 0.1);(0.4, 0.5) 0.729; 0.729 0.9; 0.9

The adopted finite elementmesh, themeasured transversal DOF used in the damage identification
process, and the considered damage scenarios are illustrated in Fig. 1.

Figure 1. Finite element mesh, damaged scenarios and sensor placement.

For the computation of the synthetic experimental flexibility matrix, it was considered that only
the first six modes of vibration were measured and that the mode shapes are composed of the vertical
displacements at the measurement points pinpointed in Fig. 1. Besides, with the aim at simulating
both the corrupting effects of noise in the measured data and the errors associated with the modal
extraction methods, the reduced flexibility matrix of the supposed damaged structure is computed
considering the following synthetic experimental mode shapes.

𝜙𝑖𝐸 = 𝜙
0
𝑖𝐸 + r, 𝑖 = 1, 2, …𝑛𝐸, (30)

where 𝜙0𝑖𝐸 is the i-th synthetic experimental mode shape without noise, r is a vector whose components
are independent and normally distributed random numbers, with zero mean and variance 𝜎2𝑟 , and 𝑛𝐸
is the number of mode shapes retained in the synthetic modal test (Ramos et al. 2010, Jaishi & Ren
2006, Tomaszewska 2010). In the present work, one has 𝑛𝐸 = 10 and three different noise levels,
corresponding to 𝜎𝑟 = 0.005, 0.01 and 0.015. Four damage identification cases were considered, as
presented in Table IV.

Since the damage identification problem was formulated based on the generalized response
vector ẑ, which is composed of elements of the reduced flexibility matrix provided by the RSM,
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Table IV. Damage identification cases:
Damage scenarios and noise levels.

Case Damage Scenario 𝜎𝑟
A1 A 0.005

A2 A 0.015

B1 B 0.010

C1 C 0.005

the measurement error vector 𝜖, in Eq. (23), has correlated components. Hence, an estimate of its
covariance matrix V, used in the likelihood function defined in Eq. (24), was computed considering
1000 realizations of the synthetic experimental response z𝐸.

As prior information, it was assumed that structural damages are localized events, which means
that damaged regions occupy relatively small portions of the structure domain. Hence, most of the
uncertain parameters are within undamaged regions, where the cohesion field has a unit value.
Besides, it was also considered that structural damages can be identified in early stages. This
information was translated in the marginal prior probability density function given by

𝑝(𝜃𝑖) = {
0, if 𝜃𝑖 < 0.4

𝑐𝑁 (1, 0.052) , if 0.4 ≤ 𝜃𝑖 ≤ 1.04
0, if 𝜃𝑖 > 1.04

(31)

where 𝑁 (1, 0.052) is a Gaussian distribution with unity mean and standard deviation of 0.05, and 𝑐 is
the normalizing constant that ensures that themarginal prior probability density function integrates to
1. According to Eq. (31), the most probable value of a uncertain parameter (a nodal cohesion parameter,
in the present case) is one.

In the following numerical results, the DRAM algorithm was used draw samples from the posterior
probability density function of the uncertain parameters. In each damage identification case, Markov
chains with 50,000 states were generated, where the first 30,000 were considered burn-in states. The
initial value of the uncertain parameters was adopted as one, which means that a undamaged plate
was considered at the beginning of the Bayesian damage identification process.

A DRAM algorithm with three stages and a multivariate Gaussian auxiliary probability density
function was considered. According to Eq. (25), during the non-adaptation period of the algorithm,
𝑛 ≤ 5000, the covariance matrix of the auxiliary probability density function, in the first stage, was
adopted as C0 = diag(𝜎

