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Abstract: Groupers (Epinephelidae and Serranidae) have attracted special attention to 
fish farming, and their species offer good opportunities for successful hybridizations. 
Cytogenetic data allow a better understanding of the role of karyotypic diversification in 
the acquisition of post-zygotic reproductive isolation (RI). Thus, chromosomal analyses 
were performed on E. striatus (Caribbean Sea), E. coioides and E. tauvina (Indo-Pacific 
Region), using standard procedures and mapping of six repetitive DNA classes by the 
in situ hybridization. The three species have 2n=48 chromosomes. The karyotypes of E. 
coioides and E. striatus are composed only of acrocentric chromosomes (FN=48), while E. 
tauvina has 8 submetacentric chromosomes (FN=56). Heterochromatin has a preferential 
centromeric distribution, and the microsatellite repeats are dispersed throughout 
the chromosomes of all species. The 18S and 5S rDNA sites are unique but show a 
colocalization arrangement in E. tauvina and E. striatus. The chromosomal organization 
suggests that the three species still maintain a significant amount of syntenic regions. 
The range of the karyotype divergence and the RI levels showed low, but goes turn 
proportionally greater in relation to the divergence time between the parental species. 
The slow acquisition of postzygotic RI is consistent with the high karyotype homogeneity 
presented by Epinephelidae family.

Key words: Karyotype divergence, repetitive DNA, hybrids, post-zygotic barriers.

INTRODUCTION
Interspecific hybridization promotes the 
arrangement of distinct genomes, which can 
result in hybrids with multiple adaptive traits 
(Abbott et al. 2013, Shivaramu et al. 2019). 
Natural hybridizations frequently occur among 
fish (Allendorf & Waples 1996, Rahman et al. 
2013), mainly due to some conditions such as 
external fertilization, weak behavioral isolation, 
uneven abundance between parental species, 
loss of habitats, overlapping breeding areas, low 
frequency of sex chromosomes (Campton 1987, 
Molina et al. 2014b, Nagel et al. 2018), and the 

slow acquisition of post-zygotic reproductive 
isolation (RI) (Russell 2003, Stelkens et al. 2010).

Combinations of different biological traits 
have, in many cases, increased the commercial 
value of hybrid fish,  including the growth 
rate, environmental tolerance, resistance to 
cultivation, and production of monosexual stocks. 
(Rahman et al. 2013, Rimmer & Glamuzina 2017, 
Shivaramu et al. 2019). Advantageous traits in 
artificial hybrids have been reported for several 
cultivated fish groups, such as catfish (Dunham 
& Smitherman 1983), trout (Dorson et al. 1991), 
perch (Hooe et al. 1994), carp (Kalsoom et al. 
2009), sturgeons (Boscari et al. 2014), cichlids 
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(Wohlfarth 1994) and groupers (Huang et al. 
2016). Groupers of the Epinephelidae family are 
of particular economic interest (Mitcheson et al. 
2013), with around 50 species being exploited in 
fisheries or aquaculture (Rimmer & Glamuzina 
2017, FAO 2019). Some of their hybrids may even 
have a growth rate 50% higher than their parents 
(Sugama et al. 2014). 

Some fish hybrids present normal and 
fertile gonads, showing germ cells at different 
stages of maturation (Moron et al. 2018). On 
the other way, although normal in size and 
structure, other hybrids produce abnormal 
gametes in morphology and/or chromosome 
sets, or even fertilizable but non-viable gametes 
(Hooe et al. 1994). The highest degree of RI - the 
hybrid inviability - may result from the imperfect 
chromosome pairing during meiosis, a condition 
that can be overcome by the numerical and 
syntenic compatibility of chromosomes from 
homoploid parents (Yoshikawa et al. 2018). 
Homodiploidy of parental groupers increases 
the chances of homologous pairing during 
meiosis in the hybrid genome and may 
minimize post-zygotic blocks derived from 
anomalous chromosome segregation. Under 
natural conditions, homodiploidy is reflected in 
evolution, making diploid reticulated speciation 
a fast track for the emergence of new species 
(Coyne & Orr 2004). The reproductive strategies 
of groupers encompass one or more patterns of 
sequential hermaphroditism, mainly protogyny 
(female to male), but also protandry (male 
to female), and bidirectional sex changes 
(Mitcheson & Liu 2008, Avise & Mank 2009). 
Although sequential hermaphroditism favors 
cultivation practices, the slow ontogenetic 
development in some species is a limiting factor 
and has stimulated the production of hybrids 
with faster growth rates (Tucker 1994, Mitcheson 
et al. 2013, Rimmer & Glamuzina 2017). In addition 
to natural hybrids, a large number of artificial 

