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ABSTRACT

The main goal of this paper is to present a complete description of all translation hypersurfaces with constant
r-curvature S, in the Euclidean space R" ™!, where 3 <r <n — 1.
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INTRODUCTION

It is well known that translation hypersurfaces are very important in Differential Geometry, providing an
interesting class of constant mean curvature hypersurfaces and minimal hypersurfaces in a number of spaces
endowed with good symmetries and even in certain applications in Microeconomics. There are many results
about them, for instance, Chen et al. (2003), Dillen et al. (1991), Inoguchi et al. (2012), Lima et al. (2014),
Liu (1999), Lopez (2011), Lopez and Moruz (2015), Lépez and Munteanu (2012), Seo (2013) and Chen
(2011), for an interesting application in Microeconomics.

Scherk (1835) obtained the following classical theorem: Let M := {(x,y,2) : 2 = f(z) + g(y)} be a
translation surface in R3, if is minimal then it must be a plane or the Scherk surface defined by

1

z(x,y) = . In

cos(ay)

cos(ax)

where a is a nonzero constant. In a different aspect, Liu (1999) considered the translation surfaces with
constant mean curvature in 3-dimensional Euclidean space and Lorentz-Minkowski space and Inoguchi
et al. (2012) characterized the minimal translation surfaces in the Heisenberg group Nils, and Lopez and
Munteanu, the minimal translation surfaces in Solg.
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The concept of translation surfaces was also generalized to hypersurfaces of R"*! by Dillen et al.
(1991), who obtained a classification of minimal translation hypersurfaces of the (n + 1)-dimensional
Euclidean space. A classification of the translation hypersurfaces with constant mean curvature in (n +
1)-dimensional Euclidean space was made by Chen et al. (2003).

The absence of an affine structure in hyperbolic space does not permit to give an intrinsic concept of
translation surface as in the Euclidean setting. Considering the half-space model of hyperbolic space, Lopez
(2011), introduced the concept of translation surface and presented a classification of the minimal translation
surfaces. Seo (2013) has generalized the results obtained by Lopez to the case of translation hypersurfaces
of the (n + 1)-dimensional hyperbolic space.

Definition 1. We say that a hypersurface M™ of the Euclidean space R"*! is a translation hypersurface if
it is the graph of a function given by

F(xi,...,xn) = fi(z1) + ...+ folzn)

where (1, ...,xy,) are cartesian coordinates and each f; is a smooth function of one real variable for
1=1,...,n.

Now, let M™ C R"™*! be an oriented hypersurface and A1, ..., A, denote the principal curvatures of
M™. For each r = 1,...,n, we can consider similar problems to the above ones, related with the r-th
elementary symmetric polynomials, S, given by

Sy = Z iy A,

1< < <4, <n

In particular, .57 is the mean curvature, S5 the scalar curvature and S,, the Gauss-Kronecker curvature, up
to normalization factors. A very useful relationship involving the various .S, is given in the [Proposition 1,
Caminha (2006)]. This result will play a central role along this paper.

Recently, some authors have studied the geometry of translational hypersurfaces under a condition in
the S, curvature, where r > 1. Namely, Leite (1991) gave a new example of a translation hypersurface of R*
with zero scalar curvature. Lima et al. 2014 presented a complete description of all translation hypersurfaces
with zero scalar curvature in the Euclidean space R™*! and Seo 2013 proved that if M is a translation
hypersurface with constant Gauss-Kronecker curvature GK in R"*!, then M is congruent to a cylinder,
and hence GK = 0.

In this paper, we obtain a complete classification of translation hypersurfaces of R"*! with S, = 0. We
prove the following

Theorem 1. Let M™ (n > 3) be a translation hypersurface in R**1. Then, for 2 < r < n, M™ has zero S,
curvature if, and only if, it is congruent to the graph of the following functions

n—r+1 n
o Fxy,...,xy) = Z a;T; + Z fi(z;) +b,
i=1 j=n—r+2
on R+ Jn—rya X -+ X Jy, for certain intervals Jy_ri2, ..., Jn, and arbitrary smooth functions

fi v Ji CR — R. Which defines, after a suitable linear change of variables, a vertical cylinder, or
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o A generalized periodic Enneper hypersurface given by

n—r—1

F(xy,...,xp) = Z a;T;

i=1

. cos < Ap—p ... Ap—1 \/B:En + bn>

+ Z ﬁh’l O-T'fl(anfTa"'vanfl) +e

L a cos(ag/Bry + br)

on R0 5 I, x -+ x IL,, with a,...,0pn—r,-..,0n—1,bn_p,...,b, and c are real constants
n—r—1
where ap_y,...,an—1 and op_1(ap—p,...,an—1) nonzero, f = 1 + Z a?, Iiin—r < k <
i=1
n — 1) are open intervals defined by the conditions |ay\/Bxy + bg| < m/2 while I, is defined by
pg v v Ay
_ n—r n—1 \/an—i-bn‘<7r/2.
Ur—l(an—r7 cee 7an—1)

