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Abstract: The Amazon floodplain is home to an extremely high diversity of fish, with 
lakes playing an important role in the establishment of this biological richness. These 
lacustrine environments are subject to constant fluctuations caused by the annual flood 
pulse, with local factors and other regional patterns also contributing to the variation in 
fish community structure. The present study verified how local (depth and transparency 
of the water, the size and species composition of the macrophyte stands) and regional 
factors (spatial distribution of the stands and the hydrological phase) influence the 
structure of the fish community of the floodplain lakes of the Môa River, in northern 
Brazil. Fish species richness was influenced by the depth of the water and the spatial 
distribution of the macrophyte stands. Fish species composition was influenced by local 
environmental variables, spatial structure, and the hydrological phase. However, variation 
partitioning indicated that only the hydrological phase explained the variation in fish 
composition. These findings indicate that the local environment, the spatial structure, 
and the hydrological phase drive changes in the structure of the fish communities 
associated with aquatic macrophytes in the floodplain lakes of the Amazon basin.

Key words: Upper Juruá River, Môa River, Acre, hydrological periods, environmental fac-
tors, metacommunity.

INTRODUCTION
Floodplains support a high diversity of both 
plants and animals, which is underpinned by 
the spatiotemporal heterogeneity of these 
environments, and is controlled, in turn, by the 
annual fluctuations in the hydrological cycle 
(Junk et al. 1989, 2014, Súarez et al. 2001). The 
alternation between low- and high-water phases 
is a regional-level factor in floodplain ecology, 
resulting in the connection of isolated lakes 
during the high-water phase, which supports the 
dispersal of aquatic organisms, increases the 
quantity and diversity of resources, and alters 

the physicochemical conditions and complexity 
of the environment (Fernandes et al. 2009, Junk 
1989, 2014, Thomaz et al. 2007, van der Sleen & 
Rams 2023).

Lakes are common features of Neotropical 
floodplains due to the considerable number 
of meandering rivers found in this region, and 
their typical geological formations (Goulding 
1980). These environments contain a large 
part of the biodiversity of the floodplain, by 
sustaining aquatic habitats during the low-
water phase. During this phase, the floodplain 
lakes become favored sites for the development 
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of many different aquatic taxa due to their 
relative abundance of feeding resources and 
refuges from predators, within their complex 
habitat structure, in comparison with the 
principal channel of the river (Junk et al. 1989, 
Fernandes et al. 2009). The spatial arrangement 
of the lakes on the floodplain also influences 
the capacity of different fish species to colonize 
these environments, because lakes further away 
from the river channel tend to be isolated for 
longer periods during the low-water phase. 
These lakes can only be reached by species 
with an enhanced dispersal capacity, and only 
when these lakes are connected to the river 
channel (Penha et al. 2017, Virgilio et al. 2022). 
Lakes closer to each other may also have a more 
similar species composition, due to either the 
spatial similarities of the local environment 
or the presence of fewer geographic barriers 
to dispersal (Nekola & White 1999). Given 
these processes, the spatial structure of these 
environments may often be an important 
regional ecological factor determining the fish 
species composition of floodplain lakes (eg, 
Virgilio et al. 2022).

Aquatic macrophytes contribute to the 
complexity of the habitat structure of oxbow 
lakes (Piedade & Junk 2000, Maltchik et al. 
2007, Thomaz et al. 2008, Junk et al. 2012). The 
dynamics of the colonization of oxbow lakes 
by aquatic macrophytes is also dependent on 
the hydrological cycle (Bonetto 1975). These 
plants are the foundation of food chains (Pott 
& Pott 2000, Meerhoff et al. 2007), and they 
also contribute to the formation of commensal 
interactions among different groups of aquatic 
organisms, such as the zooplankton (Gazulha et 
al. 2011, Cabral et al. 2021), macroinvertebrates 
(Takeda et al. 2003), and fish (Lopes et al. 2015, 
Freitas et al. 2022, Virgilio et al. 2021). Macrophyte 
stands provide foraging sites for many fish 
species, as well as protection from potential 

