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Abstract: The need for the identification of risk factors associated to COVID-19 disease 
severity remains urgent. Patients’ care and resource allocation can be potentially 
different and are defined based on the current classification of disease severity. This 
classification is based on the analysis of clinical parameters and routine blood tests, 
which are not standardized across the globe. Some laboratory test alterations have been 
associated to COVID-19 severity, although these data are conflicting partly due to the 
different methodologies used across different studies. This study aimed to construct and 
validate a disease severity prediction model using machine learning (ML). Seventy-two 
patients admitted to a Brazilian hospital and diagnosed with COVID-19 through RT-PCR 
and/or ELISA, and with varying degrees of disease severity, were included in the study. 
Their electronic medical records and the results from daily blood tests were used to 
develop a ML model to predict disease severity. Using the above data set, a combination 
of five laboratorial biomarkers was identified as accurate predictors of COVID-19 severe 
disease with a ROC-AUC of 0.80  ±  0.13. Those biomarkers included prothrombin activity, 
ferritin, serum iron, ATTP and monocytes. The application of the devised ML model may 
help rationalize clinical decision and care.
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INTRODUCTION

The severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), the causative agent 
of the coronavirus disease 2019 (COVID-19), has 
infected more than 750 million people worldwide 
(WHO 2023, Wajnberg et al. 2020). Despite of 
the several scientific advances and the intense 
vaccination programs currently ongoing in 
several countries, new infections continue to 
be daily registered (Moore et al. 2022) exposing 
the fragility of the healthcare systems across the 
globe.

The spectrum of the symptomatic disease 
varies from mild to severe, with mortality rates 

ranging from 11 to 52% among hospitalized 
individuals (Abate et al. 2021, Calabrese et al. 
2002). In most cases, the infection produces 
mild symptoms, with few respiratory signs, 
which may evolve to pneumonia and require 
hospitalization, or may evolve to severe acute 
respiratory syndrome and require admission to 
the intensive care unit (Rodriguez-Morales et 
al. 2020, Wang et al. 2020). The classification of 
disease severity is mostly based on the levels 
of oxygen saturation and clinical criteria (WHO 
2022), although the latter may vary among sites. 
Multicentric studies have showed that the case 
definitions commonly used worldwide are not 
accurate in identifying those individuals who are 
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more susceptible to severe cases (Baruch et al. 
2022). Therefore, one of the biggest challenges 
still consists of the identification of severity 
predictors that are sensitive and specific enough 
to aid the proper early identification of patients 
that may progress to a severe case and their 
proper clinical management. Some laboratorial 
parameters have been reported as an attempt to 
identify prognostic markers of COVID-19 disease 
severity, although the results are not uniform 
among studies partly due to the differences in 
sample characteristics and used methodologies 
(Galanter et al. 2021, Rodriguez-Morales et al. 
2020, Kermali et al. 2020).

A tangible solution might be the combination 
of these tests, along with conventional clinical 
data and sophisticated analytical methods from 
the field of Artificial Intelligence (AI). Several 
studies have proposed to use Machine Learning 
(ML) techniques to help clinicians to better 
classify COVID-19 suspected cases and predict 
disease severity (Brinati et al. 2020, Kukar et 
al. 2021, Kistenev et al. 2022, Alves et al. 2021, 
Arpaci et al. 2021, Wan et al. 2021, Imran et al. 
2020, Karthikeyan et al. 2021). These studies 
describe the development of methods that allow 
computers to learn tasks by examples based on 
training data sets composed by routine blood 
tests. These tests play an important role in the 
diagnosis and follow-up of infected individuals, 
with the deviation of different laboratory 
parameters already shown to correlate with 
the COVID-19 diagnosis and disease worsening 
progression (Brinati et al. 2020, Fernandes et al. 
2021, Kermali et al. 2020).

