
An Acad Bras Cienc (2023) 95(Suppl. 1): e20220862 DOI 10.1590/0001-3765202320220862
Anais da Academia Brasileira de Ciências  |  Annals of the Brazilian Academy of Sciences
Printed ISSN 0001-3765 I Online ISSN 1678-2690
www.scielo.br/aabc  |  www.fb.com/aabcjournal

An Acad Bras Cienc (2023) 95(Suppl. 1)

Running title: 
CRYPTOCOCCOSIS: REVIEW 
ON ANTIFUNGAL RESISTANCE

Academy Section: 

MICROBIOLOGY

e20220862

95 
(Suppl. 1)
95(Suppl. 1)

DOI
10.1590/0001-3765202320220862

MICROBIOLOGY

CRYPTOCOCCOSIS: A bibliographic narrative 
review on antifungal resistance

MARIA ISMÊNIA T. KAKIZAKI& MARCIA DE S.C. MELHEM

Abstract: Cryptococcosis is an infectious fungal disease widely studied for its 
epidemiological importance in the context of public health, given the high morbidity 
and mortality associated with this invasive fungal infection. Many cases of the disease 
present clinical resistance and progress to death, even in the presence of antifungal 
therapy. The prolonged use of triazole drugs to maintain the treatment of cryptococcosis 
in AIDS patients, can lead to selective pressure from mutant strains, among other 
resistance mechanisms, justifying the poor clinical evolution of some cases. In this 
study, a narrative review of the literature on the occurrence of antifungal resistance in 
cryptococcosis agents was performed. Publications from 2010 to 2022 that address this 
topic were selected using Google Scholars and Scopus website. Data from the studies 
were analyzed for the values of minimum inhibitory concentration (MIC) of drugs used 
in the management of cryptococcosis. The review showed that the highest MIC values 
occurred for voriconazole, especially against C. neoformans. It is concluded that there 
is a lack of studies with statistical analysis of the data obtained, in order to provide 
a better dimensioning of the resistance rates of cryptococcosis agents to different 
antifungal agents, both in geographical and temporal context.

Key words: Azole, Cryptococcus, resistance, susceptibility.

INTRODUCTION
Cryptococcosis is a systemic fungal infectious 
disease - subacute to chronic - that can affect 
humans and other wild and companion animals, 
such as dogs, cats, horses, cows, sheep, goats, 
ferrets, llamas, koalas, penguins, seals and 
dolphins (Santos 2018, Headley et al. 2015, 
França 2015, Santana 2016, Schmertmann et al. 
2019, Danesi et al. 2021, Devoto et al. 2022).

The causative agent is an encapsulated 
and cosmopolitan yeast, found in several 
environmental sources, belonging to the genus 
Cryptococcus (Rêgo et al. 2019, Santana 2016).

Cryptococcus was first isolated from peach 
juice, in 1894, by the scientist Francesco Sanfelice 
from the Hygiene Institute of University of 

Cagliari in Italy, which demonstrated the agent’s 
ability to produce lesions when inoculated 
into laboratory animals. In the same year, Otto 
Busse and Abraham Buschke isolated the agent 
from a tibial lesion in a female patient, which 
was the first description of the disease. Until 
the 1950s, many nomenclatures were used 
for the genus when Cryptococcus was defined 
and classified in the phylum Basidiomycota, 
class Tremellomycetes and order Tremellales 
(Rodrigues et al. 2018, Santos 2018, Pizani & 
Santos 2017, Vieira Júnior 2015, Bastos 2017).

The etiological agents of cryptococcosis 
belong to two complexes: Cryptococcus 
neoformans and C. gattii, which present a great 
genetic variability. For this reason and based 
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on molecular studies, there is a proposal of 
its division into 7 species: C. neoformans (C. 
neoformans variety grubii encompassing 3 
molecular types VNI, VNII, VNB and strains of 
serotype A), C. deneoformans (C. neoformans 
variety  neoformans, VNIV, serotype D), C. gattii 
(VGI), C. deuterogattii (VGII), C. bacillisporus 
(VGIII), C. tetragattii (VGIV) and C. decagattii (VGIV/
VGIIIc) encompassing serotypes B and C. There 
are isolates that represent 4 interspecies hybrid 
forms, such as C. neoformans × C. deneoformans 
(VNIII), C. deneoformans × C. gattii (hybrid VGI), 
C. neoformans x C. gattii (hybrid VGI) and C. 
neoformans x C. deuterorogattii (hybrid VGII) 
(Cuomo et al. 2018, Maziarz & Perfect 2016, Hagen 
et al. 2015, Kwon-Chung et al. 2017). A recent 
work in Zambia, Africa, led to the discovery of 
a new lineage of C. gatti (VGV) comprises two 
subclades (A and B) (Farrer et al. 2019).