predators (Heino 2000, Pelicice et al. 2005, Cunha 
et al. 2011). The submerged parts of these plants 
form complex habitats, including stems, roots, 
and leaves, which facilitate the colonization of 
algae and associated invertebrates (Junk 1973, 
Cunha et al. 2011). Aquatic macrophytes also 
make a significant contribute to the quality of the 
water by, for example, increasing the amount of 
oxygen (O2) dissolved in the water. This facilitates 
the colonization of these environments by fish 
species that are sensitive to fluctuations in the 
availability of O2 or other ecological parameters 
(Sánchez-Botero et al. 2001, Soares et al. 2006). 
Studies of a number of different floodplains (eg, 
Lopes et al. 2015, Nonato et al. 2021, Virgilio et 
al. 2021, 2022) have shown that the structural 
complexity of macrophyte stands and their 
contribution to the improvement of conditions 
in the aquatic environment can drive an increase 
in fish species richness. The macrophyte-fish 
relationship may be so intimate that the species 
composition of the macrophyte stands may 
even correlate with that of the fish species that 
occupy this vegetation (eg, Suçuarana et al. 2016). 
Given this, structural attributes of macrophyte 
stands, such as their biomass, species richness 
and composition, may be important local 
ecological factors determining the variation in 
the composition of the associated fish fauna 
(Lopes et al. 2015, Suçuarana et al. 2016, Nonato 
et al. 2021, Virgilio et al. 2021, 2022).

Other local environmental variables, such 
as the transparency and depth of the water, are 
also important determinants of the colonization 
of macrophyte stands by fish, contributing to 
niche-based species filtering (Miranda & Lucas 
2004, Tonn et al. 1990). Predation rates tend 
to be linked to the transparency of the water 
(Ortega et al. 2020), given that visually-oriented 
piscivorous fish species tend to occur in clear 
waters, whereas small fish may use the cover 
provided by more turbid water to hide from 
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predators (Tejerina-Garro et al. 1998, Figueiredo 
et al. 2015, Santos et al. 2017). Studies of 
floodplain environments have also shown that 
depth influences both the species richness 
(Fernandes et al. 2010, Lopes et al. 2015) and 
composition of fish communities (Virgilio et al. 
2022). Depth adds to the space available within a 
lake, with different depths having varying effects 
on species composition (Woolnough et al. 2009, 
Fernandes et al. 2010).

Given these considerations, and the 
importance of the relationship between fish and 
aquatic macrophytes, the present study verified 
how local (depth and transparency of the water, 
and the characteristics of the macrophytes – 
species richness and composition, biomass, 
and stand size) and regional factors (the 
hydrological cycle and spatial distribution of 
the stands) influence the structure of the fish 
community associated with the macrophyte 
stands found in the lakes of the Môa River 
floodplain. We evaluated the hypothesis that 
these local and regional factors have differential 
effects on the structure of the fish community 
associated with the macrophyte stands. We 
expected local environmental variables and the 
hydrological phase to have a greater influence 
on the fish composition of the macrophyte 
stands than their spatial distribution. We 
expected this because of the relatively small 
spatial scale of the study, which minimizes the 
potential influence of geographic barriers on 
the different fish faunas, and because the flood 
pulse is the principal factor driving shifts in the 
composition of different taxonomic groups on 
the floodplain (Thomaz et al. 2007, Penha et al. 
2017, Virgilio et al. 2022). Finally, we examined 
the relationship between fish species richness 
and the local and regional factors. We expected 
fish species richness to be influenced positively 
by the biomass and species richness of the 
macrophytes (Lopes et al. 2015, Nonato et al. 

2021, Virgilio et al. 2021, 2022). We also expected 
fish species richness to be correlated positively 
with the depth of the water, following a species-
area relationship (Fernandes et al. 2010), and 
negatively with its transparency, given the 
prevalence of predators (Tejerina-Garro et al. 
1998, Figueiredo et al. 2015).

MATERIALS AND METHODS 
Study area
The Môa River is one of the principal tributaries 
of the Juruá River in the southwestern Amazon 
basin of northern Brazil. The floodplain of the Môa 
River present hundreds of oxbow lakes, which 
form lentic ecosystems that are permanently 
or temporarily connected to the channel of the 
river (Acre 2012; Figure 1). The Môa River has two 
well-defined hydrological phases: a period of 
low water from June to October, and a period of 
high water (the flood phase) from November to 
May, when the level of the river reaches over 5.5 
m (Figure S1). In the present study, the low water 
phase was sampled in September and October 
2015, and the flood phase was sampled between 
March and May 2016.

