On reduced L^{2} cohomology of hypersurfaces in spheres with finite total curvature

PENG ZHU
School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China

Manuscript received on February 6, 2015; accepted for publication on June 17, 2016

Abstract

In this paper, we prove that the dimension of the second space of reduced L^{2} cohomology of M is finite if M is a complete noncompact hypersurface in a sphere \mathbb{S}^{n+1} and has finite total curvature ($n \geq 3$).

Key words: total curvature, reduced L^{2} cohomology, hypersurface in sphere, L^{2} harmonic 2-form.

INTRODUCTION

For a complete manifold M^{n}, the p-th space of reduced L^{2}-cohomology is defined, for $0 \leq p \leq n$ in Carron (2007). It is interesting and important to discuss the finiteness of the dimension of these spaces. Carron (1999) proved that if $M^{n}(n \geq 3)$ is a complete noncompact submanifold of \mathbb{R}^{n+p} with finite total curvature and finite mean curvature (i. e., the L^{n}-norm of the mean curvature vector is finite), then each p-th space of reduced L^{2}-cohomology on M has finite dimension, for $0 \leq p \leq n$. The reduced L^{2} cohomology is related with the L^{2} harmonic forms (Carron 2007). In fact, several mathematicians studied the space of L^{2} harmonic p-forms for $p=1,2$. If $M^{n}(n \geq 3)$ is a complete minimal hypersurface in \mathbb{R}^{n+1} with finite index, Li and Wang (2002) proved that the dimension of the space of the L^{2} harmonic 1-forms M is finite and M has finitely many ends. More generally, Zhu (2013) showed that: suppose that $N^{n+1}(n \geq 3)$ is a complete simply connected manifold with non-positive sectional curvature and M^{n} is a complete minimal hypersurface in N with finite index. If the bi-Ricci curvature satisfies

$$
b-\overline{\operatorname{Ric}}(X, Y)+\frac{1}{n}|A|^{2} \geq 0,
$$

for all orthonormal tangent vectors X, Y in $T_{p} N$ for $p \in M$, then the dimension of the space of the L^{2} harmonic 1-forms M is finite. Furthermore, following the idea of Cheng and Zhou (2009), Zhu (2013) gave a result on finitely many ends of complete manifolds with a weighted Poincaré inequality by use of the
space of L^{2} harmonic functions. Cavalcante et al. (2014) discussed a complete noncompact submanifold $M^{n}(n \geq 3)$ isometrically immersed in a Hadamard manifold N^{n+p} with sectional curvature satisfying $-k^{2} \leq K_{N} \leq 0$ for some constant k and showed that if the total curvature is finite and the first eigenvalue of the Laplacian operator of M is bounded from below by a suitable constant, then the dimension of the space of the L^{2} harmonic 1-forms on M is finite. Fu and Xu (2010) studied a complete submanifold M^{n} in a sphere \mathbb{S}^{n+p} with finite total curvature and bounded mean curvature and proved that the dimension of the space of the L^{2} harmonic 1-forms on M is finite. Zhu and Fang (2014) proved Fu-Xu's result without the restriction on the mean curvature vector and therefore obtained that the first space of reduced L^{2}-cohomology on M has finite dimension. Zhu (2011) studied the existence of the symplectic structure and L^{2} harmonic 2 -forms on complete noncompact manifolds by use of a special version of Bochner formula.

Motivated by above results, we discuss a complete noncompact hypersurface M^{n} in a sphere \mathbb{S}^{n+1} with finite total curvature in this paper. We obtain the following finiteness results on the space of all L^{2} harmonic 2 -forms and the second space of reduced L^{2} cohomology:

Theorem 1. Let $M^{n}(n \geq 3)$ be an n-dimensional complete noncompact oriented manifold isometrically immersed in an $(n+1)$-dimensional sphere \mathbb{S}^{n+1}. If the total curvature is finite, then the space of all L^{2} harmonic 2 -forms has finite dimension.

Corollary 2. Let $M^{n}(n \geq 3)$ be an n-dimensional complete noncompact oriented manifold isometrically immersed in \mathbb{S}^{n+1}. If the total curvature is finite, then the dimension of the second space of reduced L^{2} cohomology of M is finite.
Remark 3. Under the same condition of Corollary 2, we conjecture that the p-th space of reduced L^{2} cohomology of M has finite dimension for $3 \leq p \leq n-3$.

PRELIMINARIES

In this section, we recall some relevant definitions and results. Suppose that M^{n} is an n-dimensional complete Riemannian manifold. The Hodge operator $*: \wedge^{p}(M) \rightarrow \wedge^{n-p}(M)$ is defined by

$$
* e^{i_{1}} \wedge \cdots \wedge e^{i_{p}}=\operatorname{sgn} \sigma\left(i_{1}, i_{2}, \cdots, i_{n}\right) e^{i_{p+1}} \wedge \cdots \wedge e^{i_{n}}
$$

where $\sigma\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ denotes a permutation of the set $\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ and $\operatorname{sgn} \sigma$ is the sign of σ. The operator $d^{*}: \wedge^{p}(M) \rightarrow \wedge^{p-1}(M)$ is given by

$$
d^{*} \omega=(-1)^{(n k+k+1)} * d * \omega
$$

The Laplacian operator is defined by

$$
\Delta \omega=-d d^{*} \omega-d^{*} d \omega .
$$

A p-form ω is called L^{2} harmonic if $\Delta \omega=0$ and

$$
\int_{M} \omega \wedge * \omega<+\infty .
$$

We denote by $H^{p}\left(L^{2}(M)\right)$ the space of all L^{2} harmonic p-forms on M. Let

$$
Z_{2}^{p}(M)=\left\{\alpha \in L^{2}\left(\wedge^{p}\left(T^{*} M\right)\right): d \alpha=0\right\}
$$

and

$$
D^{p}(d)=\left\{\alpha \in L^{2}\left(\wedge^{p}\left(T^{*} M\right)\right): d \alpha \in L^{2}\left(\wedge^{p+1}\left(T^{*} M\right)\right)\right\}
$$