The complex with the highest clinical 
occurrence and worldwide distribution 
is C. neoformans , which mainly affects 
immunosuppressed patients. This agent can be 
found in several environmental sources, it is often 
associated with excreta of domestic pigeons 
(Columba livia) although they have already been 
found in samples of excreta from other birds 
and bats, and the fungus uses this substrate 
as a source of nitrogen for their survival and 
reproduction (Lima et al. 2015, Araújo Júnior et 
al. 2015, Firacative et al. 2018, Ashton et al. 2019, 
Andrade-Silva et al. 2018). Pigeons, being easily 
found in urban centers, have been considered a 
public health problem because they are vectors 
of cryptococcosis agents, since they are very 
resistant to desiccation and can remain viable 
for up to two years in excreta not directly exposed 
to sunlight and high temperatures (Ribeiro et al. 
2019, 2017, Rosa et al. 2016, Colombo et al. 2015). 
Avian cryptococcosis is not common and human 
cryptococcosis is not considered a classic 
anthropozoonosis and therefore contact with 

sick animals is not sufficient to transmit the 
disease to humans (Canavari et al. 2017, Santana 
2016).

Cryptococcus gattii is rarely found in bird 
droppings and studies suggest that its primary 
natural habitat is decaying wood, hollow 
trees of several species such as Eucalyptus 
camaldulensis, which represents a niche not 
only for C. gattii but also for C. neoformans 
(Santos 2018, Alves et al. 2015, Araújo Júnior et 
al. 2015, Rocha 2017). C. gattii can cause primary 
infection in immunocompetent hosts or in 
immunocompromised hosts, being endemic 
in tropical and subtropical areas. However, 
reservoirs - abiotics and animals - and cases 
of infection have been described in temperate 
areas, such as the Northwest USA, Western 
Canada and Northern Europe, demonstrating 
the great capacity for dispersal and adaptation 
of this species complex, hypotheses suggest 
anthropogenic mechanisms (travel, animal 
trade, contaminated materials) and natural ones 
(tsunamis, earthquakes, erosion) (Canavari et 
al. 2017, May et al. 2016, Vieira Júnior 2015, Melo 
2015, Engelthaler & Casadevall 2019).

Participate in the definition of the 
infectious process: the virulence of the infecting 
strain, the immunological status of the host 
and the acquired fungal load. Cryptococcosis 
is acquired by inhaling fungal propagules, 
contained in bioaerosols that are suspended in 
atmospheric air and deposited in lung tissue. 
In the lungs, colonization may occur, leading to 
the occurrence of asymptomatic cases or the 
development of infection with acute or chronic 
respiratory distress syndrome (Ribeiro et al. 2017, 
Araújo Júnior et al. 2015, Silva et al. 2020, Vieira 
Júnior 2015, Bastos 2017). The etiologic agent can 
then spread through the hematogenous route, 
reaching other organs such as the skin, bones 
and joints, eyes, genitourinary tract and lymph 
nodes, having a strong tropism for the central 
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nervous system (CNS). The neurological clinical 
forms are meningoencephalitis, meningitis or 
cryptococcomas (fungal masses), which can 
generate neurological sequelae or cause death 
(Silva 2018, Pinheiro 2019, Amburgy et al. 2016, 
Moreira et al. 2017, Bauer et al. 2018, Williamson 
et al. 2017, Miyazato 2016).