ones (about 20) have been reported in groupers, 
many of which are regularly used in fish farming 
(Table I). 

The karyotype features and genome 
diversification of epinephelids have become 
better known in recent years (Wang et al. 2020, 
Amorim et al. 2021). Epinephelidae species 
are characterized by an intermediate rate of 
karyotype changes regarding other Perciformes 
groups (Molina 2007, Molina et al. 2014b, Motta-
Neto et al. 2019). The diploid value (2n=48) is a 
symplesiomorphic trait, shared by all grouper 
species analyzed so far. Among them, about 60% 
have a basal karyotype composed of acrocentric 
chromosomes (FN=48). The remaining species 
have karyotypes diversified by structural 
rearrangements, with FN greater than 48 (Motta-
Neto et al. 2019, Amorim et al. 2021). To date, 
cytogenetic studies in groupers have focused 
on cytogenetic characterization aspects. 
Preliminars genetic divergences and cytogenetic 
characteristics of the epinephelids have been 
associated with the hybridization processes in 
this family (Rahman et al. 2013, Tseng & Shih 2018), 
however, the quantification of the karyotype 
divergences and its relation with the post-zygotic 
effects on the hybrids are unknown. Here, are 
presented the microestructural chromosome 
divergences among on three cultived species of 
groupers, E. coioides, E. striatus and E. tauvina, 
by chromosomal mapping of six repetitive DNA 
classes [18S and 5S rDNA, microsatellites (CA)15, 
(GA)15, (CAA)10 and (CGG)10], and the association 
between the karyotype divergences and the 
ontogenetic effects on epinephelid hybrids. These 
repetitive sequences have a fast evolutionary 
dynamics and offer a varied comparative set of 
chromosomal markers. The combined approach 
involving cytogenetical, phylogenetical and 
temporal divergence contributed to elucidate 
new aspects of the acquisition of post-zygotic 
barriers in these reef fishes.



KARLLA DANIELLE J. AMORIM et al. HYBRIDIZATION IN GROUPERS

An Acad Bras Cienc (2024) 96(1) e20221011 3 | 15 

Table I. Interspecific crosses in Epinephelidae and Serranidae species. Karyotypes (adapted from Amorim et 
al. 2021), ΔFN – difference in the number of chromosome arms (FN) between parental karyotypes, (D) genetic 
distances from the 16S mtDNA, (M.a) divergence times among species, and ontogenetic effects (OE) on hybrids. +: 
parameters with values up to 30%; ++: 50%; and +++: >70% in relation to the parental species. F = fertilization, E = 
eclosion, G = growth, S = survival.