We define the p-th space of reduced L^{2} cohomology by

$$
H_{2}^{p}(M)=\frac{Z_{2}^{p}(M)}{\overline{D^{p-1}(d)}}
$$

Suppose that $x: M^{n} \rightarrow \mathbb{S}^{n+1}$ is an isometric immersion of an n-dimensional manifold M in an $(n+1)$-dimensional sphere. Let A denote the second fundamental form and H the mean curvature of the immersion x. Let

$$
\Phi(X, Y)=A(X, Y)-H\langle X, Y\rangle
$$

for all vector fields X and Y, where \langle,$\rangle is the induced metric of M$. We say the immersion x has finite total curvature if

$$
\|\Phi\|_{L^{n}(M)}<+\infty .
$$

We state several results which will be used to prove Theorem 1.
Proposition 4. (Carron 2007) Let (M, g) is a complete Riemannian manifold, then the space of L^{2} harmonic p-forms $H^{p}\left(L^{2}(M)\right)$ is isomorphic to the p-th space of reduced L^{2} cohomology $H_{2}^{p}(M)$.

Lemma 5. (Li 1993) If $\left(M^{n}, g\right)$ is a Riemannian manifold and $\omega=a_{I} \omega_{I} \in \wedge^{p}(M)$, then

$$
\Delta|\omega|^{2}=2\langle\Delta \omega, \omega\rangle+2|\nabla \omega|^{2}+2\langle E(\omega), \omega\rangle
$$

where $E(\omega)=R_{k_{\beta} i_{\beta} j_{\alpha} i_{\alpha}} a_{i_{1} \cdots k_{\beta} \cdots i_{p}} e^{i_{p}} \wedge \ldots \wedge e^{j_{\alpha}} \wedge \ldots \wedge e^{i_{1}}$.
Proposition 6. (Hoffman and Spruck 1974, Zhu and Fang 2014) Let M^{n} be a complete noncompact oriented manifold isometrically immersed in a sphere \mathbb{S}^{n+1}. Then

$$
\left(\int_{M}|f|^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} \leq C_{0}\left(\int_{M}|\nabla f|^{2}+n^{2} \int_{M}\left(H^{2}+1\right) f^{2}\right)
$$

for each $f \in C_{0}^{1}(M)$, where C_{0} depends only on n and H is the mean curvature of M in \mathbb{S}^{n+1}.

AN INEQUALITY FOR $L^{\mathbf{2}}$ HARMONIC 2-FORMS

In this section, we show an inequality for L^{2} harmonic 2 -forms on hypersurfaces in a sphere \mathbb{S}^{n+1}, which plays an important role in the proof of main results.

Proposition 7. Let $M^{n}(n \geq 3)$ be an n-dimensional complete noncompact hypersurface isometrically immersed in an $(n+1)$-dimensional sphere \mathbb{S}^{n+1}. If $\omega \in H^{2}\left(L^{2}(M)\right)$, then

$$
h \triangle h \geq|\nabla h|^{2}+2 h^{2}-|\Phi|^{2} h^{2}+\frac{3}{2} H^{2} h^{2},
$$

for $n=3$ and

$$
h \triangle h \geq \frac{1}{n-2}|\nabla h|^{2}+2(n-2) h^{2}-\frac{n-2}{2}|\Phi|^{2} h^{2}+n H^{2} h^{2},
$$

for $n \geq 4$, where $h=|\omega|$.

Proof. Suppose that $\omega \in H^{2}\left(L^{2}(M)\right)$. Then we have

$$
\begin{equation*}
\Delta|\omega|^{2}=2|\nabla| \omega| |^{2}+2|\omega| \triangle|\omega| . \tag{1}
\end{equation*}
$$

By Lemma 5, we get that:

$$
\begin{align*}
\triangle|\omega|^{2} & =2\langle\Delta \omega, \omega\rangle+2|\nabla \omega|^{2}+2\langle E(\omega), \omega\rangle \\
& =2|\nabla \omega|^{2}+2\langle E(\omega), \omega\rangle . \tag{2}
\end{align*}
$$

Combining (1) with (2), we obtain that

$$
\begin{equation*}
|\omega| \Delta|\omega|=|\nabla \omega|^{2}-|\nabla| \omega| |^{2}+\langle E(\omega), \omega\rangle . \tag{3}
\end{equation*}
$$

There exists the Kato inequality for L^{2} harmonic 2 -forms as follows (Cibotaru and Zhu 2012, Wang 2002):

$$
\begin{equation*}
\frac{n-1}{n-2}|\nabla| \omega\left|\|^{2} \leq|\nabla \omega|^{2} .\right. \tag{4}
\end{equation*}
$$

By (3) and (4), we get that

$$
\begin{equation*}
|\omega| \triangle|\omega| \geq \frac{1}{n-2}|\nabla| \omega| |^{2}+\langle E(\omega), \omega\rangle \tag{5}
\end{equation*}
$$

Now, we give the estimate of the term $\langle E(\omega), \omega\rangle$. Let $\omega_{1}=b_{i_{1} i_{2}} e^{i_{2}} \wedge e^{i_{1}} \in \wedge^{2}(M)$ and $\omega_{2}=c_{i_{1} i_{2}} e^{i_{2}} \wedge e^{i_{1}} \in$ $\wedge^{2}(M)$, where $b_{i_{1} i_{2}}=-b_{i_{2} i_{1}}$ and $c_{i_{1} i_{2}}=-c_{i_{2} i_{1}}$. By Lemma 5, we obtain that

$$
\begin{aligned}
E\left(\omega_{1}\right) & =R_{k_{1} i_{1} j_{1} i_{1}} b_{k_{1} i_{2}} e^{i_{2}} \wedge e^{j_{1}}+R_{k_{2} i_{2} j_{2} i_{2}} b_{i_{1} k_{2}} e^{j_{2}} \wedge e^{i_{1}} \\
& +R_{k_{2} i_{2} j_{1} i_{1}} b_{i_{1} k_{2}} e^{i_{2}} \wedge e^{j_{1}}+R_{k_{1} i_{1} j_{2} 2_{k}} b_{k_{1} i_{2}} e^{j_{2}} \wedge e^{i_{1}} \\
& =\operatorname{Ric}_{k_{1} j_{1}}^{b_{k_{1} i_{2}}} e^{i_{2}} \wedge e^{j_{1}}+\operatorname{Ric}_{k_{2} j_{2}}^{b_{1} k_{2}} e^{j_{2}} \wedge e^{i_{1}} \\
& +R_{k_{2} i_{2} j_{1} i_{1} i_{1}}^{i_{1} k_{2} k_{2}} e^{i_{2}} \wedge e^{j_{2} i_{2}} b_{k_{1} i_{2}} e^{j_{2}} \wedge e^{i_{1}} .
\end{aligned}
$$