The relationship of Cryptococcus with the 
host is important, since immunocompromised 
patients such as: organ transplant patients, 
with hematological diseases and undergoing 
chemotherapy,  under  prolonged use 
of corticosteroids, those with acquired 
immunodeficiency syndrome (AIDS) and with a 
CD4 counting below 100 cells/mm³ are prone to 
the development of the disease, being considered 
as the greatest risk group today (Quintero et al. 
2019, Wong et al. 2017, Lima et al. 2015, Costa et al. 
2019, Cicora et al. 2015, Rajasingham et al. 2017, 
Fang et al. 2020, Nunes et al. 2018, Quaresma et 
al. 2019, Zeng et al. 2021). HIV infection produces 
a significant drop in the number of T CD4 
lymphocytes, also compromising the function 
of infected macrophages causing interference 
in the human body’s defense mechanism 
against infections, allowing several opportunists 
infections including cryptococcosis. This 
invasive mycosis was considered a rare disease 
worldwide until the 1980s, when the HIV epidemic 
spread becoming an important opportunistic 
infection in this population of patients, with 
neurocryptococcosis having high fatality rates. 
Several studies emphasize the urgent need for 
better health structures and antifungal drugs, 
especially in Africa where many patients  die each 
year due to cryptococcal disease associated with 
HIV (Castro 2018, Ferreira-Paim et al. 2017, Torres 
et al. 2016, Chen et al. 2019, Azambuja et al. 2018, 
Vieira Júnior 2015, Rodrigues 2016, Amburgy et al. 
2016, Gouvea et al. 2018, Driemeyer et al. 2022, 
Rajasingham et al. 2022).

Recently the World Health Organization 
(WHO) published the list of fungal priority 
pathogens to guide researches and development 
of public health actions, contributing to the 
mycology area (WHO 2022).   

Cryptococcosis is treated with antifungal 
drugs either orally or intravenously. The 
treatment of cryptococcal meningitis in AIDS 
patients is instituted in 3 phases. In the 1st 
phase, or induction, a potent and fungicidal 
drug, amphotericin B, is used, preferably in 
combination with 5-flucytosine (5FC), although 
this is not available in several countries. In low- 
and middle-income countries, fluconazole is used 
in the induction phase, either as monotherapy 
or in association with amphotericin B. Given the 
high toxicity of amphotericin B in the form of 
deoxycholate, especially for the renal system, 
other alternatives are: liposomal and lipid 
complex. The 2nd phase of treatment, called 
consolidation, anticipates the 3rd phase of 
maintenance, in which drugs are administered in 
decreasing doses over time, such as fluconazole 
or itraconazole, as the second-choice drug due 
to lower efficiency (França  2015, Bongomin et al. 
2018, Molloy et al. 2018, Schiave et al. 2018, WHO 
2018). 

Fluconazole,  l ike itraconazole and 
voriconazole, belongs to the class of azoles 
that have lower toxicity, compared to lipid 
or liposomal amphotericin B, and lower 
treatment costs. Azoles are time-dependent 
drugs, being fungistatic at the beginning of 
treatment and becoming fungicidal, through 
the inhibition of an enzyme, lanosterol 14 
α – demethylase encoded by the erg11 gene, 
of the large cytochrome p450 family. This 
enzyme participates in the demethylation of 
lanosterol in the biosynthesis of ergosterol, a 
vital component of the fungal cell membrane. 
Amphotericin B, in turn, is a polyene that binds 
to ergosterol and induces the formation of 
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channels that compromise membrane integrity 
and increase its permeabilization, leading to ion 
leakage followed by fungal cell death. 5FC is a 
fluoropyrimidine that itself has no antifungal 
toxicity but produces toxic metabolites that 
inhibit fungal DNA and RNA synthesis (Altamirano 
et al. 2017, Truong 2019).

Other drug classes can be used synergistically 
with antifungals in cryptococcosis therapy, such 
as sertraline, nifedipine, nisoldipine, felodipine, 
flubendazole, minocycline, ursolic acid, betulinic 
acid, biphosphonates and essential oils. (Gullo 
et al. 2013, Tullio et al. 2017, Truong 2019, Pinheiro 
et al. 2019, Kong et al. 2020, Krummenauer et 
al. 2019, Kane et al. 2021, Scalas et al. 2018). 
Additional studies on repositioning of drugs with 
fungistatic or fungicidal action in the search for 
new agents for cryptococcosis´s treatment are 
important and necessary, given the therapeutic 
failures with traditional medicines (Truong 2019, 
Smith et al. 2015).

The determination of antifungal action can 
be performed in vitro, with reference methods 
that are based on broth microdilution, according 
to procedures described in documents (M27 
series) published by the North American Institute 
CLSI or by the E.Def 7 series by the European 
Committee EUCAST-AFST (CLSI 2017, Arendrup et 
al. 2012).The minimum inhibitory concentration 
(MIC) can classify the isolate’s high or low 
susceptibility to antifungal, according to the 
interpretive cutoff points available in the CLSI 
and EUCAST documents. 