While numerous studies have used 
ML methods to identify laboratory markers 
associated to COVID-19 severity, most of them 
are based on imaging data (such as chest 
X-rays, computed tomography and ultrasound) 
(Bottino et al. 2021, Kulkarni et al. 2021, Xiao et 

al. 2020, Wang et al. 2021, Zhang et al. 2020, Feng 
et al. 2021). The use of this type of data may 
be challenging in clinical practice due to the 
need for specialized equipment and personnel 
(Frija et al. 2021). The high cost of the imaging 
apparatus, along with its limited availability 
in low- and middle-income countries, poses 
additional challenges to the development of 
computational prediction methods that can 
be easily overcome using routine blood tests. 
Accordingly, other studies have also attempted to 
develop predictive models of COVID-19 severity 
using laboratory markers only (Statsenko et al. 
2021, Liu et al. 2021). 

Recently, Wichmann et al. (2023) (Wichmann 
et al. 2023) conducted a study to assess the 
predictive performance of the death risk due 
to COVID-19 using routinely collected hospital 
variables in the five regions of Brazil using ML. 
The results showed that training ML models with 
data from the same hospital led to improved 
predictive performance. This highlights the 
significance of taking into consideration the 
unique context and characteristics of patients 
from individual hospitals when developing 
health outcome prediction models. Therefore, 
using a cohort from a hospital in Recife, Brazil, 
we applied supervised ML and ensemble 
learning techniques to identify laboratory 
markers that are correlated to the severity 
of COVID-19 in this population. We processed 
a data set composed by qRT-PCR, ELISA and 
laboratorial data daily collected to construct 
and validate a disease severity ML prediction 
model. Our findings indicate that parameters 
related to coagulation and iron metabolism can 
be used as predictors of COVID-19 severity. The 
identification of laboratory markers allows to 
infer the prognosis of COVID-19 patients and to 
guide clinical decision and care.
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ABBREVIATIONS
AI = Artificial inteligence
ANOVA = Analysis of variance
ATTP = Activated partial thromboplastin time
AUC = Area under the curve
CI = Confidence interval
COVID-19 = Coronavirus disease
CV = Coefficient of variation
ELISA = Enzyme-linked immunosorbent assay
Fn = False negative
Fp = False positive
IgG = Immunoglobulin G
INR = International normalized ratio
LACEN-PE = Central Laboratory of Public Health 
of the State of Pernambuco
LD = Linear discriminant
LDA = Linear discriminant analysis
LOR = Logistic regression
ML = Machine learning
qRT-PCR = Quantitative reverse transcription 
polymerase chain reaction
RBD = Receptor-binding domain
RNA = Ribonucleic acid
ROC = Receiver Operating Characteristic
RT-PCR = Reverse transcription polymerase 
chain reaction
SARS-CoV-2 = Severe acute respiratory syndrome 
associated coronavirus
SDS-PAGE =  Sodium dodecy l-sul fate 
polyacrylamide gel electrophoresis
SPSS = Statistical Package for the Social Sciences
SVC = Support vector classifier
SVM = Support vector machine
Tn = True negative
Tp = True positive
WHO = World Health Organization

MATERIALS AND METHODS 
Cohort characterization
A set of 847 serum samples was obtained from 
100 individuals admitted to the Hospital of 

Public Employees of the State of Pernambuco 
from May to September 2020 exhibiting 
respiratory symptoms. Informed consent wavers 
were approved by the ethics committees 
from the Federal University of Pernambuco 
(protocol number: 4.016.659) and the Oswaldo 
Cruz Foundation (protocol number: 2.737.404). 
Demographic, clinical and comorbidity data 
were collected upon patients’ admission, while 
laboratory parameters were measured daily 
throughout the hospitalization time. Serum 
samples and oropharyngeal swabs collected upon 
hospital admission were submitted to indirect 
ELISA and qRT-PCR, respectively, to confirm SARS-
CoV-2 infection. RT-PCR tests were run following 
standard protocols by the Laboratório Central 
de Saúde Pública de Pernambuco (LACEN-PE). 
To rule out the possibility of co-infection, the 
detection of influenza RNA through qRT-PCR was 
also performed in those samples. ELISA tests 
were performed using an in-house procedure 
using serum samples collected on day 3 of 
hospitalization, as described in the following 
sections. Only individuals who presented a 
positive result in the qRT-PCR and/or ELISA tests 
were included in the COVID-19 positive group. 
COVID-19 severity classification was performed 
based on the World Health Organization (WHO) 
criteria (WHO 2022). A sample set composed of 
100 serum samples from health donors collected 
prior the detection of the first COVID-19 case in 
Brazil was included in the COVID-19 negative 
group. 