Parental Species – karyotypes ΔFN D (%) M.a

Ontogenetics Effects - OE

Ref.early later

F E G S

Epinephelus - congeneric hybrids

E. costae 48a x E. marginatus 48a 0 1.6 ~ 4 ++ +++ ++ + 9

E. coioides 48a/2sm+46a x E. akaara 48a 0-2 3.8 ~9 ++ ++ +++ +++ 8

E. bruneus 4sm+44a x E. akaara 48a 4 4.1 ~ 10 + +++ ++ + 21

E. lanceolatus 6sm+42a/8sm+40a x E. moara 4sm+44a 2-4 4.2 ~ 10 + ++ ++ ++ 17

E. lanceolatus 6sm+42a/8sm+40a x E. tukula 2sm+46a 4-6 4.2 ~ 10 + - - - 10

E. coioides 48a/2sm+46a x E. fuscoguttatus 2sm+46a 0-2 4.6 ~ 11 +++ + + + 5,24

E. fuscoguttatus 2sm+46a x E. coeruleopunctatus 2sm+46a 0 4.6 ~ 11 + - - - 10

E. fuscoguttatus 2sm+46a x E. tukula 6sm+42a 4 4.6 ~ 11 + + ++ ++ 19

E. fuscoguttatus 2sm+46a x E. corallicola - - 4.6 ~ 11 + + - - 3

E. fuscoguttatus 2sm+46a x E. lanceolatus 6sm+42a/8sm+40a 4-6 4.8 ~ 11 +++ +++ ++ ++ 11,12,20

E. fuscoguttatus 2sm+46a x E. polyphekadion 6sm+42a 4 4.8 ~ 11 ++ ++ ++ +++ 13,14

ΔFN average 2.2/3.2 OE average <++ ++ ++ ++

E. lanceolatus 6sm+42a/8sm+40a x E. polyphekadion 6sm+42a 0-2 5.2 ~ 12 + - - - 3

E. fuscoguttatus 2sm+46a x E. akaara 48a 2 5.4 ~12.5 + + ++ + 22

E. coioides 48a/2sm+46a x E. lanceolatus 6sm+42a/8sm+40a 4-8 5.4 ~12.5 ++ ++ ++ ++ 6,7,24

E. amblycephalus - x E. akaara 48a - 5.8 ~ 14 +++ + ++ + 4

E. lanceolatus 6sm+42a/8sm+40a x E. akaara 48a 6-8 6.6 ~ 16 ++ ++ ++ ++ 16,25

E. marginatus 48a x E. aeneus - - 7.0 ~ 17 ++ ++ ++ ++ 18

ΔFN average 3.0/5.0 OE average <++ <+ ++ <++

Intergeneric hybrids or between non-Epinephelus genera

P. maculatus - x P. leopardus 48a [n/a] - +++ + ++ + 23

C. aurantia - x C. spiloparaea - - 1.4 ~3.5 + + +++ +++ 1

C. fulva 48a x P. furcifer - - 4.6 ~ 11 + + +++ +++ 2

E. lanceolatus 6sm+42a/8sm+40a x Cr. altivelis 2sm+46a 4-6 6.0 ~ 14 + + +++ ++ 15

C. fulva 48a x E. guttatus 48a 0 10.0 ~ 24 + + - + 2

E. morio - x Ce. striata 24m+22sm+2a - 18.0 ~ 43 o o o o 2

ΔFN average - OE average <++ <+ <++ <++

ΔFN – difference in the number of chromosome arms (FN) between parental karyotypes; D – genetic distance. References - 1) Randall & 
Justine 2008; 2) Tucker 1994; 3) Addin & Senoo 2011; 4) Tseng & Poon 1983; 5) Koh et al. 2008; 6) Chu et al. 2010, 7) Huang et al. 2016; 8) 
Liufu et al. 2007; 9) Glamuzina et al. 2001; 10) Rimmer & Glamuzina 2017; 11) Senoo 2006, 12) Ching et al. 2018, 13) James et al. 1999; 14) Ismi 
et al. 2013; 15) Chen et al. 2017; 16) Kim et al. 2018; 17) Chen et al. 2018; 18) Glamuzina et al. 1999; 19) Cheng et al. 2019; 20) Tan et al. 2018; 
21) Kang et al. 2020; 22) Noh et al. 2015; 23) Frisch & Hobbs 2007; 24) Koh et al. 2010; 25) Noh et al. 2019.
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MATERIALS AND METHODS
Samples and standard chromosomal analyses
E. coioides, one of the most economically 
important fish farmed in China and Southeast 
Asia, and E. tauvina and E. striatus groupers were 
analyzed in this study. E. coioides (n=5) and E. 
tauvina (n=5) were obtained, from the Andaman 
Sea (11°04’00”N and 95°44’34”E), and E. striatus 
(n= 10) were juvenile specimens of the coast of 
Florida – USA (25°09’40”N, 80°45’83”W) (Figure 
1), and obtained from an experimental research 
laboratory. 