This work aims to prepare a narrative 
literature review on antifungal resistance in 
cryptococcosis agents, due to the importance in 
clinical medicine and the social and economic 
impact caused in public health.

MATERIALS AND METHODS
The search for works was carried out from 
January 2010 to December 2022, through the 
Google Scholars and Scopus website for access 
to scientific journals containing articles, in 
addition to master’s dissertations and doctoral 
theses on the topics.

The works chosen for results and discussion 
were those in which molecular analyzes allowed 
the identification of the species complex and/
or molecular type of Cryptococcus and also, 
those that contemplated the determination of 
the MIC of drugs, to assess the susceptibility 
of cryptococcosis agents to antifungal agents. 
Among the latter, only studies were selected 
that used reference methods to determine MIC, 
recommended by the Clinical and Laboratory 
Standards Institute (CLSI) from USA or by 
the European Committee On Antimicrobial 
Susceptibility Testing- Antifungal Susceptibility 
Testing (EUCAST-AFST), or even those that used 
the commercial method by gradient diffusion 
E-test® (BioMerieux, Marcy l’Etoile, France). 

Twenty-two studies were selected for the 
narrative review. Although the selected studies 
presented MIC results of drugs used to treat 
cryptococcosis, not all of them interpreted the 
data according to parameters that allowed 
comparison between the studies. The following 
parameters were the most commonly adopted 
in the studies: MIC value necessary to inhibit 
50% (MIC50) and/or 90% (MIC90) of the set of 
isolates, minimum and maximum values of MIC 
(range). Such parameters allowed verifying the 
occurrence of resistance in C. neoformans and C. 
gattii , according to geographic region (Table I).
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Table I. Summary of 22 studies on antifungal resistance in cryptococcosis agents (2010-2022).

Author 

and year
Country

Types of 
study

Agent

Etiological

(number of 
isolates)

Minimum Inhibitory Concentration (MIC; mg/L)
Method used 

for

MIC test
Conclusionsfluconazole

amphotericin 
B

Itraconazole Voriconazole

MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90

Govender 
et al.

2011

South 
Africa  

Prospective

(clinical)

C. neoformans

(237)

 MIC range 
(mg/mL)

0,25-16

 MIC range 
(mg/mL)

0,008-0,94

 MIC range 
(mg/mL)

0,015-1

 MIC range  
(mg/mL)

0,008-0,25

CLSI

M27-A3

Fluconazole resistance 
not shown in isolates 

from South Africa.

Pfaller 
et al.

2011
USA

Retrospective

and 
Prospective  

(clinical)

C. neoformans 
(285)

MIC range (mg/
mL)           0,25-

32
------------ ----------------

 MIC range  
(mg/mL)

0,008-0,5

CLSI

M27-A3

Almost all the isolates 
were classified as wild 
and without resistance 

mechanisms to 
fluconazole (96.9%) and 

voriconazole (95.1%).

Espinel-
Ingroff 
et al. 

2012a

Global
Prospective  

(clinical)

C. neoformans  
(3.590)  

C. Gatti     (985)
--------------

MIC range 
(mg/mL)

≤0,03-4

≤0,03-2

----------
----

----------
----

CLSI

M27-A3

The epidemiological cut-off point 
for amphotericin B was proposed 

at MIC ≥ 2ug/ml.

Pan et al.

2012

China, 
Japan, 
India, 

Indonesia, 
Thailand, 

Kuwait and 
Qatar

Retrospective 
and

Prospective

(clinical and 
environmental)

C. neoformans

(493)

 MIC range 
(mg/mL)

0,125-32

   MIC range 
(mg/mL)

0,063-1

 MIC 
range 

(mg/mL)

<0,016-0,5

 MIC range      
(mg/mL)

<0,016-0,5

CLSI

M27-A3

High sensitivity of the isolates  for 
several antifungals, both clinical 

and environmental, but resistance 
was found to flucytosine (<0.063- 
>64 ug/mL) and to fluconazole 

(0.125-32 ug/mL).

Trpkovic 
et al.

2012
Serbia

Prospective

(clinical)

C. neoformans

(31)
16         64 0,125     0,25

0,25      
0,38

---------
----

E-test®

The isolates were highly sensitive 
to amphotericin B (100%) and 
flucytosine (87.1%) but little 

sensitive to fluconazole (48.4%).