Production of recombinant SARS-CoV-2 RBD 
protein and detection of anti-RBD antibodies 
through ELISA

The plasmid DNA coding for the SARS-CoV-2 
RBD protein (reference lineage HU-1) was 
kindly provided by Dr. Daniel Stadlbauer and 
his collaborators (Icahn School of Medicine at 
Mount Sinai, New York, NY, USA). SARS-CoV-2 
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RBD production was performed by transfection 
of HEK-293T cells according to protocols 
described elsewhere (Stadlbauer et al. 2020). 
Protein purification was performed by affinity 
chromatography through isocratic elution in 
300 nM imidazole, 50 nM Tris-HCl, 300 nM NaCl2 
pH 8.0. Purified samples were run on SDS-PAGE 
to assess protein purity. Sample concentration 
was determined by spectrophotometry using 
NanodropTM One (Thermo scientific®).

The purified RBD protein was used to set up 
an ELISA assay to detect the presence of anti-
RBD IgG antibodies in the sera from the enrolled 
patients according to a protocol previously 
described (Silva et al. 2021). Pools of serum 
samples from individuals with and without 
history of SARS-CoV-2 infection, as determined 
through qRT-PCR and ELISA, were used as 
positive and negative controls, respectively, 
and were run in quadruplicates to ensure assay 
reproducibility. All samples were tested in 
duplicates. Diagnostic performance of the assay 
was evaluated through a ROC curve analysis using 
100 COVID-19 negative and 53 COVID-19 positive 
samples. Serum samples were considered 
positive when the sample absorbance/negative 
control ratio ≥4.139 (corresponding to 92.45% and 
97% of sensitivity and specificity, respectively). 
Statistical analyses were performed using the 
GraphPad Prism v.7 software (San Diego CA, USA).

Data set building

The REDCap dataset used in this study consisted 
of clinical data daily collected from 100 patients 
during their medical treatment. Each day of 
monitoring was represented by a sample, with 
the measured parameters serving as features. 
The progression of the patients’ clinical 
condition was classified as mild or severe. In 
order to address issues of missing data, a subset 
of the REDCap dataset was created. Specifically, 
certain biochemical markers were missing for 

some patients in the original dataset, and these 
missing values were not evenly distributed 
among patients. We decided to exclude from 
the analysis any days on which a patient had 
one or more missing values for any parameter. 
Therefore, only parameters from patients 
recently admitted to the hospital (exhibiting 
mild symptoms) were used, regardless of being 
later discharged or evolved to a severe form 
of the disease (including death). This is an 
important aspect of our dataset, as it is absent 
of any bias arising from data that is unique/
aggravated by disease severity. As a result, data 
from 41 different days for 39 patients were used 
for analysis in this study. The complete list of 
features used in this study is provided in the 
Supplementary Material - Table SI (in .CSV file).

Libraries and tools

The Python v.3.7.9 programming language was 
used along with the following libraries: Pandas 
(McKinney 2011), NumPy (Harris et al. 2020), and 
scikit-learn (Pedregosa et al. 2011). The standard 
implementation of the libraries was applied. The 
IBM® SPPS® Statistics version 25 (https://www.
ibm.com/products/spss-statistics) (IBM Corp. 
Released 2017. IBM SPSS Statistics for Macintosh, 
Version 25.0. Armonk, NY: IBM Corp.) was utilized.

Data standardization

The input data was normalized by centering 
each variable at zero mean and scaling it to the 
unit variation.

Variables’ selection

Aiming to reduce the complexity of the data 
set while levering the most important features, 
a subset of input variables considered as 
the most relevant to the target response was 
identified through two different approaches: 
analysis of variance (ANOVA) and mutual 
information statistics. The subset of relevant 
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features was constructed by combining the 
features predicted by both methods (Table 
SI). These techniques are commonly used 
in evaluating the importance of features for 
datasets consisting of numerical input and 
categorical output, such as in classification 
tasks. The ANOVA method is implemented in 
the f_classif() function of the Scikit-learn library 
and it was combined with the SelectKBest class 
with  K , number of selected features, set to 
all. The mutual information approach selects 
features based on information gain (reduction 
of entropy), a topic from information theory. The 
mutual information measures the decrease in 
uncertainty for a feature for a previously known 
value of the other. In the Scikit-learn library, 
the mutual information is applied using the 
mutual_info_regression() function. For both 
methodologies, the data set was split into 
training and test sets using a 75% and 25% split 
percentage, respectively. To select the optimal 
number ( k ) of variables, we have systematically 
tested a range of different  k  of selected variables 
by a grid search. The performance of different 
configurations of variables was evaluated using 
a repeated stratified 10-fold cross validation.