Sampling
We sampled fish in three oxbow lakes located on 
the floodplain of the lower Môa River (Figure 1), 
in the municipality of Cruzeiro do Sul, Acre state, 
Brazil. In each lake, we sampled five different 
stands of macrophytes of distinct types (based 
on the predominance of one or a few plant 
species) during the day. We collected fish using 
a floating net measuring 1.5 m × 1.5 m, with a 
5-mm mesh, which we deployed nine times 
during the day and nine times during the night 
at each stand. The fish captured in this net were 
anesthetized with Eugenol solution, fixed in 10% 
formaldehyde, and subsequently conserved in 
70% alcohol. 
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The fish specimens were identified to the 
lowest possible taxonomic level using the 
taxonomic keys of Silvano et al. (2001) and 
Queiroz et al. (2013), as well as comparisons with 
specimens collected previously from the upper 
Juruá River and deposited in the collection of 
the Ichthyology Nucleus of the Upper Juruá 
Valley (Núcleo de Ictiologia do Vale do Alto Juruá 
– NIVAJ), in Cruzeiro do Sul, Acre (Brazil). The 
species list followed the classification of Fricke 
et al. (2022). The abundance of each fish species 
was summed across the nine floating net passes 
for a given macrophyte stand in a given lake to 
form a sample. 

We estimated visually the relative abundance 
of each macrophyte species using a 0.5 m × 0.5 
m square, dropping it haphazardly six times on 
each macrophyte stand (the abundance data 

were summed for each site) after the collection 
of the fish specimens. The macrophytes found 
within the square were also collected and 
weighed (g; wet weight of the roots (submerged 
portion), stems, and leaves (emerged portion)). 
The species were identified using the taxonomic 
keys of Pott & Pott (2000) and Guterres et al. 
(2008). The following environmental variables 
were measured at each macrophyte stand: the 
depth (m; using a graduated ruler), the area of 
the stand (m²; using a surveyor’s tape), and the 
transparency of the water (m; using a Secchi 
disk).

Ethics committee
The collection of the specimens was authorized 
legally by the permit issued by the federal 
Instituto Chico Mendes de Conservação da 

Figure 1. Location of the Vermelho, Antas, and Grande lakes on the floodplain of the Môa River in Acre state, 
northern Brazil.
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Biodiversidade (license number 55808-2, 
emitted to TRFJ).

Data analysis
We square-root transformed the macrophyte 
species composition matrix, and then applied a 
Principal Coordinates Analysis (PCoA; Legendre 
& Legendre 2012). We also applied the Lingoes 
correction to minimize the influence of negative 
eigenvectors on the PCoA (Legendre & Legendre 
2012). We then used the envfit routine (Oksanen 
et al. 2018) to evaluate the contribution of each 
macrophyte species to the PCoA. We represented 
the dissimilarities in the macrophyte species 
composition by using a percentage difference 
index, and retained the first two PCoA axes for 
interpretation. 

We used a Principal Coordinates of 
Neighboring Matrices analysis (PCNM; Borcard 
& Legendre 2002, Borcard et al. 2004) to assess 
the influence of the spatial distribution of the 
macrophyte stands on fish community structure. 
For this, we compiled Euclidean distance 
matrices with the geographic coordinates of each 
macrophyte stand. We then computed a PCoA 
for a truncated distance matrix that connected 
all the macrophyte stands, that is, the greatest 
distance in a minimum-spanning tree (Borcard 
& Legendre 2002). Finally, we selected the PCNM 
axes for all the analyses by forward variable 
selection. Only PCNM axes 1 and 3 were selected 
for analysis. 

We developed a Generalized Linear Model 
(GLM) of fish species richness with a Poisson 
distribution by testing all the potential 
combinations of explanatory variables in the 
glmulti package (Calcagno & de Mazancourt 
2010). This model selection tool automatically 
generates all the possible models (that are 
within the user-defined constraints) and 
identifies the best models based on the Akaike 
Information Criterion (AIC). The best model 

identified here was the one with the following 
explanatory variables: (i) depth of the water, 
(ii) size of the macrophyte stand, and (iii) 
PCNM axis 3. We checked the residuals of the 
model visually for the assumptions of normality 
and homoscedasticity, and used the Variance 
Inflation Factors (VIFs) between the explanatory 
variables to assess for potential multicollinearity 
(Zuur et al. 2010). We considered variables with 
a VIF of over 3 as collinear (Zuur et al. 2010), 
although none of the explanatory variables 
had a VIF value higher than 3. We assessed the 
potential spatial autocorrelation in the GLM 
residuals using a Mantel correlogram, although 
no spatial autocorrelation was detected in this 
analysis. We used Nagelkerke’s pseudo-R² as a 
measure of fit.