Espinel-
Ingroff 
et al.

2012b

Global
Prospective

(clinical)

C. neoformans

(5733)

C. gattii

(975)

MIC range 
(mg/mL)

<0,12-  ≥64

0,25- ≥64

------------

MIC range 
(mg/mL)

≤0,008-  
≥4

≤0,008-2

MIC range      
(mg/mL)

≤0,008-  
≥4

≤0,008-1

CLSI

M27-A3

ECVs have been proposed 
for fluconazole (8-32 ug/ml), 
itraconazole (0.25-1 ug/ml), 

posaconazole (0.25-0.5 ug/ml) and 
voriconazole 

(0.12-0.25 ug/ml). 

Lee et al.

2012

Taiwan
Retrospective

(clinical)

C. neoformans

(46)

MIC range 
(mg/mL)

2-32

MIC range 
(mg/mL)

0,25-2

----------
----

MIC range      
(mg/mL)

0,06-0,5

CLSI

M27-A3

Isolates with primary resistance 
to amphotericin B (MIC >1 ug/mL) 
(17.4%) or to fluconazole (>8 ug/

mL) (26.1%), with recommendation 
of additional and larger studies to 

confirm the data.

Gast et al.

2013
USA

Retrospective

e

Prospective

(clinical)

C. gattii (25)

(Pacific 
Northwest)

C. gattii (34)

C. neoformans 
(20)

16      64

8        32

8        32

0,5        1

0,5        1

0,5        1

1          1

0,5           
1

0,5          2

0,5        1

0,25         1

0,25        
0,5

CLSI

M27-A3

The MIC values of azoles against 25 
isolates of C. gattii from the Pacific 

Northwest (western Canada and 
Northwestern United States) were 

higher than those obtained from 34 
from other regions and from 20 of 

C. neoformans.
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Ferreira 
et al.

2015
Brazil

Prospective

(clinical)
C. gattii (11) ------------- --------------

MIC range

0,06-0,25 
mg/L

--------------
CLSI

M27-A3

Heteroresistance to itraconazole was 
observed, as an adaptive phenomenon 

and intrinsic to C. gattii strains.

Smith 
et al.

2015
Uganda

Prospective  
(clinical)

C. 
neoformans

(198)

MIC range 
(mg/L)

0,125-64

MIC range 
(mg/mL)

0,125-2

-----------
-----

------------
CLSI

M27-A3

Fluconazole MIC values tended to 
increase over the course of drug 

treatment, but a correlation with clinical 
failure has not been established.

Yang et al.

2015
USA

Prospective

(clinical)

C. gattii

VGII (1)

MIC

(mg/L)

32 ( 
>128 )

MIC

(mg/L)

0,125

MIC

(mg/L)

2

MIC

(mg/L)

1

CLSI

M27-A3

and

E- test®

Increased production of PDR11 efflux 
pumps was responsible for fluconazole 

resistance in the studied strain.

Córdoba 
et al.

2016
Argentina

Retrospective

(clinical)

C. 
neoformans

(707)

8              
16

0,25         
0,5

0,03         
0,25

0,13          
0,25

EUCAST

E.Def7.2

New ECV values were proposed for azoles 
and amphotericin B and for isolates from 

Argentina.

Rossi et al.

2016
Brazil

Prospective

(clinical and 
environmental)

C. neoformans 
(3)

C. gattii (2)

MIC range (mg/L)

2-64

4-64

MIC range 
(mg/L)

0,125-0,0625

0,125-0,0625

----------- -----------
CLSI

M27-A3

The adaptation of strains to the 
stress produced by exposure to

drugs led to loss of virulence, 
and morphological changes.

Lomes 
et al.

2016
Brazil

Retrospective

(clinical)

C. neoformans 
(2)

C. gattii (7)

 MIC range (mg/L) 

1 – 4 (50%)

32 (28,5%)

64 (14,3%)

-------------- ----------- ----------
CLSI

M27-A3

Lower sensitivity to fluconazole 
was observed among C. gatti 
isolates when compared to C. 

neoformans.

Alves

2016
Brazil

Prospective

(environmental)

C. neoformans 
(10)

C. gattii (4)

------          24

------         256

------      0,25

------      0,38

------- 
0,38

------- 3
----------- E-test®

Most isolates were sensitive to 
amphotericin B, itraconazole, 

ketoconazole, and posaconazole. 
Half of the C. gattii isolates were 

resistant to fluconazole.