Individuals were previously submitted 
to mitotic stimulation by muscular and 
intraperitoneal injection of attenuated antigen 
complexes (Molina et al. 2010), for a period of 24 
hours. Next, the animals were euthanized with an 
overdose of clove oil. Chromosome preparations 
were obtained by short-term culture (Gold et 
al. 1990) of the cell suspensions from anterior 
region of the kidney. The cell suspension were 
hypotonized with KCl 0.075M solution, preserved 
with methanol: acid acetic (3:1) fixative solution 

and dripped onto a slide covered with a film 
of distilled water heated to 60oC. Chromosomes 
were stained with a 5% Giemsa solution 
diluted in phosphate buffer pH 6.8 for 8 min 
to determine the diploid chromosome number 
(2n) and the composition of the karyotype. The 
heterochromatic regions were analyzed using 
the C-banding method (Sumner, 1972), and the 
nucleolar organizer regions (NORs), by silver 
nitrate impregnation (Howell & Black 1980).

Probes for chromosomal hybridization
The 5S (~200 bp) and 18S rDNA (~1400 bp) probes 
were obtained by PCR from the nuclear DNA 
of Rachycentron canadum (Rachycentridae), 
using the primers A 5’-TAC GCC CGA TCT CGT CCG 
ATC-3’ and B 5’-CAG GCT GGT ATG GCC GTA AGC-
3’ (Pendás et al. 1994) and NS1 5’-GTA GTC ATA 
TGC TTG TCT C-3’ and NS8 5’-TCC GGT GCA TCA 
CCT ACG GA -3’ (White et al. 1990), respectively. 
The 5S rDNA and 18S rDNA probes were labeled 
by nick translation, respectively, with biotin-
14-dATP and digoxigenin-dUTP-11, according 

Figure 1. Geographic distribution of (a) Epinephelus striatus (in green), (b) Epinephelus coioides and (c) Epinephelus 
tauvina, with a sympatric area indicated in red. The collection points are highlighted by black stars. 
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to the manufacturer’s specifications (Roche®, 
Mannheim, Germany). The oligonucleotides 
(CA)15, (GA)15, (CAA)10 and (CGG)10 were labeled 
with AlexaFluor 555 at the 5’ terminal position 
during synthesis (Invitrogen, Thermo Fisher 
Scientific, California, USA).

Chromosomal hybridization
FISH experiments were performed following 
Pinkel et al. (1986). Hybridization signals were 
detected using anti-digoxigenin rhodamine-
conjugated, for the 18S rDNA probe, and 
streptavidin-FITC (Roche®, Mannheim, Germany), 
for the 5S rDNA probe. The chromosomes were 
counterstained with Vectashield/DAPI (1.5 μg/
ml) (Vector Laboratories, Burlingame, CA, USA). 
The hybridization of the simple sequence 
repeats (SSRs) was performed according to 
Kubat et al. (2008).

Image processing
Approximately thirty mitotic metaphases of 
each individual were photographed using an 
OlympusTM BX51 epifluorescence microscope 
coupled to an Olympus DP73 digital capture 
system, using cellSens® software (Olympus 
Corporation, Ishikawa, Japan). Chromosomes 
were classified regarding the arms ratio (AR) 
in metacentric (m), with AR ranging from 
1.00-1.70; submetacentric (sm), AR=1.71-3.00; 
subtelocentric (st), AR= 3.01-7.00; and acrocentric 
(a), AR>7.01 (Levan et al., 1964). The fundamental 
number (FN) (i.e. number of chromosome 
arms), was defined considering the m, sm and 
st chromosomes to have two arms, while the 
acrocentric chromosomes only one arm.