Logistic regression

Logistic regression (LOR) is a linear model of 
parametric classification, which computes the 
probabilities of a discrete outcome given an 
input variable using a logistic function. One of the 
assumptions under LOR that must be satisfied is 
that there should be no multicollinearity in the 
independent variables, which occurs when the 
variables are highly correlated with one another 
Menard 2001. To verify this, a linear regression 
was performed using SPSS to diagnose 
multicollinearity in the selected feature data set. 
Starting with all variables, the ones presenting 
multicollinearity were individually removed and 
these sets were used to build LOR models. These 

models were then estimated and fitted using the 
SPSS software. The models were compared to 
a null model that only contained the intercept 
and they were evaluated using the Nagelkerke 
R2, Hosmer and Lemeshow, and Omnibus tests 
(Hosmer et al. 2013). The statistical significance of 
each variable was assessed by its p-value (<0.05 
for statistically significance). Outliers were also 
removed based on their standardized residuals, 
with a total of three instances removed.

Linear discriminant analysis

The linear discriminant analysis (LDA) is a 
technique for classifying data by assuming that 
the class-conditional densities are multivariate 
Gaussian and generalizes the Fisher’s linear 
discriminant (Fisher 1936). The LDA uses a 
homoskedastic model, where the covariance 
matrices are assumed to be equal, and generates 
linear optimal decision boundaries. For a binary 
classification problem, LDA aims to maximize 
the difference in class means while minimizing 
the within-class scatter in the feature space. 
For a sample ( x  ) with covariance matrix   Σ and 
class-means    μ  0    and    μ  1   , the LDA discriminant 
is calculated as:

   D  L,n   (x)  =   (    μ  1   −  μ  0   )     
T   Σ   −1  (x−   

 μ  0   +  μ  1    _ 2  )   (  
Braga − Neto 2020 )    

In this study, the LDA method was 
implemented in Python using singular value 
decomposition without shrinkage. The method 
involved two steps: fitting and transforming the 
data according to the class proportions inferred 
from the training data. Since the classification 
is binary, only the first linear discriminant was 
calculated. The LDA values were calculated as a 
linear combination of the variables, where each 
weight is referred as a linear discriminant loading 
(or coefficient) and measures the influence of 
the variable for the classification. The values of 
the first linear discriminant were also used as 
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inputs for the support vector classifier (SVC), as 
described in the next section.

Support vector machine
Support vector machine (SVM) is a type of 
non-probabilistic and non-linear classifier 
and regressor that utilizes a non-linear 
transformation of data into high-dimensional 
space to separate different classes using 
hyperplanes. The transformed data is then 
retransformed back into the original space, 
providing non-linear models. SVM aims to find 
the optimal separation line between classes by 
identifying the hyperplanes that are maximally 
oriented by support vectors. For a given training 
data set of  n  points of the form    ( x  1  ,  y  1  ) , … ,  (    x  n  ,  y  n   )    , 
where   y  i    either indicates the class    {  A, B }     of   x  i   . Any 
hyperplane can be written as the set of points  x  
that satisfies the following equation:

  w   T  x − b = 0 

Here, the scikit-learn library was used 
to conduct support vector classification (SVC) 
with a linear kernel and C=1 and Y=0.01 as the 
chosen hyperparameters. These values were 
determined by fine-tuning the hyperparameters 
through a grid search across a predefined set 
of values. The C parameter is used to balance 
correct classification and maximize the decision 
boundary by acting as a penalty for errors, while 
Y controls the complexity of the SVM. The SVM 
models were built using the original dataset 
of selected features as input and using linear 
discriminant as the output value.