Figueiredo  
et al.

2016
Brazil

Prospective

(clinical)

C. neoformans 
(39 )

C. gattii (11)

-------            2

--------            4

------         0,5

------         0,5

------ 0,5

------ 1,0
-----------

CLSI

M27-A2

No increase in fluconazole 
resistance was observed over 

the years.

Worasilchai 
et al.

2017
Thailand

Prospective

(clinical and 
environmental)

C. neoformans

(73 clinical)

C. deuterogattii  VGII (1)

C. neoformans

(52 environmental)

 MIC range 
(mg/L)

0,5-4

2

0,25-2

 MIC range 
(mg/L)

0,125-1

0,5

0,125-0,5

----------
----

----------
---------

EUCASTE. 
Def 7.1

and CLSI

M27-A3

No strains resistant to the 
evaluated antifungals were 
found, similarly to eastern 
Thailand and other non-

Asian countries.

Nascimento  
et al. 

2017
Brazil

Prospective

(clinical)

C. neoformans variety 
grubbii   (80)

C. gattii (7)

4,0        8,0

8,0       8,0

0,25    0,50

0,06    0,13

0,06      
0,25

0,13     0,25

0,25      
0,50

0,50      
0,50

CLSI

M27-A2

and

E-test ®

High sensitivity of isolates 
from both species 

complexes.

Chang et al.

2018
USA

Prospective

(clinical)

C. neoformans (1)

C.gattii (1)

 MIC range 
(mg/L)

2

4

 MIC range 
(mg/L)

0,125

0,5

 MIC range 
(mg/L)

0,031-0,063

0,063-0,125

 MIC 
range      
(mg/L)

0,031

0,063-
0,125

CLSI

M27-A3

The AFR1 efflux pump is 
responsible for intracellular 
expulsion of azole drugs as 

a resistance

mechanism.

Table I. Continuation.
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RESULTS
Resistance to antifungal agents, determined 
in vitro by reliable reference or commercial 
methods, such as diffusion gradient impregnated 
tapes, may arise during the use of some 
medications, such as fluconazole, which allows 
selection of strains with genetic alterations 
related to mutations that promote antifungal 
resistance (Zhou & Ballou 2018, Muñoz et al. 
2018, Desjardins et al. 2017, Gerstein et al. 2019). 
Other mechanisms by which the fungus can 
acquire resistance to azole antifungals are the 
overexpression of the erg11 gene, increased 
production of drug efflux proteins, located 
in the fungal membrane (Afr1, Afr2 and Mdr1) 
(Basso Junior et al. 2015). Four studies that 
analyzed the resistance mechanism mediated 
by efflux pumps were found in the period, which 
still developed with few isolates, contributed to 
the understanding of the phenotypes of azole-
resistant Cryptococcus (Basso Junior et al. 2015, 
Bastos et al. 2018, Chang et al. 2018, Yang et al. 
2015, Kano et al. 2017).

Another known resistance mechanism 
in Cryptococcus strains is heteroresistance to 
fluconazole, a phenomenon defined as resistance 
expressed by a subpopulation of cells, initially 
considered sensitive to this drug, but which can 
grow under high concentrations of the drug, 

after exposure to it. One study described the 
phenomenon of heteroresistance to itraconazole 
in C. gattii isolates and its impact on changes in 
cell morphology (surface/volume and size) and 
in growth patterns and virulence. Although the 
clinical implications remain unknown and only 
a few isolates were analyzed, the data allowed 
the deciphering of important aspects of the 
mechanisms of antifungal resistance (Ferreira 
et al. 2015).

Morphological changes and modulation 
of virulence after drug exposure were also 
discovered in a national study. The authors 
observed, in some clinical strains of C. 
neoformans and C. gattii exposed and adapted 
to different concentrations of fluconazole, 
that those of C. neoformans developed drug 
resistance, possibly during patient therapy, 
and the virulence profiles were inversely 
proportional from resistance. This data suggests 
that the adaptation to the selective pressure of 
the drug can lead to a decrease in virulence and 
furthermore it was found that the virulence of 
the C. neoformans isolate is dependent on the 
inoculum concentration, which was not observed 
in the C. gattii isolate (Rossi et al. 2016).

A study carried out in the state of Amazonas, 
Brazil, in 2016, involved collecting environmental 
samples of house dust in houses of a rural 

Rocha et al.