Theorem 2. Any translation hypersurface in R (n > 3) with S, constant, for 2 < r < n, must have
Sy =0.

Finally, we observe that, when one considers the upper half-space model of the (n + 1)-dimensional
hyperbolic space H"*!, that is,

R1+1 = {(.’1}'17 cee )xnaxn-‘rl) € Rn+1 P Tn+1 > O}

endowed with the hyperbolic metric ds? = (dz? + ...+ da? ) then, unlike in the Euclidean setting,

xn+1
the coordinates 1, . . . , x,, are interchangeable, but the same does not happen with the coordinate =, and,

due to this observation, Lopez 2011 and Seo 2013 considered two classes of translation hypersurfaces in
Hn-i-l:

A hypersurface M C H"" is called a translation hypersurface of type I (respectively, type IN) if it is
given by an immersion X : U C R® — H"*! satisfying
X(x1,..oyxn) = (1, ..o,z fr(z) + .o+ fu(zn))
where each f; is a smooth function of a single variable. Respectively, in case of type 11,
X(x1,..ymy) = (21, s xp—1, fr(@1) + .o+ fo(xn), zn)
Seo proved
Theorem 3 (Theorem 3.2, Seo 2013). There is no minimal translation hypersurface of type I in H" 1.
and with respect to type II surfaces he proved

Theorem 4 (Theorem 3.3, Seo 2013). Let M C H? be a minimal translation surface of type Il given by
the parametrization X (x, z) = (z, f(x) + g(2), z). Then the functions f and g are as follows:

flx) = ax+0b,

g(z) = \/1—|-a2/ ﬁ—c%"l
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where a, b, and c are constants.

We emphasize that the result proved by Seo, Theorem 3.2 of Seo 2013, implies that our result (Theorem
2) is not valid in the hyperbolic space context.

PRELIMINARIES AND BASIC RESULTS

Let """ be a connected Riemannian manifold. In the remainder of this paper, we will be concerned with
isometric immersions, ¥ : M" — WH, from a connected, n-dimensional orientable Riemannian man-
ifold, M™, into M. We fix an orientation of M ", by choosing a globally defined unit normal vector
field, &, on M. Denote by A, the corresponding shape operator. At each p € M, A restricts to a self-adjoint
linear map A, : T,M — T,M.Foreach1l < r < n,letS, : M" — R be the smooth function such that
Sr(p) denotes the r-th elementary symmetric function on the eigenvalues of A, which can be defined by
the identity

n
det(A, — M) = > (=1)" F5(p)Am*. (1)
k=0
where Sy = 1 by definition. If p € M"™ and {e;} is a basis of 7),M, given by eigenvectors of A, with
corresponding eigenvalues {);}, one immediately sees that

ST‘ = O-T()\la ERE} )‘n)a
where o, € R[X1,..., X,] is the r-th elementary symmetric polynomial on X7, ..., X,,. Consequently,
S, = Z Xiy -+ Ni,, where r=1,... n.
1<y < <ip <

In the next result we present an expression for the curvature S, of a translation hypersurface in the
Euclidean space. This expression will play an essential role in this paper.
Proposition 1. Let F' : @ C R™ — R be a smooth function, defined as F(x1,...,x,) = > iy fi(z),
where each f; is a smooth function of one real variable. Let M™ be the graphic of F, given in coordinates
by

n
P,z = S i+ F(n, - Tn)ensn. @)
i=1
The S, curvature of M is given by
1 n . . o
D R R D DR )] 3)
1<is <...<ir<n 1<m<n
mAi .. i
where the dot represents derivative with respect to the corresponding variable, that is, foreachj = 1,...,n,
- df; oF
one has f; = d—x](x]) = 8—@(@1, ey xp) and W2 =14 |VF|?

