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ABSTRACT

Dockyards and harbors are recognized as being important locations where sediment-associated pollutants can

accumulate, which constitutes an environmental risk to aquatic life due to potential uptake and accumulation

of heavy metals in the biota. The aim of this paper is to assess the concentrations and the effects of some

heavy metals in the benthic foraminifera assemblage in Niterói Harbor. Low concentrations in the benthic

foraminifera as well as the dominance of indicative species such asAmmonia tepida, Buliminella elegantissima

and Bolivina lowmani can be associated with an environment under stress. In addition, the occurrence of test

abnormalities among foraminifera may represent a useful biomarker for evaluating long-term environmental

impacts in a coastal region.
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INTRODUCTION

Coastal areas, particularly docklands and harbors

have been described in the international literature

as typical locations where sediment-associated pol-

lutants can accumulate due to anthropogenic activi-

ties. Ecological and environmental consequences of

contamination produce complex problems and these

need to be resolved in order that exposed habitats

may be protected. Guanabara Bay, Rio de Janeiro,

Southeast Brazil, is considered to be one of the most

polluted environments of the Brazilian coastline.

Heavy metal contamination accounts for a high per-

centage of this pollution (Rebello et al. 1986, Van-
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denberg and Rebello 1986, Leal and Wagener 1993,

Baptista Neto et al. 2000). Metal toxicity is com-

plicated when compared to, for example, hydrocar-

bon pollution since the mode of toxicity in the lat-

ter is similar. However, when studying metal pol-

lution, toxicity varies among and within individual

elements, depending on their speciation within the

sample matrix. Metals are non-bioavailable and can

bioaccumulate through various mechanisms (Bru-

land et al. 1991, Bryan and Langston 1992). It is

very important to access their impacts on the micro-

fauna found in the surface sediment.

Benthic foraminifera consist of single cell or-

ganisms, some have granular rizopodia and others

have elongate filopodia that emerge from the cell

body. Benthic foraminifera are present in a wide
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range of marine environments, from brackish estu-

aries to deep ocean basins at all latitudes. These

species are very sensitive to environmental changes

and have well defined salinity and temperature pref-

erences, making them very useful indicators of past

environmental events (Ellison and Nichols 1976).

One method of studying the effects of pollutants is

to determine the taxonomic diversity of these or-

ganisms by generating diversity index values from

mathematical formulas. Diversity is a measure of

order (or disorder) within a particular system and by

applying the numbers to the Shannon-Wiener equa-

tion, as described in Gibson and Buzas (1973), the

degree of uncertainty can be determined. Benthic

foraminifera have been used as ‘‘indicator organ-

isms’’ to monitor human pollution in coastal regions

(Alve 1991, 1995, Yanko et al. 1994, Yanko 1997).

Knowledge of the microfaunistic assemblage con-

tributes for the evaluation of the bottom sediments

close to highly polluted areas. The response of ben-

thic foraminiferal assemblages to heavy metals and

high input of organic matter may be a useful tool

when evaluating the impact of these substances in

the studied area. Heavy metals and organic matter

cause deformities and atrophy in the foraminifera

tests, as well as a decrease in diversity and den-

sity (Boltovskoy 1956, McCrone and Schafer 1966,

Seiglie 1968, Alve 1991, Casamajor and Debenay

1995, Bonetti et al. 1997, Yanko et al. 1998, 1999,

Samir 2000). It must be emphasized that heavy met-

als influence natural bacteria in various ways in that

they may enhance, suppress or have no effect on bac-

terial growth (Ehrlich 1997). Potential toxicity of

heavy metals to bacteria depends greatly on factors

such as pH, Eh, sulfide, other inorganic elements,

organic matter, hydrous metal oxides and clay min-

erals (Somerfield et al. 1994). Metal speciation and

bioavailability are greatly influenced by aerobic and

anaerobic conditions. Many metals, for example,

Cu and Cr exist as dissolved ions under aerobic con-

ditions and as metal-sulfide complexes under anaer-

obic conditions which reduces their bioavailability

(Hare et al. 1994).

MATERIALS AND METHODS

Fifteen samples were collected in June 2000,

using a Van-Veen Grab sampler, from Guanabara

Bay, Niterói, R.J. Brazil, located between 22˚70’ to

23˚00’S and 043˚00’ and 043˚30’W (Figure 1). The

study area includes the Niterói Harbor, Conceição

Island and the Jurujuba Sound. This municipality is

marked by intensive naval activities and holds one

of the main naval estates in the country.