2018
Brazil

Prospective

(clinical)

C. neoformans VNI  (34)

C. gattii VGII (4)

MIC range

(mg/L)

2-8

8-32

MIC range 
(mg/L)

0,03-0,25

0,03-0,125

 MIC range 
(mg/L)

0,03-0,25

0,125-0,5

----------
-----

CLSI

M27-A3

All isolates were sensitive to 
the 3 antifungals evaluated, 
but fluconazole presented 
the highest MIC values for 

VGII.

Berejnoi  
et al.

2019
Argentina

Prospective

(clinical)

C. gattii VGIII  (1)

C. gattii VGIV  (1)

MIC

(mg/L)

16

4

MIC

(mg/L)

0,25

0,25

MIC

(mg/L)

0,12

0,12

MIC

(mg/L)

0,12

0,06

EUCAST

E.Def

7.3.1

A high MIC value for 
fluconazole was found 
against the first clinical 
strain of C. decagattii 

described in South America.

Pinheiro

2019
Brazil

Retrospective 
and Prospective

(clinical)
C. gattii VGII (7)

 MIC range 
(mg/L)

1-8

MIC range 
(mg/L)                

< 0,03-0,25

 MIC range 
(mg/L)

< 0,03-0,25

----------
-----

CLSI

M27-A3

C. gattii isolates were 
sensitive to the antifungals 

analyzed.

MIC, Minimum Inhibitory Concentration; ECV, Epidemiological Cutoff  Value; CLSI, Clinical and Laboratory Standards Institute; 
EUCAST, European Committee on Antimicrobial Susceptibility Testing.

Table I. Continuation.
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community, resulting in the finding of 2 isolates 
of C. gattii for which the MIC values were high, 
demonstrating resistance to fluconazole (Alves 
2016).

Two studies, published in 2011 (Pfaller et al. 
2011) and in 2016 (Córdoba et al. 2016), contributed 
to the interpretation of MIC values, in which the 
sensitivity of hundreds of C. neoformans and 
C. gattii isolates were determined in order to 
propose epidemiological cutoff values (ECVs) 
global and regionally (Argentina).

The strategy of using ECV to interpret 
MIC values   is necessary when there are no 
defined clinical breakpoints, as is the case with 
Cryptococcus. It is noteworthy that ECV has 
no clinical applicability, but represents a very 
important tool to distinguish less sensitive 
(MIC value > ECV) and more sensitive (MIC < 
ECV) isolates to a given drug. It is assumed that 
less sensitive or non-wild isolates have one or 
more than one resistance mechanisms to the 
respective antifungal (Córdoba et al. 2016, Pfaller 
et al. 2011, Espinel-Ingroff et al. 2012a, b).

Resistance mechanisms in Cryptococcus 
isolates were a topic addressed in some studies 
selected for this review. Resistance has been 
attributed to the long-term use of fluconazole, 
in particular, administered for long periods to 
patients with neurocryptococcosis and AIDS, 
who require maintenance therapy to prevent 
relapse of infection. Another possibility raised 
in the studies is the selection of environmental 
strains of Cryptococcus after abusive exposure 
to fungicides for agricultural use, which belong 
to the same chemical class as azole drugs 
and which are widely used in plantations to 
combat phytopathogenic fungi. One hypothesis 
lies in the intense use of tebuconazole, which 
represents the most used systemic fungicide 
worldwide and which could select resistant 
strains existing in plant debris. Such strains, if 
inhaled by susceptible individuals, could cause 

infections resistant to triazoles that are used 
in the medical clinic of cryptococcosis (Araújo 
et al. 2018, Bastos et al. 2018, Chesdachai et al. 
2019, Kim et al. 2020, Arastehfar et al. 2020).

The  two pathways ,  c l in ical  and 
environmental, contribute to the emergence 
and maintenance of strains resistant to triazole 
drugs, which may result in a lower therapeutic 
response and poor clinical outcome (Mpoza 
et al. 2018). For such cases, ravuconazole has 
been studied as a new drug with the potential 
to combat fluconazole-resistant strains (Kano 
et al. 2020).

The most widely accepted ECV propositions 
for the Cryptococcus species complexes, to date, 
are from authors from several countries who 
joined forces and published values for several 
antifungals in 2012 (Espinel-Ingroff et al. 2012a, 
b). For this review, and in order to give meaning to 
the absolute values of MIC presented in several 
studies, such ECVs were applied (Espinel-Ingroff 
et al. 2012a, b).