Mitochondrial 16S sequences 
Partial sequences of the 16S mitochondrial 
gene from 24 Epinephelidae parental species 
of interspecific crosses were obtained from 

the GenBank (Supplementary Material - Table 
SI). The sequences were aligned using MUSCLE 
(Edgar 2004), and the average rates of genetic 
divergence (Kimura-2p model) were obtained 
using the MEGA 6 software (Tamura et al. 2013). 
The temporal divergence per million years 
was estimated from Domingues et al. (2005), 
considering 1.0% of genetic divergence by 2.4 My.

RESULTS
The three species analyzed have 2n=48 
chromosomes, but with some variations in the 
karyotype formula. The karyotypes of E. striatus 
and E. coioides are exclusively composed of 
acrocentric chromosomes (FN=48), with a small 
differentiation in size among the sequential 
pairs, while the karyotype of E. tauvina is 
composed of 8sm+40a (FN=56) (Figure 2). The 
heterochromatin has a reduced amount, mainly 
located at the centromeric and pericentromeric 
regions of chromosomes. In E. striatus and E. 
coioides the Ag-NORs sites are situated on the 
short arms of pair 24. In E. tauvina they are also 
located on the short arms, but in a larger pair, 
the 20th one (Figure 2).

A single locus of the 18S and 5S rDNA 
sequences was identified in all species. However, 
in  E. coioides the 18S rDNA is located on the short 
arms of pair 24, while the 5S rDNA is located on 
the short arms of pair 23 (Figure 2). Differently, 
in E. striatus and E. tauvina the 18S and 5S 
rDNA sites are colocalized on the short arms 
of pairs 24 and 20, respectively (Figure 2). The 
microsatellites (CA)15, (GA)15, (CAA)10 and (CGG)10 
have a dispersed chromosomal distribution in 
the three species (Supplementary Material - 
Figure S1).
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DISCUSSION
The slow acquisition of RI among groupers 
agrees with the relatively low quantitative 
divergence of their karyotypes. In fact, several 
cytogenetic and biological conditions seem to 
favor a significant number of viable and fertile 
hybrids, thus highlighting a limited effect of 
post-zygotic barriers in Epinephelidae. Among 
these several cytogenetic features deserve to be 
highlighted, such as the sharing of homoploid 
karyotypes and the significant conservation of 
extensive syntenic and colinear stretches in the 
genome of the species (Wang et al. 2020, Yang 
et al. 2021, Amorim et al. 2021). Chromosome 

homologies allow correct pairing, recombination, 
and uniform segregation. In addition, the 
asynchronous hermaphroditism minimizes the 
genomic divergences between sexes, including 
the differentiation of sex chromosomes, since 
the same genome transits between the two 
sexes during the ontogenetic history (Wright et 
al. 2016). In fact, the presence of differentiated 
sex chromosomes in one or both parents can 
alter the gene balance, promoting the sterility 
or infeasibility of heteromorphic sex in hybrids 
(Haldane 1922). 

The three species, E. striatus, E. coioides, 
and E. tauvina and all other karyotyped 

Figure 2. Karyotypes of E. striatus, E. coioides and E. tauvina under Giemsa staining, C-banding and fluorescence 
in situ hybridization (FISH) with rDNA probes. Chromosome pairs bearing Ag-NORs/18S rDNA (red) and 5S rDNA 
(green) sites are highlighted in boxes. A syntenic 18S/5S rDNA array occurs on the 24 and 20 pairs of E. striatus and 
E. tauvina, respectively. Scale bar = 5μm.
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groupers (~ 50 species) share the same diploid 
value (2n=48). Among these species, 61% 
share structurally similar karyotypes formed 
entirely by acrocentric chromosomes (FN=48), 
as E. coioides and E. striatus, while the others, 
including E. tauvina, exhibit some additional 
structural changes in the chromosomes (FN=48-
96) (Motta-Neto et al. 2019, Amorim et al. 2021). 
In fact, similar to E. tauvina, more than 40% of 
Epinephelidae species show some karyotype 
diversification associated with pericentric 
inversions. The changes by inversions may be 
related with adaptive processes (Kirubakaran et 
al. 2016), and act as post-zygotic barriers (Ortiz-
Barrientos et al. 2016). 