. .. oF . .
Proof. Let F' be as stated in the Proposition, denote by VF = > | 92 e; the Euclidean gradient of F’

and (, ) the standard Euclidean inner product. Then, we have
n .
VE=3) fie
i=1
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and the coordinate vector fields associated to the parametrization given in (2) have the following form

Oy
0xm

=em + fment1, m=1,...,n.

Hence, the elements G;; of the metric of M™ are given by

o dp\ .
Gz’j—<axiaw>—5ij+fz’fj>

implying that the matrix of the metric G has the following form
G=1,+(VF) VF,

where I, is the identity matrix of order n. Note that the i-th column of G, which will be denoted by G, has
the expression given by the column vector

G'=e¢; + fiVF. (4)
An easy calculation shows that the unitary normal vector field £ of M™ satisfies
W¢=eni1 — VF,
where W? = 1 + |VF|2. Thus, the second fundamental form B;; of M" satisfies

0%
oxtoxI

WB;j = <W€, > - <€n+1 — VF, 5z'jfz‘€n+1> = bij i,

implying that the matrix of B is diagonal

1 . .
B= W ~diag(f1,..., fn),
with ¢-th column given by the column vector
B = % e;. (5)

If A denotes the matrix of the Weingarten mapping, then A = G~ B. In (1), changing X by A~! gives

det(ANA — I) = zn:(—m—is,»x'.

i=1

Thus, we conclude that the expression for curvature S, can be found by the following calculation

1 d
-1)"rS, = —— det(NA — 1.
(=1) rld\ }A:O et( )
Note that
(C1)" " detG - Sy = L detG- L detpA-1) = =L 4B - @)
T A" ‘)\:o orldN\r ‘,\:0 ’
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Due to the multilinearity of function det, on its n column vectors, it follows immediately that

d < .
— det\B'—G',--- AB"—G" =S (-1)"det[G,---, B ,---,G",
dX =0 et| ] ;( )"~ det [ £z ]

leading to the conclusion

n

det (AB — G) =r! Z (-=1)" " det [G},--- ,B",--- B ... .G"]

T

d\" ‘/\:0 1<y <...<in<n
and thus
1 = 1 1 i "

1<iy << <n

Now, applying the expressions (4) and (5) in (6) we reach to the expression

n

1 3} . .
Sy _— Z fil...firdet[el+f1VF,...,eil,...,ei,,,,...,en+anF].

~ detG-WT

1<6, <. <ip<n

Calculating the determinant on the right in the equality above, we get

det[e; + fiIVE, ... L€ ....€i,....en+ [uVF] =
= 1+ Z fidet[er,....ei ..., VFE ... e, ... e
11 yeensl i-th term
= 1+ > f
1<i<n
QAL i

Consequently, the expression for S, in (7) assumes the following form

n

1 . . o
S Gag w2 e B0 3£
1St <..<irsn 1;&156717
Finally, using that det G = W?2 we obtain the desired expression
1 n .. . o
S’V‘:W Z fir oo fi.(L+ Z f)-
1<is <...<ir<n 1<i<n
Qi .y
RESULTS
In order to prove Theorem 1 we need the following lemma.
Lemma 1. Let fi, ..., f, be smooth functions of one real variable satisfying the differential equation

o —

S A i) - @) (B S (21) =0,
k=1
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where (3 is a positive real constant and the big hat means an omitted term. If fi #0, foreachi =1,...r
then

cos (— .-Gl VBx, + br>

T r—1 B pu (a a )
—2(a1,...,0r1
\ LK) = —In " +c
kzzl Jilex) — ay cos(axy/Bxy + by)
where a;,b;,c, i = 1,...r are real constants with a;,0,_2(ay,...,a,—1) # 0.

Proof. Since the derivatives f; # 0 it follows that fi(z1) ... fr(,) # 0. Thus dividing (8) by this product
we get the equivalent equation:

~ B+ sz(ﬂﬂk)

= =0,
k=1 fk (l'k)
.2
which implies, after taking derivative with respect to x; for each [ = 1,...r, that (W) =0,
1z
.2
1
thus w = a; for some non null constant a;. Thus, setting a; = —
filzi) a
Lﬁl) =a; foreachl=1,...,r
B+ fi (x)
which can be easily solved to give:
arctan filz) =q \/Bw + b; for some constant b;
VB
and consequently
1
filzy) = —a—l\/Bln|cos(al\/Bml +0)|+e, 1=1,...,r )