Models’ performance evaluation
The accuracy of the models was determined 
using k-fold cross validation, where k = 3 and 
5. To assess the performance of the models, 
the accuracy was computed. In addition, the 
Receiver Operating Characteristic (ROC) curve 
was evaluated based on precision and recall. 

In binary classification tasks, precision, recall, 
and f1-score are defined using true positive (tp), 
true negative (tn), false positive (fp), and false 
negative (fn) rates according to the following 
equations:

 Precision =   
tp _ tp + fp   

 Recall =   
tp _ tp + fn    

A detailed description of each evaluation 
metric can be found in Powers (2011) (Powers 2011).

RESULTS AND DISCUSSION
Serological, epidemiological and clinical 
cohort characterization
Determining the appropriate biomarkers for 
COVID-19 disease severity requires the adequate 
definition of the infection status of all subjects 
included in the study. Oropharyngeal swabs 
collected on the admission day from all subjects 
enrolled in the study were tested for the presence 
of SARS-CoV-2 viral RNA. Out of the 100 patients 
admitted to the local hospital, 64 individuals 
presented a positive COVID-19 qRT-PCR result. 
Due to the possibility of a false negative result 
in the molecular diagnosis due to the sample 
collection time, all samples were tested for the 
presence of anti-SARS-CoV-2 antibodies through 
ELISA. Among the hospitalized individuals, 72 
presented a positive COVID-19 qRT-PCR and/or 
ELISA result and therefore met the criteria for 
inclusion in the study. Viral RNA and RBD-specific 
IgG antibodies were detected in 88.9% (64/72) 
and 90.3% (65/72) of those samples, respectively 
(Table I). Variables comprising laboratory tests, 
demographics and comorbidities for each of 
these patients are also depicted in the table.

Although other studies have demonstrated 
that varying degrees of disease severity might 
be associated with different IgG profiles against 
SARS-CoV-2 (Wellinghausen et al. 2020, Fill 
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Malfertheiner et al. 2020, Rijkers et al. 2020, 
Ng et al. 2020, Guthmiller et al. 2021, Miller et 
al. 2020, Petersen et al. 2021, Wajnberg et al. 
2020), conventional statistical analysis did not 
show differences in terms of seroconversion 
among the non-severe, mild and severe groups 
(Supplementary Material - Figure S1).

Variables’ selection suggests the relevance of 
coagulation and iron-related markers
Our first attempt to identify the appropriate 
biomarkers for disease severity relied on 
descriptive statistical analysis of laboratory 
data, although no significant differences could 
be observed at first (Figure S2). Therefore, a 
predictive model of disease severity combining 
computational data analysis and human 
knowledge was proposed (Figure 1).

Aiming to select the adequate number of 
variables to build a model to accurately determine 
COVID-19 disease severity, two techniques were 
employed: ANOVA and mutual information. To 
identify the optimal number of variables for each 
method, the accuracy of different combinations 
of variables against a baseline model (LOR) was 
assessed. The two methods identified different 
optimal numbers of laboratory markers. While 
ANOVA identified two variables with the highest 
importance (international normalized ratio 
(INR) and prothrombin activity), the mutual 
information method selected four variables 
(monocytes, activated partial thromboplastin 
time (ATTP), serum iron, and ferritin). INR 
reflects the time required for blood coagulation, 
while prothrombin activity indicates the clotting 
tendency of blood. Monocytes are markers 
associated with chronic or sub-acute infections. 
ATTP is a measure of the time it takes for blood 
to clot using a different method other than INR. 
Serum iron assesses the quantity of iron present 
in the blood, and ferritin measures the amount 
of ferritin stored in the blood.

Table I. Clinical and epidemiological characterization 
of the COVID-19 positive study population.