Recent data showed an increase in the 
karyotype diversification associated to the 
historical biogeographic expansion of groupers 
species. Indeed, in the Atlantic Ocean, 87% of the 
analyzed species have conserved 2n=48 basal 
karyotype, this pattern is reduced to 56% of the 
Pacific, 55% of the Indo-Pacific, and only to 33% 
of the Indian Ocean species (Amorim et al. 2021). 
Apparently, the progressive historical karyotype 
divergence observed in groupers (Amorim et 
al. 2021) was promoted by reach of new areas 
generating conditions for distinct evolutionary 
opportunities (Rohde & Muller 2005, Carpenter 
et al. 2011).

Despite this, the organization and 
distribution of repetitive sequences in 
the chromosomes still offer indications of 
chromosomal conservatism (Amorim et al. 2021).

The remarkable chromosomal conservatism 
in Epinephelidae species is particularly 
noteworthy when comparing P. leopardus 
(2n=48a) and E. akaara (2n=48a) karyotypes 
(Wang et al. 2020). These species have an 
estimated divergence time of more than 35 Mya 
(Ma et al. 2016), but still show a clear one-to-
one relationship among their chromosomes, 
highlighting the synteny among of their 24 

linkage groups (Wang et al. 2020). Indications 
of similar high genomic conservatism also 
occur between E. fuscoguttatus (2n=2sm+46a) 
and Plectropomus leopardus (2n=48a), whose 
divergence time is about 49.3 (32.5–65.9) million 
years ago (Yang et al. 2020). 

The Ag-NOR sites are located in a single pair 
of chromosomes in the three analyzed species, 
in a medium-sized pair in E. tauvina and the 
smallest pair of the karyotype in E. striatus and 
E. coioides. The occurrence of ribosomal sites in 
the same position and on the smallest pair of 
chromosomes is also a significantly recurrent 
conservative condition among grouper species 
(Tseng & Shih 2018, Amorim et al. 2021). In general, 
the 18S and 5S rDNA sites are also not syntenic 
in groupers (Minglan et al. 2014, Paim et al. 2017). 
Therefore, the co-localization of 18S/5S rDNA in 
E. striatus and E. tauvina points to the potential 
evolutionary dynamism of these regions, 
which may eventually promote microstructural 
reorganizations in the chromosomes. However, 
different cytogenetic markers, including 
rDNA regions and other repetitive sequences 
(Amorim et al. 2021, present study), support 
the substantial syntenic conservatism in 
grouper chromosomes. Comparative analyses 
of the repetitive sequences allow tracking its 
evolutionary dynamics in karyotypes, in view of 
their rapid evolutionary rates (Vicari et al. 2010, 
Cioffi & Bertollo 2012), including fish groups 
with slow chromosomal divergence (Costa et 
al. 2013, 2015). In the three Epinephelus species, 
the (CA)15, (GA)15, (CAA)10 and (CGG)10 repeats do 
not show clear differences in their genomic 
distribution, being equally dispersed in  eu- and 
heterochromatic regions, without detectable 
accumulation points. This diffuse organization 
does not signal remaining rearrangements in 
the karyotypes. In fact, it may be a limiting 
factor for karyotypic alterations (Molina 2007), 
mainly due to its small or non-close association 
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with other repetitive elements (Piscor & Parise-
Maltempi 2016).