Samples were stored in sealed polythene bags,

transported to the laboratory, air-dried at 30-35˚C

in a fan-assisted oven, and separated into three sub-

samples. Each sediment sample was separated im-

mediately after collection (80 ml) for foraminifera

analyses, stored in polythene flasks and stained with

Rose Bengal. In the laboratory samples were wash-

ed and sieved through 0.062 and 0.50-mm-mesh

sieves and oven dried at 50˚C. The 0.062 mm frac-

tions were examined under a binocular microscope

and a minimum count of 100 specimens of benthic

foraminifera for each sample was observed, follow-

ing the usual methodology for confined or stressed

environments. Where necessary, samples were pre-

viously divided according to the methodology de-

scribed by Boltovskoy and Wright (1976). Stan-

dard microscope studies and the use of a Scanning

Electron Microscopic Zeiss – DSM 940A were car-

ried out to identify the most significant specimens,

normal or deformed. Benthic foraminifera were

classified at species level and quantitative analy-

ses included relative and total abundances, diversity

and deformity of tests. The live and dead speci-

mens were estimated by counting the stained and

unstained specimens immediately after collection.

Samples for chemical analyses were oven dried

at 105˚C and the < 63 µm fractions separated by

passing them through a nylon mesh sieve. Sub-

samples (0.1g) of these fractions were digested in

5 ml of an aqua regia solution under pressure in

PTFE digestion bombs. Oxidizable organic carbon

was determined using the Walkley and Black (1934)

technique and particle size analysis used a combina-

tion of wet sieving (2mm-63 µm) and pipette anal-
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Fig. 1 – Location of the study area and sample stations collected in Niterói, Guanabara Bay, in June 2000.

ysis (< 63 µm) techniques (Van Doesburg 1996).

Elemental analysis was carried out using a Perkin

Elmer Model 3100 atomic absorption spectropho-

tometer.

RESULTS

Particle Size

In coastal bays, sediments form a textural contin-

uum ranging from a sand-silt-clay mix on one side to

well-sorted sand on the other, which represents the

final product from the reworking of the sediments

by wave and tidal action. The wave and tidal cur-

rents lose energy in the inner part of the bay and

when human influences become important in the

catchments, the sediment pattern and rate of sedi-

mentation can be completely disturbed. According

to Amador (1997), poor sediment sorting is related

to the superposition of different sediment sources

and the low energy of the tidal current circulation

is due to the restricted nature of the area. A large

number of particle size classes were also observed

in the study area and this would indicate very poor

sediment sorting. This behavior is also associated

with the proximity and superposition of different

sediment sources and with the influence of anthro-
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pogenic sediments derived from the industrial and

naval activities (Figure 2).

Geochemistry of the Sediments

Heavy metal distribution in the marine sediments is

influenced by texture, clay-minerals, organic matter,

oxides, oxyhydroxides of iron and manganese and

calcium carbonate (Salomons and Förstner 1984).

Harbors, marinas and dockyards are normally re-

stricted areas and consequently have a low circu-

lation of sediment, which makes them preferential

sites for the deposition of pollution. Table I shows

the concentration values for Cu, Pb, Zn, Ni and

Cr in surface sediments from Niterói coast, where

Zn, Cr and Ni show similar patterns. Higher con-

centrations were found in sample 6, which is lo-

cated close to the dockyard and ship painting ac-

tivities that are carried out in the harbor. These

elements have also been found in the paints used

by the naval industry (Bellinger and Benham 1978).

Table I shows higher metal concentrations in sam-

ples located close to Niterói harbor and the dockyard

than for those recorded in the international literature

from other harbor locations (Förstner and Wittmann

1983, Smith and Orford 1989, Subramanian et al.

1988).

Benthic Foraminifera Analyses

Results showed microfauna to be of low abundance,

with many small and abraded tests, and some of

them deformed. Table I presents absolute values

of abundance for the total fauna, stained specimens

(alive immediately after collection) and deformed

tests. The less abundant samples were located in

Niterói Harbor, (Samples 5, 6 and 7 respectively).

Sample 11, located close to the main channel of Gua-

nabara Bay was the most abundant and contained

many stained but no deformed specimens.

