Abstract
In this research, the trade-off between the number of restrictions and the robustness of the primary formulation of entropy models was evaluated. The performance of six hydrodynamic models in open channels was assessed based on 1730 Laser-Doppler anemometry data. It was investigated whether it is better to use an entropy-based model with more restrictions and a weak primary formulation or a model with fewer restrictions, but with a strong formulation. In addition, it was also investigated whether the model performance improves with the insertion of restrictions. Three of the investigated models have a weak formulation (open-channel velocity field represented by Cartesian coordinates); while the other three models have a strong formulation, according to which isovels are represented by curvilinear coordinates. The results indicated that models with two restrictions performed better than those with one restriction, since the additional restriction includes information relevant to the system. Models with three restrictions perform worse than those with two restrictions, because the information lost due to the use of a numerical solution was more substantial than the information gained by the third restriction. In conclusion, a strong primary formulation brought more information to the system than the inclusion of a third constraint.
Key words
Hydrodynamic model; Information theory; Laser-Doppler anemometry; Shannon entropy