The maintenance of chromosomal and 
genomic conservation over tens of millions 
of years plays a significant role in the slow 
acquisition of post-zygotic barriers among 
Epinephelidae fish. In fact, negative epistatic 
interactions and consequent RI increase are 
more likely to occur when there are divergences 
in the number and structure of chromosomes 
of the two hybridizing taxa (King 1993, Cursino 
et al. 2014, Moran et al. 2019). The generalized 
homoploid condition of Epinephelidae fish 
overcomes blocks imposed by RI (Buggs et al. 
2011), ensuring a greater hybrid viability (Rahman 
et al. 2013). Indeed, evidence of RI breaks is 
reported in Haemulidae (Marceniuk et al. 2019), 
Lutjanidae (Batista et al. 2012), Pomacantidae 
(Pyle & Randall 1994) and Chaetodontidae 
(Montanari et al. 2012), all fish families showing 
a slower rate of karyotypic changes (Molina 2007, 
Molina et al. 2014a).

Karyotype divergence and ontogenetic effects 
in interspecific Epinephelidae hybrids 
Invers ions are the main detectable 
rearrangements in Epinephilidae karyotypes 
(Amorim et al. 2021). It is known that inversions 
can interfere with normal chromosomal pairing 
and recombination during meiosis (Rieseberg 
2001, Ortiz-Barrientos et al. 2016), and that even 
a single event can generate barriers driving to 
speciation (Ayala et al. 2013). However, inversions 
can be also  related with adaptation processes 
(Wellenreuther & Bernatchez 2018, Faria et al. 
2019). In Gadus morhua (Gadidae), for example, 
inversions cover more than 6% of the genome, 
and are associated with eco-adaptations of 
widely migratory ecotypes (Kirubakaran et al. 
2016, Wellenreuther & Bernatchez 2018). 

Unfavorable effects of inversions do not 
seem to be significant among grouper species 

regarding the hybrid viability and fertility (Table 
I). The previous description of the karyotypes of 
E. coioides, which classified the Ag-NOR pair as 
submetacentric chromosomes (2sm+46a; Wang 
et al. 2010), and E. lanceolatus (8sm+40a;  Jiun & 
Mei 2009) were considered in the estimates of 
karyotypic divergences of the species involved 
in interspecific crossings. Hybrids of E. coioides 
♀ (48a/2sm+46a; FN=48/50) X E. lanceolatus ♂ 
(2n=6sm+42a/8sm+40a; FN=54/56), with at least 
four detectable pericentric inversions (ΔFN=4-8), 
reach maturity and normal gonadal development 
(Li et al. 2018). Hybrids from phylogenetically 
close lineages may even show a greater growth 
and adaptability than their parental species 
(Senoo 2006, Liufu et al. 2007, Huang et al. 
2016). Such a heterotic condition can even occur 
with some chromosomal diversification (Table 
I), probably due to sufficient levels of parental 
gene balance (Birchler & Veitia 2007), and the 
hybrid genome generating large adaptive effects 
(Dagilis et al. 2019). Some grouper hybrids, such 
as E. lanceolatus (2n=6sm+42a/8sm+40a) x E. 
fuscoguttatus (2n=2sm+46a), present a number 
of more favorable characters than their parental 
species, including incubation time, fertilization 
rates and hatching, growth, survival, adaptability 
and disease resistance (Ching et al. 2018). 
Therefore, favorable  zootechnical characteristics 
(Senoo 2006, Liufu et al. 2007, Huang et al. 2016, 
Table I) demonstrate that hybridization is an 
important and effective strategy in grouper 
cultivation.