. 1 . . 1 — Y .
Now, since Y, _; — = 0 it implies that — = — or—2(® ar 1), from (9) it follows that
ay

Qy aj...ap_q

fr<:137~) _ O'r72(ala .. r,_cllrl) \/Bln ’ COS(CLT\/er I br)| Yo

ai...a
Consequently
aj...Qp—
r -1 cos <—J (la ! ; )\/er + br>
o) = L In r—2(Q1,...,0r-1 Yo
; Ti(a) ; ay b cos(agv/Brr + by)
wherec=c¢; + ...+ ¢, O

With this lemma at hand we can go to the proof of Theorem 1.
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Proof of the Theorem 1. From Proposition 1, we have that M™ has zero S, curvature if, and only if,

> a1+ X f2) =0 (10)

1§'Ll<<l,§n 1<k<n
k¢ {ig,n.ir}

In order to ease the analysis, we divide the proof in four cases.

Case 1: Suppose fl(xl) =0,Vi=1,...,n— 1+ 1. In this case, we have no restrictions on the functions
fn—T+27 sy fn Thus

n—r+1

U(z1,...,xn) = (T1,...,Tn, Z a;T; + Z fi(xj) +0b)

j=n—r+2

where a;,b € Rand forl =n —r+2,...,n, the functions f; : I; C R — R are arbitrary smooth functions
of one real variable. Note that the parametrization obtained comprise hyperplanes.

Case 2: Suppose fz(a:z) = 0,V: = 1,...,n — r, then, there are constants «; such that fZ = «4, for
1=1,...,n—r. From (10) we have

fn—?“-‘rl--'f;l(l—i_a%_'—”'+a2177‘) =0,

from which we conclude that f, = 0 for some k € {n — r +1,...n} and thus, this case is contained in the
Case 1.

Case 3: Now suppose f;-(mz-) =0,Vi=1,....,n—r —1and fk(ﬂﬁk) #£ 0, foreveryk =n—r,...,n.
Observe that if we had fi () = 0 for some k = n —r, ..., n the analysis would reduce to the Cases 1 and
2. In this case, there are constants «; such that fZ =q; forany 1 < i <n —r — 1. From (10) we have

Z focr o fu Fa(B+ fR) =
k=n—r
n—r—1
where 5 =1+ Z o and the hat means an omitted term. Then, from Lemma 1 we have that
k=1

cos (— Gnor: .- Gn_1 VBx, + bn>

n n—1
\/B Urfl(anfra ) anfl)
NACHERY s cos(ary/Frr + by) +c
k=n—r k=n—r k k k k
where ay_v,...,0n-1,bp_pr,...,bp, and ¢ are real constants, and a,_,,...,a,_1, and
Or—1(@n—r, ..., an_1) are nonzero.
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Case 4: Finally, suppose fi(z;) = 0, where 1 < i < kandn —k > r + 2, and f;(x;) # 0 forany i > k.
We will show that this case cannot occur. In fact, note that for any fixed [ > k + 1

> fil...ﬁ'r<1 + > f;i)

k4+1<iy <...<i,<n 1<m<n

mAi . i

D DR W N (R D

k+1<i7<...<ip._1<n 1<m<n
D yeeer b1 L MmALA] i
+ > fil---fz;<1+ > n
k+1<i;<...ip<n 1<m<n
i1, irFl mAiy,. i

Derivative with respect to the variable x; (I > k + 1), in the above equality, gives

7D SR U AN (RS SR )

k4+1<iy<...<ip_1<n 1<m<n
i10eeeripq L MAL L1
+ 2fifi E fir oo fi, = 0. (11)
k+1<ig<...<ip<n
P10 il

That is, if we set

A = > fued (1 X f2) and

k4+1<iy<...<ip_1<n 1<m<n
i1,y £l ML i

CEEED S T

then, it follows that A;, B; do not depend on the variable x; and we can write
Afi+2Biifi = 0. (12)

We have two possible situations to take into account: Case I. A; #~ 0, VI > k + 1, and Case II. there is an
{ > k + 1suchthat 4; = 0.