So, we get that

$$
\begin{aligned}
\left\langle E\left(\omega_{1}\right), \omega_{2}\right\rangle= & \operatorname{Ric}_{k_{1} j_{1}} b_{k_{1} i_{2}} c_{j_{1} i_{2}}+\operatorname{Ric}_{k_{2} j_{2}} b_{i_{1} k_{2}} c_{i_{1} j_{2}} \\
& +R_{k_{2} i_{2} j_{1} i_{1}} b_{i_{1} k_{2}} c_{j_{1} i_{2}}+R_{k_{1} i_{1} j_{2} i_{2} b_{2}} b_{k_{1} i_{2}} c_{i_{1} j_{2}}
\end{aligned}
$$

which implies that

$$
\begin{align*}
\langle E(\omega), \omega\rangle= & \operatorname{Ric}_{k_{1} j_{1}} a_{k_{1} i_{2}} a_{j_{1} i_{2}}+\operatorname{Ric}_{k_{2} j_{2}} a_{i_{1} k_{2}} a_{i_{1} j_{2}} \\
& +R_{k_{2} i_{2} j_{1} i_{1}} a_{i_{1} k_{2}} a_{j_{1} i_{2}}+R_{k_{1} i_{1} j_{2} i_{2}} a_{k_{1} i_{2}} a_{i_{1} j_{2}} . \tag{6}
\end{align*}
$$

By Gauss equation, we have that

$$
R_{i j k l}=\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+h_{i k} h_{j l}-h_{i l} h_{j k}
$$

A direct computation shows that

$$
\begin{equation*}
\operatorname{Ric}_{k_{1} j_{1}}=(n-1) \delta_{k_{1} j_{1}}+n H h_{k_{1} j_{1}}-h_{k_{1} i} h_{i j_{1}} \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
\operatorname{Ric}_{k_{2} j_{2}}=(n-1) \delta_{k_{2} j_{2}}+n H h_{k_{2} j_{2}}-h_{k_{2} i_{i}} h_{i j_{2}} ; \tag{8}\\
R_{k_{2} i_{2} j_{1} i_{1}}=\left(\delta_{k_{2} j_{1}} \delta_{i_{2} i_{1}}-\delta_{k_{2} i_{1}} \delta_{i_{2} j_{1}}\right)+h_{k_{2} j_{1}} h_{i_{2} i_{1}}-h_{k_{2} i_{1}} h_{i_{2} j_{1}} \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
R_{k_{1} i_{1} j_{2} i_{2}}=\left(\delta_{k_{1} j_{2}} \delta_{i_{1} i_{2}}-\delta_{k_{1} i_{2}} \delta_{i_{1} j_{2}}\right)+h_{k_{1} j_{2}} h_{i_{1} i_{2}}-h_{k_{1} i_{2}} h_{i_{1} j_{2}} \tag{10}
\end{equation*}
$$

Since the curvature operator E is linear and zero order, and hence tensorial, it is sufficient to compute $\langle E(\omega), \omega\rangle$ at a point p. We can choose an orthonormal frame $\left\{e_{i}\right\}$ such that $h_{i j}=\lambda_{i} \delta_{i j}$ at p. Obviously,

$$
n H=\lambda_{1}+\cdots+\lambda_{n}
$$

By (6)-(10), we have

$$
\begin{aligned}
\langle E(\omega), \omega\rangle & =(n-1) \sum\left(a_{j_{1} i_{2}}\right)^{2}+\sum n H \lambda_{k_{1}}\left(a_{k_{1} i_{2}}\right)^{2}-\sum \lambda_{k_{1}}^{2}\left(a_{k_{1} i_{2}}\right)^{2} \\
& +(n-1) \sum\left(a_{i_{1} j_{2}}\right)^{2}+\sum n H \lambda_{k_{2}}\left(a_{i_{1} k_{2}}\right)^{2}-\sum \lambda_{k_{2}}^{2}\left(a_{i_{1} k_{2}}\right)^{2} \\
& +\sum a_{i_{1} j_{1}} a_{j_{1} i_{1}}-\sum \lambda_{k_{2} \lambda_{i_{2}}}\left(a_{k_{2} i_{2}}\right)^{2} \\
& +\sum a_{j_{2} i_{2}} a_{i_{2} j_{2}}-\sum \lambda_{j_{2} \lambda_{i_{2}}}\left(a_{j_{2} i_{2}}\right)^{2} \\
& =2 \sum_{i \neq j}\left((n-2)+\left(\lambda_{1}+\cdots+\lambda_{n}\right) \lambda_{i}-\lambda_{i}^{2}-\lambda_{i} \lambda_{j}\right)\left(a_{i j}\right)^{2} .
\end{aligned}
$$

Note that

$$
|A|^{2}=|\Phi|^{2}+n H^{2} .
$$

For $n=3$, we have that

$$
\begin{aligned}
& \langle E(\omega), \omega\rangle=2 \sum_{i \neq j}\left(1+\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \lambda_{i}-\lambda_{i}^{2}-\lambda_{i} \lambda_{j}\right)\left(a_{i j}\right)^{2} \\
& =\sum_{i \neq j}\left(2+\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)\left(\lambda_{i}+\lambda_{j}\right)-\left(\lambda_{i}^{2}+\lambda_{j}^{2}\right)-2 \lambda_{i} \lambda_{j}\right)\left(a_{i j}\right)^{2} \\
& =\sum_{i \neq j}\left(2+\frac{1}{2}(3 H)^{2}-\frac{1}{2} \sum_{k=1, k \neq i, j}^{3} \lambda_{k}^{2}-\frac{1}{2}\left(\lambda_{i}+\lambda_{j}\right)^{2}\right)\left(a_{i j}\right)^{2} \\
& \geq \sum_{i \neq j}\left(2+\frac{1}{2}(3 H)^{2}-\frac{1}{2} \sum_{k=1, k \neq i, j}^{3} \lambda_{k}^{2}-\left(\lambda_{i}^{2}+\lambda_{j}^{2}\right)\right)\left(a_{i j}\right)^{2} \\
& \geq \sum_{i \neq j}\left(2+\frac{9}{2} H^{2}-|A|^{2}\right)\left(a_{i j}\right)^{2} \\
& \quad=\left(2+\frac{3}{2} H^{2}-|\Phi|^{2}\right)|\omega|^{2} .
\end{aligned}
$$