Characteristics N (%)
Diagnostic test

Viral RNA detection (qRT-PCR) 64 (88.9%)

Anti-RBD IgG detection (ELISA) 65 (90.3%)

Age (years) 69 ( 13.3)a

Gender

Female 49 (68.1%)

Male 23 (31.9%)

Comorbidies

Hypertension 48 (66.7%)

Diabetes 25 (34.7%)

Cancer under therapy 1 (1.4%)

Asthma 9 (12.5%)

Vascular disease 3 (4.2%)

Heart disease 15 (20.8%)

COPDb 4 (5.6%)

None 14 (19.4%)

Occupation

Health workers 9 (12.5%)

Education professionals 8 (11.1%)

Retirees 25 (34.7%)

Other / not informed 30 (41.7%)

COVID-19 severity

Mild 39 (54.2%)

Severe 33 (45.8%)

Clinical outcome

Hospital Discharge 60 (83.3%)

Death 7 (9.7%)

Transferred to another facility 1 (1.4%)

Not informed 3 (4.2%)

Hospitalization days 

2 - 5 12 (16.7%)

6 - 10 32 (44.4%)

11 - 15 12 (16.7%)

16 - 20 4 (5.6%)

> 20 10 (13.9%)

Not informed 2 (2.8%)
N = sample number; a Standard deviation; bCOPD = chronic 
obstructive pulmonary disease.
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An increase in the ATTP and serum iron va-
lues represents an increase in the likelihood 
of infected patients evolve to severe cases of 
COVID-19
The selected variables were used as inputs for 
the LOR model. However, the variables INR and 
prothrombin activity were shown to have a high 
degree of correlation (RPearson = 0.98), resulting 
in multicollinearity within the input set as 
diagnosed by variable inflation factors greater 
than 10 and tolerance values smaller than 0.1 (as 
detailed in Table SII) (Hair et al. 1995). Therefore, 
two separate models were created: one including 
prothrombin activity, and another including INR. 
The LOR model with prothrombin activity had 
a goodness-of-fit with a Nagelkerke R2 of 0.68, 
while the model with INR had a Nagelkerke R2 
of 0.67. It is important to note that for logistic 
regression, the explained variance (R2) is less 
demanding than for a linear model. Another 
metric for comparison was the percentage of 
correct predictions in the classification table, 
which will be further discussed. The model with 
prothrombin activity had a correct prediction 
rate of 80%, while the model with INR had a 
correct prediction rate of 73%. As a result, no 
further analyses were conducted with the 
variable INR.

Two different tests were employed to 
evaluate the overall fit of the model. Firstly, the 
Hosmer and Lemeshow test was applied since 
this test has been shown to provide reliable 
results for small sample sizes (Garson 2014). Using 
this test, a non-significant p-value, i.e., p>0.05 
indicates that the estimated model exhibits a 
superior performance when compared to the 
null model. The estimated model yielded a chi-
square (χ2) of 3.65 and p-value of 0.89, indicating 
an appropriate fit. In addition, the Omnibus test 
of model coefficients was also utilized. Unlike 
the Hosmer and Lemeshow test, a significant 
result indicates suitable fit for the model. The 

Figure 1. Workflow used for model training, selection, 
and testing/validation. Oropharyngeal swabs and 
blood samples were collected from individuals 
presenting clinical signs compatible with SARS-CoV-2 
infection and hospitalized in a Brazilian local hospital. 
Infection status was confirmed through qRT-PCR 
and ELISA. Data from daily blood tests were used as 
input to train and validate the ML methods presented 
in this manuscript. The data was curated to select 
most relevant set of variables (see method section 
for details) and subsequently split for ML model 
training and validation. Data from 75% of the patients 
was used to train a support vector regression (SVR) 
and a linear discriminant analysis (LDA) models, and 
assessment was performed by loading the remaining 
25% of patients’ data onto the trained models and 
their accuracy measured. Precision, recall and area 
under the curve from receiver operating characteristic 
curve (ROC AUC) methods were used as quality 
metrics.
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estimated model had a χ2 of 27.44 and p-value 
of 0.00. Therefore, according to both tests, the 
estimated model is superior to the null model, 
suggesting that the independent variables have 
an impact on the dependent variable. Analyzing 
the significance of each of them for the model, 
the variables that presented p-value < 0.05 were 
serum iron (p-value = 0.01), ATTP (p-value = 0.02), 
and prothrombin activity (p-value = 0.01). It is 
worth noting that the statistical insignificance of 
the other variables may be related to the small 
size of the dataset. Furthermore, the odds ratio 
(Table SIII) indicates that an increase of one 
unit in the ATTP values represents an increase 
of 10.4% in the likelihood of infected patients 
to progress to COVID-19 severe cases, while one 
unit increase in the serum iron marker values 
represents 7% higher probability of progressing 
to severe cases. For the remaining metrics, the 
odds ratios fall within the confidence intervals 
and have not been considered.