Case I. A; # 0: Under this assumption, there are constants a; ([ = k + 1,...,n) such that equation (12)
becomes f; + 20y f; f; = 0. Furthermore, it can be shown that for {li,..., L1} C{k+1,...,n}

G (fr. o fn) s T
) ) n — 2 13
axll . a$l7‘+1 ; flk flk mr:[1 flm ( )
— n
where
Grlfists oo fu) = WS = 37 fi fs 30 D),
Frlshi<..<ir<n L;:Lglgnl
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r+1
Since S, = 0 it follows that G, = 0, and using that H flk flk # 0 we obtain
k=1
T+1 . .. r+1 cee
fls fls H flm
r+1 [ r+1 f =1 oty
Z H # = ) i =0. (14)
k= m=1 JlnJln -
A\ H Jue i,

k=1

Now, for [ = 1y,... 1,1, substitute f; + 2c;f1f; = 0 in (14) to obtain the identity

or(ag,...,0q,0q,,,) =0 (15)
forany ly,...,0, 0,11 € {k+1,...,n}. Hence we conclude that,
Ur(ak+la s 7an) =
Ur+1(04k+1, e aOén) =

These equalities, from [Proposition 1, Caminha (2006)], imply that at most » — 1 of the constants oy (I >
k + 1) are nonzero. If o, # 0,..., ¢y, # 0 with m < r — 1, in the expression obtained for B;, making
Il #1,...,ly and taking derivatives with respect to the variables z;, ,...,x;, we get

~

L o~ o 2 ..
H f’j'O‘T*m(f’lf+l""7fl""’fll"."flm’..'7fn):0

Jj=l

foralll € {k+1,...,n} ~{li,....ln}. As f; # 0forall j € {l1..., 1}, we obtain that

~

O-Tfm(fk?-‘rla“‘7fl""7fl17“'7flm7""f:n):0

foralll e {k+1,...,n} ~{l,...,ln}. Consequently,

U'r—m(fk-i—lm"'>fl17"'7flm7"'7af'fl) =0
UT—m+1<fk+177"‘7fll7"‘7flm7”'77fn) = 0.
Since (n —k —m) — (r—m) =n—Fk —r > 2, at most r — m — 1 of the functions fl are nonzero, for

k+1<Il<nandl#l,...,ln, leading to a contradiction. So, o; = 0 forall j € {l;...,l,—1}, which
implies that f; is constant for all | € {k+1,...,n}. Now, again from equation (11) we get

Z fir - fi, =0, foranyl € {k+1,...,n}.
k+1<i]<...<ip<n

i1 yeenyip £l

From which, we conclude that

O-T(fk—l—la"'vfn) =0
O-T-‘rl(fk-i-la"'afn) = 0.
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Therefore, at most  — 1 of the functions fl (k+ 1 <1 < n) are nonzero, leading to a contradiction. Thus,
it follows that Case 4 cannot occur, if A; # 0 for every [.

Case A; = 0: In this case, we have Blflfl = 0 implying

A = 3 f;l...f;M<1+ 3 f;>=0 and

k41<iy;<...<ip_1<n 1<m<n

Qseeeyip 1L MAL ] i1
Bl = E fil...firzo.
k+1<ii<...<ip<n
i1,y ip L
Derivative of A; with respect to variable zg, fors =k + 1,...,n and s # [, gives

foooY hedl(iv X £)

k+1<i)<...<ip_g9<n k+1<m<n
i1, F LS MmFAL,S, i1, o
+2ffs D> fu.. i =0 (16)

k4+1<iy<...<ip_1<n
DL eeny ip_1#l,s

Now, for i1,...,i, € {k+ 1,...,n} with 4y,...,4,,[ distinct indices, taking the derivatives of B; with
respect to ;, , . .., Z; gives

Consequently, for at most  — 1 indices, say i1, ..., %.—1, we can have fZm #0,(m=1,...,r—1),and
J;=0foreveryj =k+1,...,n, with j # l,i1,...,40—1. Thus f, # 0, with 7,, # [, together with

equation ggﬁi = ( implies that the sum

> fiv oo fi_, =0,

k41<ii<...<ip_1<n
LA ip_17L0m

Now, if f] = 0 we have by equation (16) that

S G f =0

k4+1<iy1<...<ip_1<n
ey G177

Therefore,

> Fioif =0, j=k+1,... nandj#I

k+1.§i1<...<ir71§n
From which, we conclude that
Orr(firtseeesfro ) = 0
Ur(fk+17"'7fl7"'7fn) = 0.