For $n \geq 4$, we obtain that

$$
\begin{aligned}
& \langle E(\omega), \omega\rangle=2 \sum_{i \neq j}\left((n-2)+\left(\lambda_{1}+\cdots+\lambda_{n}\right) \lambda_{i}-\lambda_{i}^{2}-\lambda_{i} \lambda_{j}\right)\left(a_{i j}\right)^{2} \\
& =\sum_{i \neq j}\left(2(n-2)+\left(\lambda_{1}+\cdots+\lambda_{n}\right)\left(\lambda_{i}+\lambda_{j}\right)-\left(\lambda_{i}^{2}+\lambda_{j}^{2}\right)-2 \lambda_{i} \lambda_{j}\right)\left(a_{i j}\right)^{2} \\
& =\sum_{i \neq j}\left(2(n-2)+\left(\lambda_{1}+\cdots+\widehat{\lambda}_{i}+\cdots+\widehat{\lambda}_{j}+\cdots+\lambda_{n}\right)\left(\lambda_{i}+\lambda_{j}\right)\right)\left(a_{i j}\right)^{2} \\
& =\sum_{i \neq j}\left(2(n-2)+\frac{1}{2}(n H)^{2}-\frac{1}{2}\left(\sum_{k=1, k \neq i, j}^{n} \lambda_{k}\right)^{2}-\frac{1}{2}\left(\lambda_{i}+\lambda_{j}\right)^{2}\right)\left(a_{i j}\right)^{2} \\
& \geq \sum_{i \neq j}\left(2(n-2)+\frac{1}{2}(n H)^{2}-\frac{n-2}{2}\left(\sum_{k=1, k \neq i, j}^{n} \lambda_{k}^{2}\right)-\left(\lambda_{i}^{2}+\lambda_{j}^{2}\right)\right)\left(a_{i j}\right)^{2} \\
& \geq \sum_{i \neq j}\left(2(n-2)+\frac{1}{2}(n H)^{2}-\frac{n-2}{2}|A|^{2}\right)\left(a_{i j}\right)^{2} \\
& =\left(2(n-2)+\frac{1}{2}(n H)^{2}-\frac{n-2}{2}|A|^{2}\right)|\omega|^{2} \\
& =\left(2(n-2)+n H^{2}-\frac{n-2}{2}|\Phi|^{2}\right)|\omega|^{2} .
\end{aligned}
$$

By (5), we have that:

$$
h \triangle h \geq|\nabla h|^{2}+2 h^{2}-|\Phi|^{2} h^{2}+\frac{3}{2} H^{2} h^{2},
$$

for $n=3$ and

$$
h \Delta h \geq \frac{1}{n-2}|\nabla h|^{2}+2(n-2) h^{2}-\frac{n-2}{2}|\Phi|^{2} h^{2}+n H^{2} h^{2},
$$

for $n \geq 4$.
Remark 8. If ω is 1-form, then the term $E(\omega, \omega)$ is equal to $\operatorname{Ric}(\omega, \omega)$. The corresponding estimate for this term was given by Leung (1992).

PROOF OF MAIN RESULTS

In this section, we prove Theorem 1 and Corollary 2.
If η is a compactly supported piecewise smooth function on M, then

$$
\begin{aligned}
\operatorname{div}\left(\eta^{2} h \nabla h\right) & =\eta^{2} h \triangle h+\left\langle\nabla\left(\eta^{2} h\right), \nabla h\right\rangle \\
& =\eta^{2} h \triangle h+\eta^{2}|\nabla h|^{2}+2 \eta h\langle\nabla \eta, \nabla h\rangle .
\end{aligned}
$$

Integrating by parts on M, we obtain that

$$
\begin{equation*}
\int_{M} \eta^{2} h \Delta h+\int_{M} \eta^{2}|\nabla h|^{2}+2 \int_{M} \eta h\langle\nabla \eta, \nabla h\rangle=0 . \tag{11}
\end{equation*}
$$

Case I: $\boldsymbol{n}=\mathbf{3}$. By Proposition 7 and (11), we obtain that

$$
\begin{align*}
& -2 \int_{M} \eta h\langle\nabla \eta, \nabla h\rangle-2 \int_{M} \eta^{2}|\nabla h|^{2}-2 \int_{M} \eta^{2} h^{2} \\
& \quad+\int_{M}|\Phi|^{2} \eta^{2} h^{2}-\frac{3}{2} \int_{M} H^{2} h^{2} \eta^{2} \geq 0 \tag{12}
\end{align*}
$$

Note that

$$
\begin{equation*}
-2 \int_{M} \eta h\langle\nabla \eta, \nabla h\rangle \leq a_{1} \int_{M} \eta^{2}|\nabla h|^{2}+\frac{1}{a_{1}} \int_{M} h^{2}|\nabla \eta|^{2} \tag{13}
\end{equation*}
$$

for any positive real number a_{1}. Now we give an estimate of the term $\int_{M}|\Phi|^{2} \eta^{2} h^{2}$ as follows: set $\phi_{1}(\eta)=$ $\left(\int_{\text {Supp }}|\Phi|^{3}\right)^{\frac{1}{3}}$. Then there exists