2
1 , … , 𝜎

2
25), with 𝜎𝑖 = 0.005 for 𝑖 = 1, … , 25. After this period, the covariance

matrix of the auxiliary density function of the first stage was adapted in each iteration of the algorithm
considering previous states of the chain. However, for the adaptation of the covariance matrix the
first 500 states of the chain were not taken into account. At the second and third stages of the DRAM
algorithm, which represent delayed rejection steps, the covariance matrix of the auxiliary density
functions was obtained by scaling the covariancematrix in the first stage by a shrinkage factor 𝛾𝑖 = 0.01
for 𝑖 = 2, 3.
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Figures 2 and 3 present the damage identification results for Case A1. The estimated cohesion field
presented in Fig. 2a shows that the damage position in the present case was accurately identified.
Figure 2b presents the relative frequency errors obtained for the initial model, which considers an
undamaged structure, and for the updated model, corresponding to the estimated cohesion field. The
relative frequency errors were computed as

𝜔error =
|𝜔𝑖𝐸 − 𝜔𝑖|

𝜔𝑖𝐸
, (32)

where 𝜔𝑖𝐸 is the i-th experimental undamped natural frequency and 𝜔𝑖 is the corresponding one
predicted by the model.

As can be clearly observed in Fig. 2b, the relative frequency errors provided by the updated
model are considerably lower, demonstrating a good adherence of the predicted responses to the
experimental data.

Figure 3a presents the Markov Chains of all 25 unknown parameters, which visually converged
to their equilibrium after approximately 10,000 states, as pinpointed in the autocorrelation function
(ACF) presented in Fig. 3b for the nodal cohesion parameter associated to the damage position. This
same parameter clearly converged to the neighborhood of the exact value 𝛽𝑑, which was used in
the simulation of the experimental data. This result demonstrate that the damage intensity was
also accurately estimated. The histogram of the nodal cohesion parameter associated to the damage
position is depicted in Fig. 3c, showing that a relatively small dispersion was achieved, encompassing
the exact value.

The estimated cohesion field and the corresponding relative frequency errors for the damage
identification problem of Case A2 are presented in Figs. 4a and 4b, respectively. It must be highlighted
that Cases A1 and A2 differ from each other just in the level of noise in the synthetic experimental data
(see Table IV). From Fig. 4a, one may observe that the actual damage position was again accurately
pinpointed, despite the presence of a higher level of noise in the synthetic experimental data. The
higher level of noise in this case also yield the identification of a false damaged region, with a relatively
low intensity, as can be observed in Fig. 4a. The relative frequency errors depicted in Fig. 4b show that
the natural frequencies predicted by the updated model are closer to the corresponding experimental
ones than those predicted by the initial model.

The Markov Chains of all uncertain parameters are depicted in Fig. 5a for Case A2. As can be clearly
seen in Fig. 5a, once again the states of just one uncertain parameter converged to the neighborhood
of the exact value 𝛽𝑑. Besides, as expected, due to the higher level of noise in the experimental
data, greater dispersions are observed in the states of the chains. The ACF and the histogram of
the nodal cohesion parameter associated to the damage position are depicted in Figs. 5b and 5c,
respectively. Figure 5b shows that theMarkov Chain of this parameter converged to its equilibrium after
approximately 10,000 states. Comparing Figs. 3c and 5c, one may clearly note the greater dispersion
of the states in the damage identification of Case A2 due to the higher level of noise.

Figures 6 and 7 present the damage identification results for Case B1, which considers two
damaged regions, with different damage intensities and apart from each other, and a moderate
level of noise in the synthetic experimental data. The estimated cohesion field is presented in
Fig. 6a, which shows that the location of the two actual damaged regions were accurately pinpointed
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(a) (b)

Figure 2. (a) Estimated cohesion field and (b) Frequency relative errors for Case A1.

(a) (b)

(c)

Figure 3. (a) Markov chains of the uncertain parameters, (b) ACF of the nodal cohesion parameter associated with
the damage and (c) its histogram for Case A1.
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(a) (b)

Figure 4. (a) Estimated cohesion field and (b) Frequency relative errors for Case A2.