We employed a Distance-Based Redundancy 
Analysis (db-RDA; Legendre & Anderson 1999) 
to assess the effects of the local and regional 
environmental variables on fish species 
composition. These local variables were (i) 
the depth and transparency of the water, (ii) 
the species richness and composition, and 
weight of the macrophyte stands, and (iii) the 
scores of the PCoA 1 and PCoA 2 axes of the 
macrophyte species composition, while the 
regional variables were (i) the hydrological 
phase (a categorical variable with two levels: 
low water and flood), and (ii) the PCNM axes. We 
standardized the fish composition (response) 
matrix by the Hellinger distance to reduce 
the influence of abundant species, and then 
applied the Euclidean distances to represent 
the dissimilarities among the sampling sites 
(Peres-Neto & Legendre 2010, Legendre & De 
Cáceres 2013). We used the Lingoes correction 
to eliminate negative eigenvectors from the db-
RDA. We verified the multicollinearity in the set 
of local environmental variables through their 
VIF values (Zuur et al. 2010), and we removed the 
depth variable from the db-RDA because it had 
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a VIF value of over 3. We evaluated the statistical 
significance of the global and db-RDA axes using 
permutation tests, with 9999 permutations. 
We evaluated the relative contributions of the 
local and regional variables to the db-RDA with 
the envfit procedure (Oksanen et al. 2018). The 
significance of the species associations with 
the environmental variables was determined by 
9999 permutations.

Finally, we ran a Partial Redundancy 
Analysis (pRDA), based on a distance matrix, to 
assess the exclusive and shared contributions 
of the set of local and regional variables on the 
composition of the fish assemblage (Borcard 
& Legendre 2002). In this analysis, the regional 
variables were divided between spatial structure 
– PCNMs – and the hydrological phase. We 
used the Euclidean distances of the Hellinger-
standardized abundance data (response matrix) 
for the pRDA, and included only the variables 
selected above to represent the set of local 
variables and the PCNM. All these analyses were 
implemented in the vegan package (Oksanen et 
al. 2018) of the R software (R Core Team 2022). 
We adopted a significance level of 5% for all the 
analyses.

RESULTS
Thirteen species of macrophyte were recorded 
in the present study, belonging to 11 families 
(Table SI). The species with the highest mean 
percentage coverage in both the low water and 
flood phases was Pistia stratiotes L., with 51.88% 
of the cover in the low water and 30.28% in the 
flood phase. Ludwigia helminthorrhiza (Mart.) 
H. Hara was the macrophyte with the second 
highest mean percentage cover in the low water 
phase (18.42%), whereas in the flood phase, 
Ludwigia sedoides (Humb. & Bonpl.) H. Hara had 
the second-highest percentage cover (20.33%). 
The negative PCoA 1 scores represent macrophyte 

stands with a greater relative cover of Paspalum 
repens P. J. Bergius (correlation calculated by the 
envfit routine (Renv = -0.997; P = 0.001), while the 
positive scores represent stands with a greater 
relative cover of Cyperus blepharoleptos Steud. 
(Renv = 0.992; P = 0.001) and Pistia stratiotes (Renv 
= 0.975; P = 0.001). The positive PCoA 2 scores 
represent macrophyte stands with a greater 
relative cover of Justicia sp. (Renv = 0.998; P = 
0.034) and Ludwigia helminthorrhiza (Renv = 0.975; 
P = 0.001). Ludwigia sedoides was associated 
negatively with both PCoA 1 (Renv = -0.816; P = 
0.001) and PCoA 2 (Renv = -0.578; P = 0.001), which 
indicates that macrophyte stands with negative 
scores on both these axes had a greater cover of 
this macrophyte species (Table I).

The mean depth of the water was 1.31 m (SD 
± 0.74) during the low water phase and 3.20 m 
(±1.18) during the flood phase. The transparency 
of the water varied minimally between these 
periods (low water: 0.88 m ± 0.17 m; flood: 0.91 
m ± 0.08 m).