$$
\begin{align*}
& \int_{M}|\Phi|^{2} \eta^{2} h^{2} \leq\left(\int_{\text {Supp }}\left(|\Phi|^{2}\right)^{\frac{3}{2}}\right)^{\frac{2}{3}} \cdot\left(\int_{M}\left(\eta^{2} h^{2}\right)^{3}\right)^{\frac{1}{3}} \\
& =\phi_{1}(\eta)^{2} \cdot\left(\int_{M}(\eta h)^{6}\right)^{\frac{1}{3}} \\
& \leq C_{0} \phi_{1}(\eta)^{2} \cdot\left(\int_{M}|\nabla(\eta h)|^{2}+9 \int_{M}\left(H^{2}+1\right)(\eta h)^{2}\right) \\
& \leq C_{0} \phi_{1}(\eta)^{2} \cdot\left(\left(1+\frac{1}{b_{1}}\right) \int_{M} h^{2}|\nabla \eta|^{2}+\left(1+b_{1}\right) \int_{M} \eta^{2}|\nabla h|^{2}+9 \int_{M}\left(H^{2}+1\right)(\eta h)^{2}\right) \tag{14}
\end{align*}
$$

for any positive real number b_{1}, where the second inequality holds because of Proposition 6. By (12)-(14), we obtain that

$$
\begin{equation*}
\mathcal{A}_{1} \int_{M} \eta^{2}|\nabla h|^{2}+\mathcal{B}_{1} \int_{M} H^{2} \eta^{2} h^{2}+\mathcal{C}_{1} \int_{M} \eta^{2} h^{2} \leq \mathcal{D}_{1} \int_{M} h^{2}|\nabla \eta|^{2} \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{A}_{1} & :=\left(2-C_{0} \phi_{1}(\eta)^{2}\right)-\left(a_{1}+b_{1} C_{0} \phi_{1}(\eta)^{2}\right), \\
\mathcal{B}_{1} & :=\frac{3}{2}-9 C_{0} \phi_{1}(\eta)^{2}, \\
\mathcal{C}_{1} & :=2-9 C_{0} \phi_{1}(\eta)^{2}
\end{aligned}
$$

and

$$
\mathcal{D}_{1}:=\frac{1}{a_{1}}+C_{0} \phi_{1}(\eta)^{2}\left(1+\frac{1}{b_{1}}\right) .
$$

Since the total curvature $\|\Phi\|_{L^{3}(M)}$ is finite, we can choose a fixed r_{0} such that

$$
\|\Phi\|_{L^{3}\left(M-B_{r_{0}}\right)}<\delta_{1}=\sqrt{\frac{1}{12 C_{0}}}
$$

Set

$$
\begin{aligned}
\tilde{\mathcal{A}}_{1} & :=\left(2-C_{0} \delta_{1}^{2}\right)-\left(a_{1}+b_{1} C_{0} \delta_{1}^{2}\right), \\
\tilde{\mathcal{B}}_{1} & :=\frac{3}{2}-9 C_{0} \delta_{1}^{2}, \\
\tilde{\mathcal{C}}_{1} & :=2-9 C_{0} \delta_{1}^{2}
\end{aligned}
$$

and

$$
\tilde{\mathcal{D}}_{1}:=\frac{1}{a_{1}}+C_{0} \delta_{1}^{2}\left(1+\frac{1}{b_{1}}\right) .
$$

Thus,

$$
\begin{equation*}
\tilde{\mathcal{A}}_{1} \int_{M} \eta^{2}|\nabla h|^{2}+\tilde{\mathcal{B}}_{1} \int_{M} H^{2} \eta^{2} h^{2}+\tilde{\mathcal{C}}_{1} \int_{M} \eta^{2} h^{2} \leq \tilde{\mathcal{D}}_{1} \int_{M} h^{2}|\nabla \eta|^{2} \tag{16}
\end{equation*}
$$

for any $\eta \in C_{0}^{\infty}\left(M-B_{r_{0}}\right)$. By Proposition 6, we have

$$
\begin{align*}
& \frac{1}{C_{0}}\left(\int_{M}(\eta h)^{6}\right)^{\frac{1}{3}} \leq \int_{M}|\nabla(\eta h)|^{2}+9 \int_{M}\left(H^{2}+1\right)(\eta h)^{2} \\
& \leq\left(1+\frac{1}{c_{1}}\right) \int_{M} h^{2}|\nabla \eta|^{2}+\left(1+c_{1}\right) \int_{M} \eta^{2}|\nabla h|^{2}+9 \int_{M}\left(H^{2}+1\right)(\eta h)^{2} \tag{17}
\end{align*}
$$

for any positive real number c_{1}. By (16) and (17), we have

$$
\begin{align*}
& \frac{1}{C_{0}}\left(\int_{M}(\eta h)^{6}\right)^{\frac{1}{3}} \\
& \leq\left(1+\frac{1}{c_{1}}\right) \int_{M} h^{2}|\nabla \eta|^{2}+\left(1+c_{1}\right) \int_{M} \eta^{2}|\nabla h|^{2}+9 \int_{M}\left(H^{2}+1\right)(\eta h)^{2} \\
& \leq\left(1+\frac{1}{c_{1}}+\left(1+c_{1}\right) \frac{\tilde{\mathcal{D}}_{1}}{\tilde{\mathcal{A}}_{1}}\right) \int_{M} h^{2}|\nabla \eta|^{2}+\left(9-\left(1+c_{1}\right) \frac{\tilde{\mathcal{B}}_{1}}{\tilde{\mathcal{A}}_{1}}\right) \int_{M} H^{2} \eta^{2} h^{2} \\
& +\left(9-\left(1+c_{1}\right) \frac{\tilde{\mathcal{C}}_{1}}{\tilde{\mathcal{A}}_{1}}\right) \int_{M} \eta^{2} h^{2} . \tag{18}
\end{align*}
$$

Choose a sufficient large c_{1} such that

$$
9-\left(1+c_{1}\right) \frac{\tilde{\mathcal{B}}_{1}}{\tilde{\mathcal{A}}_{1}}<0
$$

and

$$
9-\left(1+c_{1}\right) \frac{\tilde{\mathcal{C}}_{1}}{\tilde{\mathcal{A}}_{1}}<0
$$