The Shannon-Wiener (H) function was used to

estimate the species diversity in each sample, given

by the formula:

H(S) = −� pi ln pi, where

S: number of species

pi: proportion of species in the sample

The diversity values (Table I) can be considered

low, compared with values for continental shelves

(Sen Gupta and Kilbourne 1974, Gibson and Buzas

1973). Comparing these data with the pattern of

diversity from other areas in Guanabara Bay, they

are similar to data found in other restricted regions,

such as the north of the Bay (Vilela et al. 2002),

which is considered one of the most polluted areas,

close to the main oil refineries in Rio de Janeiro

(Rebello et al. 1986, Vandenberg and Rebello 1986,

Leal and Wagener 1993).

Quantification of the total fauna (alive and

dead) as well as their abundance, diversity and dom-

inance trends was carried out. The abundance pat-

terns related below were used for about 100 speci-

mens or splitter fraction, using a volume of 80 ml

of total sample: simple – 1; rare – 2 to 3; com-

mon – 4 to 6; frequent – 7 to 12; abundant – 13 or

above. Dominance is the tendency of one species

to represent a great part of the assemblage, defined

by the occurrence of the species in that assemblage

(Boltovskoy and Totah 1985). Frequent or abun-

dant species present in all samples were considered

dominant (Figure 3).

DISCUSSION

Figure 4 illustrates the main benthic foraminifera

species present in Niterói samples. Occurrence of

the dominant species Buliminella elegantissima,

Ammonia tepida and Bolivina lowmani in the sam-

ples is shown in Figure 5. These species are com-

monly encountered in restricted environments under

pollution stress (Yanko et al. 1994, 1999,Alve 1995,

Culver and Buzas 1995, Sousa et al. 1997, Bonetti

et al. 1997, Debenay et al. 2000, Van der Zwann

2000). While B. elegantissima dominated in all the

samples, A. beccarii and species like Elphidium dis-

coidale and Textularia earlandi were abundant in

samples located outside the harbor. These observa-

tions are significant since it is possible to correlate
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Fig. 2 – Particle size of the bottom sediments from Niterói, Guanabara Bay.

TABLE I

Total abundance of benthic foraminifera per sample, stained and deformed specimens,

Shannon-Wiener H(S) diversity, and heavy metal results (ppm).

Samples Tot. abund. Stained Deform. H(S) Ni Pb Cu Zn Cr

1 1304 – – 2,51 80 110 125 360 105

2 3584 7 – 2,51 60 45 35 115 85

3 7360 – – 2,46 70 70 75 205 105

4 4224 6 – 2,49 70 70 340 310 160

5 460 – 1 2,63 90 120 155 325 105

6 720 3 2 2,54 110 115 1450 850 230

7 466 9 6 2,93 50 95 105 270 100

8 4288 2 3 2,83 60 135 155 370 120

9 11936 10 – 2,79 60 80 105 220 95

10 7936 5 – 2,59 60 115 125 225 135

11 62720 18 – 2,99 60 90 350 385 95

12 1952 31 3 3,61 80 55 415 320 165

13 7200 16 11 2,38 30 45 45 160 75

14 2584 35 – 2,21 30 50 55 170 85

15 23296 2 1 2,61 30 70 75 205 80
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Fig. 3 – Benthic foraminifera relative abundance in samples from Niterói, Guanabara Bay. Species with Rare occurrence in 3 samples
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the occurrence of B. elegantissima to the most re-

stricted and polluted studied areas.

Stained specimens were scattered and more nu-

merous among the dominant species such as B. el-

egantissima, A. tepida and B. lowmani, in samples

located near the main channel of the bay and in Ju-

rujuba Sound (Table I; Figure 6). Various types of

deformities were observed in a few tests and these

were mainly in B. lowmani and A. tepida, recovered

from samples collected close to the harbor and inside

Jurujuba Sound (Table I; Figure 6). Morphological

variations in the benthic foraminifera tests have been

related to a combination of several parameters: tem-

perature, salinity, carbonate solubility, depth, nutri-

ents, bottom type, oxygen dissolution, lighting, pol-

lution, currents, trace elements and rapid changes in

the environment (Boltovskoy et al. 1991). A. tepida

can live in restricted environments under stress, and

can acquire deformities due to various reasons, one

of these being the presence of heavy metals (Yanko

et al. 1998, Samir 2000, Sharifi et al. 1991). Several

authors have concluded that the evaluation of defor-

mities in the foraminifera tests could be used as a

bioindicator of heavy metal pollution (Alve 1991,

Yanko et al. 1994, 1998, Geslin et al. 1998).