Thus, for at most » — 2 (r > 3) indices we must have fj # 0, forevery j = k+1,...,n,and j # . This
contradicts the hypothesis assumed in Case 4. Hence, A; = 0 cannot occur. Since the case A; # 0, cannot
occur as well, it follows that Case 4 is not possible. This completes the proof of the theorem. O
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Proof of the Theorem 2. Let M™ C R"! be a translation hypersurface with constant S,. curvature. First,
note that

oI i S
P H(T+4_2j)'Hfikfik‘W+22 . (17)
" b j=1 k=1

We have as a consequence of the proof of Theorem 1, see (13), the identity

LG (f1,. .., f) (it U
) bl — 2
Oxy, -+ 0xy, ., Z I Ju H fu,
’ k=1 ik
n .. .. .
where G, (f1,..., fn) = Z fiv oo fi, (14 Z f?). With this we conclude, by Proposition 1,
1<ir <...<ip<n Jsisn
that
r+1 r+1
. o+l (Wr+2S )

. —r r
H(r+4_2]).Hflkflk.W Sy W
j=1 k=1 r+

,’A+1 . .. T+1 coe
= 2> | i h ] Fu |- (18)
k=1 m=1
m£k
Now, we have two cases to consider: r odd and r even.
T+1 . .
Case r odd: Suppose that there are [y, . .., [, such that H fi. fi. # 0. Then,
k=1
T+1 . . r+1 cee
Z fi. 1. H fi,
r+1 s=1 m=1
. — m#s
Qre=][r+a-2j)- WS, = 2——
1 -
’ I/ 7
k=1

r+1 r+1
i,

= 2 -
Z Hflmflm

k=1 \ m=1
m#k
Therefore,
ar+lQr
— =0.
Oxy, -+ 0wy,
On the other hand, using (17) we obtain
ar-i-lQ r+l1 r+l L
W = H(T‘ "‘ 4 - 2]) H(—T "‘ 2 - 22) H flk flkW_3T_257».
1 Tt =] i=1 k=1
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Since r is odd, we conclude that r +4 — 25 == 0 and —r + 2 — 25 £ 0, for any j € N and, therefore, S, = 0.

Now, if for at most r indices we have fj # 0 for example j = [y, ..., [, then
W28, = fi, -+ fi.a,
for some constant o # 0. Thus,
(r+2W" fi, fi, Sy = fo, Ju -+ Jr
If fll = 0, then S, = 0. Otherwise,
(r+2W2f 1.8 = - H.W?a = (r+2)f,(f,) = F, W2

As r > 1 implies that W does not depend on the variables x;,, ..., x;,, it follows that fl2 =...= fl =0
leading to a contradiction.

Case r even: In this case, there is a natural ¢ > 2 such that » = 2¢. Then r + 1 > ¢ + 2 and consequently

r+1
[[(r+4-2k)=0.
k=1
Therefore, by (18) we get
T+1 . . T+1 cee
oAb I1 Fu | =0
k=1 ::;1
r+1
Suppose that there are [y, ..., [+ such that H flk # 0. In this case,
k=1

r+1 r+1 :]'f‘lm

2| 575

m#k

=0.

We conclude that for each /; there is a constant «;, such that fl = oy, fl fl Now, it is easy to verify (see
(11)) that
8G7’(f17 e 7fn)

&rlm
= :].C'lr_*_1 Grfl(flw"aﬁa"'?fn)
+ 2flr+1ﬁr+1 Z fh e fzr .

1<i1 <...<ip<n
IR )

(T + 2)flr+1ﬁr+1WTS7’ =

Therefore,

r+2W S, =ay,, Groa(frooo o fos - )42 > Fou i

1<i|<...<ir<n
[T e

An Acad Bras Cienc (2016) 88 (4)



2052 BARNABE P. LIMA et al.

Differentiating this identity with respect to the variable x;, , ,, gives

(T + 2) r flr+1 ﬁr+1 WT?ZS’/’ - O lmplylng that ST’ =

r—+1
Finally, suppose that for any (r + 1)-tuple of indices, say l1, . . ., [, 11 it holds that H f1, = 0. Then,
k=1

O-T-l-l(fl? .. 7fn)
Ur+2(f17-~-7fn) =

Implying that at least n — r derivatives f; vanish, i.e., there are at most r functions such that fj = 0 for
example j = [, ..., l,.. Thus, by Proposition 1

W28, = fi, - fi.a

r

for some constant o # 0. We conclude that .S;. = 0 analogously to the way it was presented for the case r
odd. O
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