Then (18) implies that

$$
\begin{equation*}
\left(\int_{M}(\eta h)^{6}\right)^{\frac{1}{3}} \leq \tilde{A} \int_{M} h^{2}|\nabla \eta|^{2}, \tag{19}
\end{equation*}
$$

for any $\eta \in C_{0}^{\infty}\left(M-B_{r_{0}}\right)$. where \tilde{A} is a positive constant.
Case II: $\boldsymbol{n} \geq 4$. By Proposition 7 and (11), we obtain that

$$
\begin{align*}
& -2 \int_{M} \eta h\langle\nabla \eta, \nabla h\rangle-\frac{n-1}{n-2} \int_{M} \eta^{2}|\nabla h|^{2}-2(n-2) \int_{M} \eta^{2} h^{2} \\
& \quad+\frac{n-2}{2} \int_{M}|\Phi|^{2} \eta^{2} h^{2}-n \int_{M} H^{2} h^{2} \eta^{2} \geq 0 \tag{20}
\end{align*}
$$

Note that

$$
\begin{equation*}
-2 \int_{M} \eta h\langle\nabla \eta, \nabla h\rangle \leq a_{2} \int_{M} \eta^{2}|\nabla h|^{2}+\frac{1}{a_{2}} \int_{M} h^{2}|\nabla \eta|^{2}, \tag{21}
\end{equation*}
$$

for any positive real number a_{2}. We set $\phi_{2}(\eta)=\left(\int_{\text {Supp } \eta}|\Phi|^{n}\right)^{\frac{1}{n}}$ and obtain that

$$
\begin{align*}
& \int_{M}|\Phi|^{2} \eta^{2} h^{2} \leq\left(\int_{\text {Supp } \eta}\left(|\Phi|^{2}\right)^{\frac{n}{2}}\right)^{\frac{2}{n}} \cdot\left(\int_{M}\left(\eta^{2} h^{2}\right)^{\frac{n}{n-2}}\right)^{\frac{n-2}{n}} \\
& =\phi_{2}(\eta)^{2} \cdot\left(\int_{M}(\eta h)^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} \\
& \leq C_{0} \phi_{2}(\eta)^{2} \cdot\left(\int_{M}|\nabla(\eta h)|^{2}+n^{2} \int_{M}\left(H^{2}+1\right)(\eta h)^{2}\right) \\
& \leq C_{0} \phi_{2}(\eta)^{2} \cdot\left(\int_{M}\left(1+\frac{1}{b_{2}}\right) h^{2}|\nabla \eta|^{2}+\left(1+b_{2}\right) \eta^{2}|\nabla h|^{2}+n^{2} \int_{M}\left(H^{2}+1\right)(\eta h)^{2}\right) \tag{22}
\end{align*}
$$

for any positive real number b_{2}, where the second inequality holds because of Proposition 6. By (20)-(22), there exists

$$
\begin{equation*}
\mathcal{A}_{2} \int_{M} \eta^{2}|\nabla h|^{2}+\mathcal{B}_{2} \int_{M} H^{2} \eta^{2} h^{2}+\mathcal{C}_{2} \int_{M} \eta^{2} h^{2} \leq \mathcal{D}_{2} \int_{M} h^{2}|\nabla \eta|^{2} \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{A}_{2} & :=\left(\frac{n-1}{n-2}-\frac{n-2}{2} C_{0} \phi_{2}(\eta)^{2}\right)-\left(a_{2}+\frac{n-2}{2} b_{2} C_{0} \phi_{2}(\eta)^{2}\right), \\
\mathcal{B}_{2} & :=n-\frac{n^{2}(n-2)}{2} C_{0} \phi_{2}(\eta)^{2}, \\
\mathcal{C}_{2} & :=2(n-2)-\frac{n^{2}(n-2)}{2} C_{0} \phi_{2}(\eta)^{2}
\end{aligned}
$$

and

$$
\mathcal{D}_{2}:=\frac{1}{a_{2}}+\frac{n-2}{2}\left(1+\frac{1}{b_{2}}\right) C_{0} \phi_{2}(\eta)^{2} .
$$

Since the total curvature $\|\Phi\|_{L^{n}(M)}$ is finite, we can choose a fixed r_{0} such that

$$
\begin{gathered}
\|\Phi\|_{L^{n}\left(M-B_{r_{0}}\right)}<\delta_{2}=\sqrt{\frac{1}{n(n-2) C_{0}}} . \\
\tilde{\mathcal{A}}_{2}:=\left(\frac{n-1}{n-2}-\frac{n-2}{2} C_{0} \delta_{2}^{2}\right)-\left(a_{2}+\frac{n-2}{2} b_{2} C_{0} \delta_{2}^{2}\right), \\
\tilde{\mathcal{B}}_{2}:=n-\frac{n^{2}(n-2)}{2} C_{0} \delta_{2}^{2}, \\
\tilde{\mathcal{C}}_{2}:=2(n-2)-\frac{n^{2}(n-2)}{2} C_{0} \delta_{2}^{2}
\end{gathered}
$$

and

$$
\tilde{\mathcal{D}}_{2}:=\frac{1}{a_{2}}+\frac{n-2}{2}\left(1+\frac{1}{b_{2}}\right) C_{0} \delta_{2}^{2}
$$

Obviously, $\tilde{\mathcal{A}}_{2}, \tilde{\mathcal{B}}_{2}, \tilde{\mathcal{C}}_{2}$ and $\tilde{\mathcal{D}}_{2}$ are positive. Thus,

$$
\begin{equation*}
\tilde{\mathcal{A}}_{2} \int_{M} \eta^{2}|\nabla h|^{2}+\tilde{\mathcal{B}}_{2} \int_{M} H^{2} \eta^{2} h^{2}+\tilde{\mathcal{C}}_{2} \int_{M} \eta^{2} h^{2} \leq \tilde{\mathcal{D}}_{2} \int_{M} h^{2}|\nabla \eta|^{2} \tag{24}
\end{equation*}
$$

for any $\eta \in C_{0}^{\infty}\left(M-B_{r_{0}}\right)$. Combining with Proposition 6, we get that

$$
\begin{align*}
& \frac{1}{C_{0}}\left(\int_{M}|\eta h|^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} \leq \int_{M}|\nabla(\eta h)|^{2}+n^{2} \int_{M}\left(H^{2}+1\right)(\eta h)^{2} \\
& \quad \leq\left(1+c_{2}\right) \int_{M} \eta^{2}|\nabla h|^{2}+\left(1+\frac{1}{c_{2}}\right) \int_{M} h^{2}|\nabla \eta|^{2}+n^{2} \int_{M}\left(H^{2}+1\right) \eta^{2} h^{2} \tag{25}
\end{align*}
$$