(a) (b)

(c)

Figure 5. (a) Markov chains of the uncertain parameters, (b) ACF of the nodal cohesion parameter associated with
the damage position and (c) its histogram for Case A2.
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(a) (b)

Figure 6. (a) Estimated cohesion field and (b) Frequency relative errors for Case B1.

by the proposed approach. Although a false damaged region was also pinpointed in this case,
the corresponding damage intensity is relatively slow. Figure 6b shows that the updated model
can accurately predict the natural frequencies of the damaged structure, which indicates that the
estimated damage profile, depicted in Fig. 6a, can be considered satisfactory.

The ACFs and the histograms of the nodal cohesion parameters associated with the two damage
positions are depicted in Fig. 7. The ACFs depicted in Figs. 7b and 7c indicate that the Markov Chain of
one uncertain parameter (the nodal cohesion parameter associated with the damage position 𝑥𝑑 = 0.3
m and 𝑦𝑑 = 0.2 m) converged to its equilibrium more quickly than the other. This can be explained by
the fact that the damage located near the edge of the plate, in addition to having a lower intensity, is
within a region where the structural response presents a lower sensitivity to the presence of damages,
in the case of a simply supported plate. The dispersion of the uncertain parameters, associated with
the damage positions, about their exact values (𝛽𝑑) can be observed from the histograms in Figs. 7d
and 7e.

Finally, the damage identification results for Case C1 are presented in Figs. 8 and 9. In this case,
one has two damaged regions with low intensities and apart from each other. Besides, a low level of
noise (𝜎𝑟 = 0.005) was considered in the synthetic experimental data. Figure 8 shows that the damage
locations were accurately identified and that the natural frequencies predicted by the updated model
are closer to the corresponding experimental ones than those predicted by the initial model.

Comparing the ACFs presented in Figs. 9b and 9c, it can be observed that the Markov Chain of the
uncertain parameter associated with the the first damage position (𝑥𝑑 = 0.2m, 𝑦𝑑 = 0.1m) converged
faster than the chain of the associated parameter of the second damage position (𝑥𝑑 = 0.4m, 𝑦𝑑 =
0.5m). Furthermore, from Figs. 9d and 9e, it can be seen that the histogram of the uncertain parameter
associated with the first damage presents a sample mean closer to the exact value 𝛽𝑑 and with a
smaller dispersion around it.
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(a) (b)

(c) (d)

(e)

Figure 7. (a) Markov chains of the uncertain parameters, (b)-(c) ACFs of the nodal cohesion parameters associated
with the damage positions and (d)-(e) their histograms for Case B1.
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(a) (b)

Figure 8. (a) Estimated cohesion field and (b) Frequency relative errors for Case C1.

Table V presents the computational costs of the proposed damage identification method in
solving the inverse problems presented above. For comparison purposes, the computational costs
obtained when the reduced flexibility matrix directly obtained from the FEM of the structure is used
in the inverse problems are also presented. The computational costs were obtained in a computer
with a 2.1 Ghz Intelr CoreTM i7 processor with 6 GB of RAM.

Table V. Execution time (min).

Approach
Case

A1 A2 B1 C1

RSM 10.66 11.30 10.24 11.81

FEM 44.51 43.49 45.87 45.03

CONCLUSIONS

The present work presented a Bayesian damage identification approach built on a RSM of the reduced
flexibility matrix of the structure. The RSM was fitted using training data obtained by combinations of
a relatively small number of nodal cohesion parameters, which required a considerably lower number
of numerical simulations than would be used by the classical CCD method. The inverse damage
identification problemwas formulated within the Bayesian framework and the DRAMmethod was used
to sample the joint posterior probability density function of the uncertain parameters used to describe
the damage state of the structure. Numerical results showed that the proposed damage identification
approach succeeded in the identification of different damage profiles in a simply supported plate.
The results also showed that the proposed approach yielded a reduction of up to almost 78% in the
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(a) (b)

(c) (d)

(e)

Figure 9. (a) Markov chains of the uncertain parameters, (b)-(c) ACFs of the nodal cohesion parameters associated
with the damage positions and (d)-(e) their histograms for Case C1.
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computation cost that would be required if the flexibility matrix directly obtained from a FEM of the
structure had been used in the inverse process.
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