The predicted results would be a higher number

of deformities close to the harbor and around Ilha

da Conceição due to the stress conditions caused

by increased pollution in these areas. These con-

ditions are due to the location of the main dock-

yard activities and ship movements in the harbor,

which increase the level of heavy metals deposited

from ship paint and fuel. Deformities were ob-

served mainly in the harbor samples, where one of

the main sewage outflows for the city is located and

in one sample (13), located north of Jurujuba Sound

close to a sewage outflow and also close to a ma-

rina. High concentrations of heavy metals have been

recorded for sediments inside Jurujuba Sound and

results showed this area to be one of the most pol-

luted in Guanabara Bay (Baptista Neto et al. 2000).

Results from this study would indicate that the defor-

mities are related to the high levels of heavy metals

and organic matter. On the other hand, lower values

An Acad Bras Cienc (2004) 76 (1)
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Fig. 4 – SEM photomicrographs of specimens from Niterói, Guanabara Bay: (1) Bolivina lowmani – Sample 15, collected in June

2000; (2) B. lowmani, deformed – Sample 14, collected in June 2000; (3) Ammonia tepida (Cushman) – Sample 40, collected in

November 1999; (4) Buliminella elegantíssima (Orbigny) – Sample 15, collected in June 2000; (5) Elphidium gunteri Cole – Sample

14, collected in June 2000; (6) E. gunteri, deformed – Sample 14, collected in June 2000; (7) E. discoidale (Orbigny), deformed

and broken – Sample 15, collected in June 2000; (8) Quinqueloculina seminulum (Linné) – Sample 14, collected in June 2000; (9)

Textularia earlandi (Parker), broken – Sample 60, collected in November 1999.

An Acad Bras Cienc (2004) 76 (1)
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Fig. 5 – Benthic foraminifera relative abundance (for 100 specimens) of the dominant species in samples from Niterói, Guanabara Bay.

of abundance were found at samples 5, 6 and 7, in

Niterói Harbor, which contain the highest levels of

heavy metals (Table I).

Microfauna results when compared with other

regions inside the bay indicated a very restricted and

confined environment under high pollution stress.

These results correlate with those from other areas

that are also under environmental stress, such as the

Rio de Janeiro Harbor and the northern area of the

Bay (Vilela et al. 2002).

CONCLUSIONS

The benthic foraminifera assemblage found in the

study area is poor and is represented mainly by small

specimens with weak and fragile tests. This is char-

acteristic of a restricted or confined environment un-

der stress caused by high levels of industrial and do-

mestic pollution. High levels of heavy metals and

organic matter are present in this area due to the

restricted geographical location and intense anthro-

pogenic activities which includes one of the main

naval bases in southwest Brazil. The levels of heavy

metals in this area are higher than those found in

samples from the natural background and it is com-

parable with the highest polluted coastal environ-

ments from other parts of the world. The low values

of abundance as well as the dominance of indicative

opportunistic species, such as Ammonia tepida, Bu-

liminella elegantissima and Bolivina lowmani, are

results of these polluted conditions. The distribution

patterns of these benthic foraminifera species in a

polluted marine environment demonstrated them to

be very sensitive and inexpensive biomarkers capa-

ble of indicating deterioration of shallow marine en-

vironments, especially those associated with heavy

metal pollution, in the Guanabara Bay.
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Fig. 6 – Frequence of stained and deformed foraminiferal tests in samples from Niterói, Guanabara Bay.
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RESUMO

Estaleiros e portos são locais reconhecidamente impor-

tantes onde poluentes associados a sedimentos podem

acumular, constituindo um risco ambiental para a vida

aquática devido ao potencial de captação e acumulação

de metais pesados na biota. O propósito deste trabalho

é avaliar as concentrações e os efeitos de alguns metais

pesados na assembléia de foraminíferos bentônicos no

Porto de Niterói. Baixas concentrações de foraminíferos

bentônicos bem como a dominância de espécies indica-

tivas como Ammonia tepida, Buliminella elegantissima

e Bolivina lowmani podem ser associadas a um ambi-

ente sob estresse. A ocorrência de anormalidades entre

os foraminíferos pode representar um útil biomarcador

para avaliação de impactos ambientais de longo termo em

uma região costeira.

Palavras-chave: foraminíferos bentônicos, Baía de Gua-

nabara, poluição, metais pesados.
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