Lastly, the classification table, also known 
as the confusion matrix, was analyzed. The 
classification table provides a measure of the 
model’s predictive power. The classification 
table uses the standard cut-off of 50% to allocate 
cases as severe (if the predicted probability is 
greater than 0.5) or mild (if it is lower than 0.5) 
disease. For our model, the accuracy, i.e., the 
proportion of true positive and true negatives, 
is 0.8 (Table SIV). These results suggest that the 
logistic regression can be used as an efficient 
predictor of the severity outcome of SARS-CoV-2 
infected patients.

Combining LDA and SVC improves the accuracy 
of the severity outcome prediction
To create a predictive model in addition to logistic 
regression, we used machine learning-based 
techniques. Linear discriminant analysis (LDA) 
classifier was applied to the selected features, 
excluding INR, to evaluate their ability to linearly 

separate the severity of COVID-19 as severe or 
mild outcomes based on laboratory parameters. 
LDA is also commonly used for dimensionality 
reduction of the data. One advantage of LDA 
is that it allows to assess the contribution of 
each feature to the binary separation through 
LD loading (or weight). The variation in the data 
was concentrated in the first linear discriminant 
(LD) component, which constituted 100% of the 
data’s variability in discriminating between mild 
and severe COVID-19 cases using the subset of 
the five selected variables. The weights of the 
LDs indicated which features mostly contributed 
to the separation between the classes (Figure 2a). 
Among the assessed variables, discrimination 
between mild and severe COVID-19 disease was 
achieved using ferritin and prothrombin activity 
as disease severity markers. As shown, positive 
LD values are predominantly associated to mild 
cases, while negative LD values are associated to 
severe cases (Figure 2b). The LD can consistently 
discriminate between severe and mild cases.

To develop a classificatory model between 
severe and mild COVID-19 cases, SVC was used 
since it is one of the most suitable machine 
learning algorithms for small data sets (Kramer 
et al. 2009). The model training was conducted 
using the standardized selected variables, as 
well as the value of the first LD parsed as input. 
A 3-fold CV (coefficient of variation) was used 
to diagnose the performance of the classifier 
and the calculated accuracy for the SVC model 
using the 5-dimensional input data is of 0.69  ±  
0.07, while for the model based on the LD value 
as input, the accuracy is of 0.76  ±  0.07. To the 
latter we refer to it as LDA-SVC protocol, while 
the former we refer to as SVC. In addition, the 
ROC curves for the classification models using 
either SVC or LDA-SVC were plotted (Figure 3a, 
b). To this end, we have used different settings 
of the train/test split by randomly varying the 
random state (using 10, 15, 20, and 42) yielding 
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areas under curve between 0.25 and 0.60 for SVC 
and 0.79 and 0.85 for LDA-SVC (Figure 3b). As a 
further evaluation step of the LDA-SVC model, we 
have calculated the ROC curve considering the 
confidence interval for 3 and 5 cross validations, 
resulting in an AUC of 0.77  ±  0.06 and 0.76  ±  0.08 
(Figure S3), respectively, which is in line with 
what was observed for the ROC curve within 
the train-split method. Therefore, the LDA-SVC 
model showed to be a consistent predictor for 
severity outcome.

A recent study using a set of laboratory 
markers for 10 937 patients from 9 laboratories 
across the US and Spain has evaluated the 
prediction of severity and mortality of COVID-19 
patients using deep learning (Singh et al. 2021). 
In this work, the developed model presented an 
AUC of 0.78 for the need to use a ventilator (i.e., 
severe cases). Their AUC was similar to what our 
model exhibited, even though our built model 
presented a limited number of patients compared 
to the study by Singh et al. Interestingly, their 
final model presented nine blood biomarkers 
associated to early independent predictors, 
which contains ferritin and coagulation-related 
parameters (in their case, d-dimer and INR, 
in which the latter was also predicted to be 
relevant from our variable selection analysis), in 
accordance with our results. It is well established 
that some infected patients with COVID-19 

develop a unique coagulopathy characterized by 
systemic hypercoagulability, leading to altered 
coagulation-related parameters (Wool & Miller 
2021). Coagulation dysfunction is more common 
in patients with severe COVID-19 and has been 
used as a predictor of mortality (Long et al. 2020).