The published MIC values (Table I) were, 
individually in each study, analyzed and 
interpreted against the ECV, in such a way that the 
classification of C. neoformans isolates resulted 
as follows: isolates from this species complex 
were non-wild, mainly for voriconazole (72.7%), 
followed by fluconazole (55%), itraconazole 
(46.7%) and, finally, amphotericin B in a small 
portion (5.6%). In C. gattii though, non-wild 
isolates were found more frequently, also with 
voriconazole (36.4%) and lower with fluconazole 
(25%) and itraconazole (20%). For amphotericin 
B, non-wild C. gattii isolates were not identified.

Considering these analyses, it was found that 
voriconazole was the least active drug, for which 
the largest numbers of isolates with possible 
resistance mechanism(s) were identified, both 
among members of the C. neoformans complex 
and in C. gattii. Fluconazole and itraconazole 
were more effective to inhibit isolates of both 
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complexes only losing to the fungicidal action 
of amphotericin B, demonstrated in vitro as the 
most potent.

DISCUSSION
Comparing the species complexes, C. neoformans 
was less wild to both voriconazole, fluconazole, 
itraconazole and amphotericin B, in relation to 
C. gattii isolates. However, infections by strains 
of this complex seem to be more severe to the 
CNS compared to those of the C. neoformans 
complex, causing greater complications such 
as higher intracranial pressure and a greater 
number of neurological sequelae (Berejnoi et 
al. 2019, Lomes et al. 2016, Siqueira et al. 2019, 
Sánchez & Zúñiga 2016). These facts illustrate a 
lack of association between in vitro resistance 
of cryptococcosis agents, making the topic of 
the clinical utility of the MIC test even more 
intriguing and in need of further investigation.

A major difficulty pointed out to establish 
the relationship between data obtained in vitro 
and in vivo are several intervening factors that 
can impact the course of the infection, such 
as the differences found in the melanization 
of the agent, in the size of the capsule and in 
the cellular gigantism that are polyploid cells, 
abnormally large, formed in the course of 
infection and more rarely seen under laboratory 
conditions. The various structural differences 
such as denser and highly reticulated capsules 
or thicker cell walls and ability to grow at 37º C 
are virulence factors that may play a role in the 
disease’s evolutionary scenario by altering the 
response to treatment. However, until now the 
physiological differences of the etiologic agent 
within the host and its in vitro susceptibility to 
antifungal drugs are not definitively accepted 
as predictors of clinical response, having an 
epidemiological application (Bastos 2017, 
Grossman & Casadevall 2017, Neves et al. 2019).

CONCLUSIONS
This work had the character of a bibliographic 
review on the subject. Many studies suggest 
an increase over the last decades in resistance 
to triazoles, especially to fluconazole, which is 
widely used in clinical medicine, however, still 
without consensus on this statement. Data 
published between 2010 and 2022 show high 
MIC values for the two species complexes, 
in particular for C. neoformans, with special 
importance for voriconazole, followed by 
fluconazole and itraconazole and with no 
emphasis on MICs of amphotericin B.

It should be taken into account, however, 
that MIC is just a physical measurement, 
determined in vitro, and the evolution of 
cryptococcosis is influenced by several factors. 
In addition to those linked to the biology of the 
etiologic agent, mainly aspects related to the 
host.

There is a pressing need for studies 
necessary for better scaling of resistance in 
strains of both C. neoformans and C. gattii 
complexes, given the lack of research with 
adequate statistical treatment, which allows 
evaluating the difference in sensitivity between 
these agents that can have clinical impact. 
Additionally, there is no evidence of a trend 
towards an increase in resistance rates over the 
period, given the insufficiency of representative 
data for the different regions or locations.

Cryptococcosis is considered a neglected 
disease, since it is not necessary to be notified, 
making it difficult to assess the real dimension 
of its frequency and its effects in relation to 
public health. Nevertheless, this can be changed 
with the priority list of fungal pathogens by the 
WHO, increasing helping research and guiding 
policies. Whether in the future the monitoring 
of this serious invasive mycosis occurs, with 
records of therapeutic failures associated with 
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MIC laboratory data from tests carried out by 
reference methods, the value of this test may be 
more accurately measured in clinic practice.  
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