A total of 2,767 fish specimens were collected 
from the three study lakes, representing 
four orders (Characiformes, Cichliformes, 
Gymnotiformes, and Siluriformes), 18 families, 
and 42 species. The characiforms predominated, 
with a total of 2,729 individuals, followed by the 
cichliforms, with 14 individuals (Table SII). Fish 
were considerably more abundant during the 
low water phase, with a total of 2,102 individuals, 
while only 665 individuals were collected during 
the flood phase. The most abundant species 
during the low water phase was Bryconops 
cf. melanurus, with 959 individuals, while 
Aphyocharax sp. (263 individuals) was the most 
abundant species in the flood phase.

The multiple regression had a high level 
of predictive power, explaining 92.2% of the 
observed variation in fish species richness 
(Nagelkerke pseudo-R² = 0.922, P < 0.001). The 
macrophyte stands sampled in deeper water 
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presented lower fish species richness (Figure 
2a), while larger stands and those with more 
positive PCNM 3 scores presented higher fish 
species richness (Figure 2b, c).

The distance-based Redundancy Analysis 
(db-RDA) indicated that the composition of the 
fish community was influenced by both local 
and regional variables (F9, 18 = 1.73; P < 0.001). 
The first and second db-RDA axes accounted for 
approximately 25.04% of the total variation in 
the composition of fish species and were both 
significant. The db-RDA 1 axis explained 16.49% 
of the variation in fish species composition (F1, 

18 = 5.54; P < 0.001), and was influenced by the 
hydrological phase, the size of the macrophyte 
stands, and their spatial distribution (PCNM 
3). The db-RDA 2 axis explained 8.56% of 
the variation (F1, 18 = 2.88; P = 0.039), and was 
influenced by the spatial distribution of the 
macrophyte stands (PCNM 1) and the stands 
with a greater relative cover of Justicia sp. and 
L. helminthorrhiza (positive PCoA 2 scores for 
macrophyte composition). Hemigrammus 
hyanuary Durbin 1918, Elachocharax cf. pulcher, 

and Acestrorhynchus microlepis (Jardine 1841) 
tended to be more abundant during the low 
water phase, and in the larger and heavier 
macrophyte stands. By contrast, Steatogenys 
elegans (Steindachner 1880), Poptella sp., 
Aphyocharax sp., Leporinus sp., Moenkhausia 
melogramma Eigenmann 1908, and Monocirrhus 
polyacanthus Heckel, 1840 tended to be more 
abundant in the flood phase, and in stands with 
higher PCNM 3 values (Figure 3).

The Partial Redundancy Analysis (pRDA) 
indicated that the local environmental variables 
(adjusted R2 = 0.00; P = 0.599) did not influence 
the variation in the composition of the fish 
community among the macrophyte stands. 
However, the hydrological phase (adjusted 
R2 = 0.13; P = 0.001) and spatial distribution of 
the macrophyte stands (adjusted R

2 = 0.04; P = 
0.033) did both contribute significantly to the 
variation in the composition of the fish species 
in the lakes. Nevertheless, the shared fractions 
were relatively low, with only 3% and 2% of the 
variation in fish composition being explained by 
both spatially-structured local environmental 

Table I. Macrophytes species average percentage association with Principal Coordinate Analysis axes quantified 
with ‘envfit’ routine. Significance was assessed with 9,999 permutations. Statistically significant associations (R² 
with P ≤ 0.05) are highlighted in bold. 

Species PCoA 1 PCoA 2 R2 P

Ludwigia sedoides -0.81590 -0.57819 0.8719 0.001

Ludwigia helminthorrhiza -0.22228 0.97498 0.8607 0.001

Pistia stratiotes 0.97513 -0.22161 0.7423 0.001

Cyperus blepharoleptus 0.99167 -0.12877 0.5436 0.001

Paspalum repens -0.99753 0.07031 0.5213 0.002

Justicia sp. -0.05463 0.99851 0.2366 0.034

Hydrocotyl ranunculoides 0.99593 -0.09012 0.0774 0.365

Ricciocarpos natans 0.55097 -0.83453 0.0530 0.519

Ludwigia sp. -0.50639 0.86231 0.0504 0.550

Azolla filiculoides 0.58334 -0.81223 0.0424 0.593

Salvinia minimala 0.62018 -0.78446 0.0392 0.593

Polygonum spectabile -0.17221 -0.98506 0.0151 0.839
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variables, and by the shared fraction between 
the phases and the local environmental 
variables. This means that approximately 79% of 
the variance in the fish species composition of 
the macrophyte stands remained unexplained.