Our findings are also supported by several 
studies that have found that higher levels 
of serum ferritin are associated with hospital 
mortality and disease severity in COVID-19 
patients (Alroomi et al. 2021, Dahan et al. 2020, 
Zhou et al. 2020, Taneri et al. 2020, Gandini et al. 
2020, Kaushal et al. 2022). Ferritin is produced 
following the cytokine storm and the release of 
IL-6 and TNF-α (Guan et al. 2020, Goyal et al. 2020, 
Mahroum et al. 2022), and has been associated 
to an increase of the iron sequestration to the 
inside of the cell, low serum levels, decrease in 
hemoglobin and consequent hypoxia. Besides, 
intracellular iron leads to the formation and 
release of oxygen reactive species that may 
lead to cellular injury (Wenzhong & Hualan 
2021, Taneri et al. 2020, Engin et al. 2022). In a 
retrospective cohort involving 50 COVID-19 
patients, ferritin levels above 162 ng/mL were 
associated to the development of severe cases 
with 86.9% of sensitivity and 70.3% of specificity 
(Zhou et al. 2020). In a metanalysis study of 29 
grouped studies involving 13,620 individuals, 
serum ferritin was higher in individuals with 

Figure 2. Linear discriminant analysis. a) Loading of each feature used to calculate de LDs. b) One dimensional LDA. 
The bars in black are the LD values for severe COVID-19 cases whereas the bars in gray consist of the mild ones.
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severe COVID-19 disease, when compared to 
mild cases [weighted median deviation, 473.25 
ng/mL (95% CI 382.52 – 563.98); I2 = 91.8%, p 
value for heterogeneity < 0.001]. High levels of 
ferritin were also observed in the non-survival 
group, compared to the survival group with a 
difference of medium levels of ferritin of 606.37 
ng/mL (CI 95% 461.86 to 750.88) (Taneri et al. 
2020). Another study evaluating 158 COVID-19 
patients found an association between iron 
homeostasis disturb and severe cases. Those 
included increased ferritin levels and low serum 
levels of iron, transferrin and iron-binding 
capacity. Higher levels of ferritin have also 
been associated to lesions in multiple organs, 
including SRAG, coagulopathy, cardiac injury, 
acute hepatic lesion, sepsis, UCI admission, use 
of mechanical ventilator and death (p < 0.005) 
(Lv et al. 2021). However, a different study by 
Carubbi et al. (2021) (Carubbi et al. 2021) found 
that while ferritin is associated with the severity 
of lung involvement in COVID-19 patients, it is 
not associated with disease outcomes. These 
findings suggest that, while serum ferritin level 
is an important descriptor to be considered 
when predicting the severity of COVID-19 and 

the likelihood of hospitalization or death, 
it cannot be used per se as predictor of the 
COVID-19 severity. This is supported by our 
results, as standard statistical analyses could 
not associate a single descriptor to prognosis of 
disease severity. Disease outcome could only be 
predicted by a combination of five descriptors 
as depicted by the ML model.

In summary, our results show that routinely 
used laboratory results have a synergistic 
effect in predicting COVID-19 severity that is 
captured by machine learning approaches. 
As demonstrated by the previous metanalysis 
approach, the use of a large data set leads to 
an increased model accuracy. Nevertheless, 
we show that when dealing with reasonably 
small datasets, adequate prediction accuracy 
can be obtained by combining LDA and SVC. 
Even though COVID-19 is no longer considered 
a global emergence, the present work provides 
fundamental knowledge regarding the 
development of a machine learning model that 
could potentially be used to predict not only 
the clinical outcome of COVID-19 patients, but 
that could also be applied to virtually any other 
disease settings.

Figure 3. Assessment of the classification models’ performance through their characteristic ROC curves. ROC 
curves for SVC (a) and LDA-SVC (b) models. Curves using four different random states (RS) are shown for the LDA-
SVC model. RS values of 10, 15, 20 and 42 provide AUC values of 0.82, 0.85, 0.82 and 0.79, respectively.
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