for any positive real number c_{2}. By (24) and (25), we have

$$
\begin{align*}
& \frac{1}{C_{0}}\left(\int_{M}|\eta h|^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} \\
& \leq\left(1+\frac{1}{c_{2}}+\left(1+c_{2}\right) \frac{\tilde{\mathcal{D}}_{2}}{\tilde{\mathcal{A}}_{2}}\right) \int_{M} h^{2}|\nabla \eta|^{2}+\left(n^{2}-\left(1+c_{2}\right) \frac{\tilde{\mathcal{B}}_{2}}{\tilde{\mathcal{A}}_{2}}\right) \int_{M} H^{2} \eta^{2} h^{2} \\
& +\left(n^{2}-\left(1+c_{2}\right) \frac{\tilde{\mathcal{C}}_{2}}{\tilde{\mathcal{A}}_{2}}\right) \int_{M} \eta^{2} h^{2} . \tag{26}
\end{align*}
$$

We choose a sufficient large c_{2} such that

$$
n^{2}-\left(1+c_{2}\right) \frac{\tilde{\mathcal{B}}_{2}}{\tilde{\mathcal{A}}_{2}}<0
$$

and

$$
n^{2}-\left(1+c_{2}\right) \frac{\tilde{\mathcal{C}}_{2}}{\tilde{\mathcal{A}}_{2}}<0
$$

Then (26) implies that

$$
\begin{equation*}
\left(\int_{M}(\eta h)^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} \leq \tilde{A} \int_{M} h^{2}|\nabla \eta|^{2} \tag{27}
\end{equation*}
$$

for any $\eta \in C_{0}^{\infty}\left(M-B_{r_{0}}\right)$, where \tilde{A} is a positive constant depending only on n.
By Case I and Case II, we have that

$$
\begin{equation*}
\left(\int_{M}(\eta h)^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} \leq \tilde{A} \int_{M} h^{2}|\nabla \eta|^{2} \tag{28}
\end{equation*}
$$

for any $\eta \in C_{0}^{\infty}\left(M-B_{r_{0}}\right)$, where \tilde{A} is a positive constant depending only on $n(n \geq 3)$.
Next, the proof follows standard techniques (after inequality (33) in Cavalcante et al. (2014) and uses a Moser iteration argument (lemma 11 in $\mathrm{Li}(1980)$). We include a concise proof here for the sake of completeness. Choose $r>r_{0}+1$ and $\eta \in C_{0}^{\infty}\left(M-B_{r_{0}}\right)$ such that

$$
\left\{\begin{array}{l}
\eta=0 \text { on } B_{r_{0}} \cup\left(M-B_{2 r}\right), \\
\eta=1 \text { on } B_{r}-B_{r_{0}+1} \\
|\nabla \eta|<\tilde{c} \text { on } B_{r_{0}+1}-B_{r_{0}} \\
|\nabla \eta| \leq \tilde{c} r^{-1} \text { on } B_{2 r}-B_{r}
\end{array}\right.
$$

for some positive constant \tilde{c}. Then (28) becomes that

$$
\left(\int_{B_{r}-B_{r_{0}+1}} h^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} \leq \tilde{A} \int_{B_{r_{0}+1}-B_{r_{0}}} h^{2}+\frac{\tilde{A}}{r^{2}} \int_{B_{2 r}-B_{r}} h^{2} .
$$

Letting $r \rightarrow \infty$ and noting that $h \in L^{2}(M)$, we obtain that

$$
\begin{equation*}
\left(\int_{M-B_{r_{0}+1}} h^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} \leq \tilde{A} \int_{B_{r_{0}+1}-B_{r_{0}}} h^{2} . \tag{29}
\end{equation*}
$$

By Hölder inequality

$$
\int_{B_{r_{0}+2}-B_{r_{0}+1}} h^{2} \leq\left(\int_{B_{r_{0}+2}-B_{r_{0}+1}} h^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} \cdot\left(\int_{B_{r_{0}+2}-B_{r_{0}+1}} 1^{\frac{n}{2}}\right)^{\frac{2}{n}},
$$

we get that

$$
\begin{equation*}
\int_{B_{r_{0}+2}} h^{2} \leq\left(1+\tilde{A} V o l\left(B_{r_{0}+2}\right)^{\frac{2}{n}}\right) \int_{B_{r_{0}+1}} h^{2} . \tag{30}
\end{equation*}
$$

Set

$$
\Psi=\left\{\begin{array}{l}
\left|2-|\Phi|^{2}+\frac{3}{2} H^{2}\right|, \text { for } n=3, \\
\left.\left.\left|2(n-2)-\frac{n-2}{2}\right| \Phi\right|^{2}+n H^{2} \right\rvert\,, \text { for } n \geq 4
\end{array}\right.
$$

Fix $x \in M$ and take $\tau \in C_{0}^{1}\left(B_{1}(x)\right)$. Proposition 7 implies that

$$
h \triangle h \geq \alpha|\nabla h|^{2}-\Psi h^{2}
$$

where

$$
\alpha=\left\{\begin{array}{l}
\frac{1}{2}, \text { for } n=3, \\
\frac{1}{n-2}, \text { for } n \geq 4
\end{array}\right.
$$

Then, for $p>2$, there exists

$$
\int_{M} \tau^{2} h^{p-1} \triangle h \geq \alpha \int_{M} \tau^{2} h^{p-2}|\nabla h|^{2}-\int_{M} \tau^{2} \Psi h^{p} .
$$

That is,

$$
\begin{align*}
-2 \int_{B_{1}(x)} \tau h^{p-1}\langle\nabla \tau, \nabla h\rangle & \geq(\alpha+(p-1)) \int_{B_{1}(x)} \tau^{2} h^{p-2}|\nabla h|^{2} \\
& -\int_{B_{1}(x)} \tau^{2} \Psi h^{p} \tag{31}
\end{align*}
$$