DISCUSSION 
The results of the present study showed that 
the hydrological phase had a greater effect 
on the characteristics of the fish community 
associated with aquatic macrophytes than 
either the local environmental variables or the 
spatial distribution of the macrophyte stands. 
Only the depth of the water, and the size and 
spatial distribution of the macrophyte stands 
exerted an influence on fish species richness. 
By contrast, local variables, such as the species 
composition and size of the macrophyte stands, 
and their wet biomass, most influenced the 
variation in the species composition of the fish 
communities. Overall, then, the characteristics of 
the fish communities were influenced primarily 
by the hydrological phase, while the spatial 
distribution of the macrophyte stands was only 
important for the fish species composition in 
the case of a few of the stands, during the flood 
phase.

The macrophyte stands surveyed during the 
present study were relatively homogeneous, with 
a predominance of only one or a few species, and 
Pistia stratiotes having the greatest mean cover 
in both hydrological phases. The predominance 
of this species is common in the oxbow lakes of 
the study region, i.e., throughout the state of Acre 
(Cabral et al. 2021). Secondarily, two Ludwigia 
species also provided relatively abundant cover, 
with L. helminthorrhiza prevailing during the low 
water phase, and L. sedoides during the flood 
phase. This alternation is likely related to the 
drought survival strategy of  L. helminthorrhiza 
(Piedade et al. 2010, Bedoya & Madriñán 2015). 
The macrophytes recorded in this study varied 
considerably in their morphology, providing a 
rich diversity of microhabitats for the associated 
fish fauna (Dibble & Thomaz 2009, Lopes et al. 
2015).

The high levels of fish diversity found in the 
oxbow lakes surveyed in the present study are 
typical of the pattern observed in most lakes 
on the Amazon floodplain (eg, Silva et al. 2013, 
Röpke et al. 2016, Virgilio et al. 2021, 2022). The 
predominance of characiforms is a common 
pattern, which has been recorded in numerous 
studies of the fish associated with macrophyte 
stands in floodplain lakes (Pelicice et al. 2005, 

Figure 2. Relationship between fish species richness and the depth of the water (a), the size of the macrophyte 
stand (b), and PCNM3 (c) in the oxbow lakes surveyed on the Môa River in Acre, Brazil. The thick lines show the 
curves of the fitted values, while the gray areas indicate the 95% confidence interval.
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Virgilio et al. 2022). This reflects the many small-
bodied species found in this order, such as the 
“piabas” (eg, Hyphessobrycon sp., Hemigrammus 
bellottii, Moenkhausia mikia, Ctenobrycon 
spilurus), which use macrophyte stands for 
protection, foraging, feeding, and reproduction 
(Sánchez-Botero et al. 2003, Pelicice et al. 2005). 
During the low water phase, most oxbow lakes 
become disconnected from the principal river 
channel, forming closed ecosystems that are 
unable to exchange their fish with the river 
(Penha et al. 2017, Virgilio et al. 2022). As a result, 
many small species, such as Bryconops cf. 
melanurus and Carnegiella myersi Fernández-
Yépez 1950, use the dense substrate provided 
by the roots of the macrophytes as a refuge 
from piscivorous fish such as Acestrorhynchus 
microleps (Rodríguez & Lewis 1997, Sánchez-
Botero et al. 2003, Pelicice et al. 2005).

In the present study, the fish species richness 
was influenced significantly by local (negatively 
with depth and positively with macrophyte 
stand size) and spatial factors  (negatively with 
the PCNM3). The depth of the water acts as an 
environmental filter for the fish communities in 

larger aquatic ecosystems, such as rivers and 
lakes, given that only a few species, such as large 
predators, are capable of inhabiting deeper 
waters effectively (Miranda 2011, Arantes et al. 
2013, Soares et al. 2021). The fact that the larger 
macrophyte stands tend to have higher species 
richness may be accounted for by the typical 
species-area relationship (MacArthur & Wilson 
1967, Drakare et al. 2006), given that larger stands 
will tend to have more habitats, and greater 
environmental and structural heterogeneity 
which will favor a higher number of fish species. 
The influence of the spatial distribution of the 
stands may be related to their role as dispersal 
mechanisms (Schiesari et al. 2003, Virgilio et 
al. 2022). When these stands become detached 
during the flood and ebb phases, they can take 
the associated fish fauna with them (Schiesari 
et al. 2003, Virgilio et al. 2022).