The time of divergence generally increases 
the rate of post-zygotic barriers among fish. 
Sterility in one or both sexes corresponds to 
the first level of RI, which progresses to the 
hybrid infeasibility when the average parental 
divergence reaches about ten million years 
(Russell 2003). Interspecific group hybrids have 
been obtained from parents bearing similar 
or structurally diversified karyotypes (Table 
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I). The analysis of parental karyotypes and 
their divergence times allowed us to infer the 
ontogenetic development of the hybrids and 
RI. The divergence time between the parental 
species, estimated from the percentage 
differences in the 16S mtDNA sequences, ranged 
from 1.6% (E. costae x E. marginatus) to 7.0% (E. 
marginatus x E. aeneus) (4-17 Mya), or 1.4% in 
Cephalopholis (C. aurantia x C. spiloparaea - 
~3.5 Mya). Data on hybrid biological traits (eg, 
fertilization and hatching rates) suggest that 
ontogenetic parameters are not directly affected 
by the parental time divergence for most of 
the interspecific crosses (Table I). Parental 
species with considerable hybrid production, 
such as E. fuscoguttatus x E. lanceolatus and 
E. fuscoguttatus x E. polyphekadion, show 
a genetic distance of 4.8%, indicating an 
evolutionary divergence of ~11 Mya (Table I). 
In all of these crosses, the hybrid products 
were viable. Although fertility aspects are not 
available for all crosses, some hybrids were also 
fertile. Hybrids of E. coioides x E. lanceolatus 
(5.4% genetic divergence) and E. lanceolatus x E. 
fuscoguttatus (4.8% genetic divergence) showed 
even greater growth, survival and adaptability to 
captivity than their parents (Table I). Regarding 
intergeneric crosses, the genetic distance ranged 
from 4.6% (C. fulva x P. furcifer - 11 Mya) to 18% 
(Epinephelus morio x Centropristis striata - 43 
Mya). The later is the high value among the species 
pairs and resulted in hybrid inviability (Table I), 
with larval lethality three days after fertilization. 
Crosses among Epinephelus, Cromileptes and 
Cephalopholis species, with an evolutionary 
divergence between 14 to 24 Mya, indicated the 
occurrence of post-zygotic barriers regarding 
the performance of ontogenetic parameters. 
However, some crosses between Cephalopholis 
and Paranthias species, diverging around 11 
Mya, can still produce viable larvae (Tucker 
1994). Likewise, hybrids between Cephalopholis 

and Epinephelus species (~11 Mya) may have 
shorter incubation time and higher growth 
than the parental species (Ching et al. 2018). On 
the other hand, crosses between E. morio × C. 
striata, with a very high evolutionary divergence 
time (~40 Mya), have resulted in few days of 
larval survival after hatching (Tucker 1994, Table 
I). But in this case, in addition to the divergence 
time, cannot be ruled out some influence of the 
significantly diversified karyotype of C. striata: 
2n=24m+22sm+2a; FN=94 (Moran et al. 2019). 

The diversification of groupers was 
significantly influenced by major biogeographic 
barriers. The main barriers during the Pliocene 
and Pleistocene periods, which resulted from 
the sea level reduction at 5.3-0.01 Mya (Ma et al. 
2016), were particularly preponderant. However, 
this period of divergence is much shorter than 
the estimated mean time for the acquisition 
of an effective RI (Russell 2003) (Figure 3), 
thus suggesting that allopatry or pre-zygotic 
reproductive barriers probably played a more 
important role in that process. The genetic 
cohesion of species is intrinsically related 
to their evolutionary histories and degrees 
of lineage relationships (Marques & Ferreira 
2008, Papadaki et al. 2018). The ontogenetic 
developmental indices of grouper hybrids 
apparently support that the divergence time of 
the clades was not sufficient in establishing an 
effective RI yet.

CONCLUSIONS
Groupers stand out as successful species for 
marine fish farming and hybrid production, but 
their level of introgression is still being better 
evaluated. In this study, in addition to new data 
on the karyotypic organization of some grouper 
species, ontogenetic effects of hybridization 
and the time of evolutionary divergence of 
the hybridizing species were also analyzed. 
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Although the divergence time is a relevant factor 
for reproductive isolation, the general scenario 
that stands out in groupers is that post-zygotic 
reproductive isolation is not expressive yet. 
On the other hand, the high rate of karyotypic 
conservatism in this and other marine fish groups 
is consistent with their hybridization success. 
Therefore, the cytogenomic characterization of 
parental species stands out as a useful tool 
for analyzing hybridization and its traceability, 
as well as for the biological conservation and 
evolutionary approaches of groupers.
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