The relative abundance of fish observed 
in the low water phase in comparison with the 
flood phase may be related to an increase in 
the density of the fish caused by the reduction 
of the available habitable area. Fish cannot 
disperse across the floodplain during the low 

Figure 3. Variation in the 
composition of the fish 
community in relation to 
the environmental variables 
– transparency of the water, 
macrophyte stand size, wet 
weight, species richness 
and composition (PCoA), 
spatial variables (PCNM), 
and the hydrological phase 
– ordered by the distance-
based Redundancy Analysis 
(db-RDA).
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water phase because they are isolated in the 
oxbow lakes, leading to an increase in the catch 
per unit of effort (Petry et al. 2003, Penha et al. 
2017, Virgilio et al. 2022). During the flood phase, 
the connection of the lakes to the river channel 
allows the fish to disperse across the floodplain 
in search of refuges and feeding resources, 
which tends to reduce the abundance of fish 
and their species richness in the lakes (Penha 
et al. 2017, Virgilio et al. 2022).

While the transparency of the water had 
no effect on the fish species composition in 
the present study, the variables related to the 
structure of the macrophyte population had a 
clear influence on the fish community. Local 
environmental variables are considered to be 
limiting factors for fish, as observed in many 
previous studies of the lakes of the Amazon 
floodplain (eg, Röpke et al. 2016, Virgilio et al. 
2021, 2022). The structure of the macrophyte 
stand is crucial to the success of many fish 
species, given that more heterogeneous 
stands tend to have a greater diversity of plant 
species and lifeforms, providing greater habitat 
complexity in the roots and other submerged 
structures (Grenouillet et al. 2002, Padial et al. 
2009, Virgilio et al. 2021, 2022).

The seasonal dynamics of the rivers of the 
Amazon floodplain determine the patterns of 
fish community structure in its lakes, given that 
the transition from the low water to the flood 
phases causes shifts in the ecosystem at both 
local and regional scales (Thomaz et al. 2007, 
Junk et al. 2014, Virgilio et al. 2021, 2022, van 
der Sleen & Rams 2023). In the present study, 
the hydrological phase and spatial distribution 
of the macrophyte stands were the ecological 
factors that best explained the variation in the 
structure of the fish communities, considering 
the influence of the pure fractions in the 
partitioning of the variation. During the low 
water phase, the loss of connectivity constitutes 

a physical barrier to dispersal, which prevents 
the fish from exiting the lake, and intensifies 
many ecological interactions, such as predator–
prey relationships (Fernandes et al. 2009, Virgilio 
et al. 2022). Extended periods of drought may 
also alter the physicochemical conditions of 
a lake, for example, shallower waters tends 
to be warmer, modifying the entire vertical 
temperature gradient of the lake, which will lead 
to a reduction in oxygen concentrations, thereby 
excluding the fish species that are intolerant of 
low dissolved oxygen concentrations or anoxic 
conditions (Petry et al. 2003). During the flood 
phase, the lateral expansion of the river removes 
the physical barriers, allowing the fish that 
were previously isolated to disperse across the 
floodplain (Thomaz et al. 2007, Bozelli et al. 2015). 
In addition, the supply of feeding resources is 
increased by the access to new items provided 
by the flooded forest (Junk et al. 1989, 2014). 
Finally, the flood pulse homogenizes abiotic 
conditions across the floodplain, by mixing 
the physical and chemical conditions of the 
river and the lakes (Thomaz et al. 2007, Gomes 
et al. 2012, Bozelli et al. 2015). The potential 
homogenizing effect on the composition of the 
fish community may be reflected in the fraction 
shared between the hydrological phases and 
the local environmental variables. Furthermore, 
a spatially-structured environmental variation 
represented by the shared fraction between 
space and local environmental variables. 
Although the significance of the contribution 
of the shared fractions to the partitioning was 
not verified, they represented only a very small 
proportion of the variability in the composition 
of the fish community in the present study.

The local environment, habitats, and the 
hydrological phase are factors that explain the 
variation in the structure of the fish communities 
of the oxbow lakes of the Amazon floodplain. The 
shift between the low water and flood phases 
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alters connectivity, affects environmental 
variables, and the biotic interactions in the 
oxbow lakes (Thomaz et al. 2007, Fernandes et 
al. 2009, Petsch 2016). These factors shape the 
fish communities of the floodplain, favoring 
fish communities of a specific composition that 
are characteristics of the different hydrological 
phases, and are essential for the maintenance 
of the aquatic biota.
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