Note that

$$
\begin{aligned}
-2 \tau h^{p-1}\langle\nabla \tau, \nabla h\rangle & =-2\left\langle h^{\frac{p}{2}} \nabla \tau, \tau h^{\frac{p}{2}-1} \nabla h\right\rangle \\
& \leq \frac{1}{\alpha} h^{p}|\nabla \tau|^{2}+\alpha \tau^{2} h^{p-2}|\nabla h|^{2} .
\end{aligned}
$$

Combining with (31), we obtain that

$$
\begin{equation*}
(p-1) \int_{B_{1}(x)} \tau^{2} h^{p-2}|\nabla h|^{2} \leq \int_{B_{1}(x)} \Psi \tau^{2} h^{p}+\frac{1}{\alpha} \int_{B_{1}(x)}|\nabla \tau|^{2} h^{p} . \tag{32}
\end{equation*}
$$

Combining Cauchy-Schwarz inequality with (32), we obtain that

$$
\begin{equation*}
\int_{B_{1}(x)}\left|\nabla\left(\tau h^{\frac{p}{2}}\right)\right|^{2} \leq \int_{B_{1}(x)} \mathcal{A} \Psi \tau^{2} h^{p}+\mathcal{B}|\nabla \tau|^{2} h^{p}, \tag{33}
\end{equation*}
$$

where $\mathcal{A}=\frac{1}{p-1}\left(\frac{p^{2}}{4}+\frac{p}{2}\right)$ and $\mathcal{B}=\left(1+\frac{p}{2}\right)+\frac{1}{\alpha(p-1)}\left(\frac{p^{2}}{4}+\frac{p}{2}\right)$. Choose $f=\tau h^{\frac{p}{2}}$ in Proposition 6. Combining with (33), we obtain that

$$
\begin{equation*}
\left(\int_{B_{1}(x)}\left(\tau h^{\frac{p}{2}}\right)^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{2}} \leq p \mathcal{C} \int_{B_{1}(x)}\left(\tau^{2}+|\nabla \tau|^{2}\right) h^{p} \tag{34}
\end{equation*}
$$

where \mathcal{C} depends on n and $\sup _{B_{1}(x)} \Psi$. Set $p_{k}=\frac{2 n^{k}}{(n-2)^{k}}$ and $\rho_{k}=\frac{1}{2}+\frac{1}{2^{k+1}}$ for $k=0,1,2, \cdots$. Take a function $\tau_{k} \in C_{0}^{\infty}\left(B_{\rho_{k}(x)}\right)$ satisfying:

$$
\left\{\begin{array}{l}
0 \leq \tau_{k} \leq 1 \\
\tau_{k}=1 \text { on } B_{\rho_{k+1}}(x) \\
\left|\nabla \tau_{k}\right| \leq 2^{k+3}
\end{array}\right.
$$

Choosing $p=p_{k}$ and $\tau=\tau_{k}$ in (34), we obtain that

$$
\begin{equation*}
\left(\int_{B_{\rho_{k+1}}(x)} h^{p_{k+1}}\right)^{\frac{1}{p_{k+1}}} \leq\left(\mathcal{C} p_{k} 4^{k+4}\right)^{\frac{1}{p_{k}}}\left(\int_{B_{\rho_{k}}(x)} h^{h^{p_{k}}}\right)^{\frac{1}{p_{k}}} . \tag{35}
\end{equation*}
$$

By recurrence, we have

$$
\begin{equation*}
\|h\|_{L^{p_{k+1}}\left(B_{\frac{1}{2}}(x)\right)} \leq \prod_{i=0}^{k} p_{i}^{\frac{1}{p_{i}}} 4^{\frac{i}{p_{i}}}\left(\mathcal{C} 4^{4}\right)^{\frac{1}{p_{i}}}\|h\|_{L^{2}\left(B_{1}(x)\right)} \leq \mathcal{D}\|h\|_{L^{2}\left(B_{1}(x)\right)} \tag{36}
\end{equation*}
$$

where \mathcal{D} is a positive constant depending only on $n, \operatorname{Vol}\left(B_{r_{0}+2}\right)$ and $\sup _{B_{r_{0}+2}} \Psi$. Letting $k \rightarrow \infty$, we get

$$
\begin{equation*}
\|h\|_{L^{\infty}\left(B_{\frac{1}{2}}(x)\right)} \leq \mathcal{D}\|h\|_{L^{2}\left(B_{1}(x)\right)} \tag{37}
\end{equation*}
$$

Now, choose $y \in \bar{B}_{r_{0}+1}$ such that $\sup _{B_{r_{0}+1}} h^{2}=h(y)^{2}$. Note that $B_{1}(y) \subset B_{r_{0}+2}$. (37) implies that

$$
\begin{equation*}
\sup _{B_{r_{0}+1}} h^{2} \leq \mathcal{D}\|h\|_{L^{2}\left(B_{1}(y)\right)}^{2} \leq \mathcal{D}\|h\|_{L^{2}\left(B_{r_{0}+2}\right)}^{2} . \tag{38}
\end{equation*}
$$

By (30), we have

$$
\begin{equation*}
\sup _{B_{r_{0}+1}} h^{2} \leq \mathcal{F}\|h\|_{L^{2}\left(B_{r_{0}+1}\right)}^{2} \tag{39}
\end{equation*}
$$

where \mathcal{F} depends only on $n, \operatorname{Vol}\left(B_{r_{0}+2}\right)$ and $\sup _{B_{r_{0}+2}} \Psi$. In order to show the finiteness of the dimension of $H^{2}\left(L^{2}(M)\right)$, it suffices to prove that the dimension of any finite dimensional subspaces of $H^{2}\left(L^{2}(M)\right)$ is bounded above by a fixed constant. Combining (39) with Lemma 11 in Li (1980), we show that $\operatorname{dim} H^{2}\left(L^{2}(M)\right)<+\infty$. By Proposition 4, we obtain that the dimension of the second space of reduced L^{2} cohomology of M is finite.

Remark 9. For the case of $n=3$, Theorem 1 can also be obtained by a different method. In fact, Yau (1976) proved that if $\omega \in H^{2}\left(L^{2}(M)\right)$, then ω is closed and coclosed. By use of the Hodge-* operator, we obtain the dimensions of $H^{2}\left(L^{2}(M)\right)$ and $H^{1}\left(L^{2}(M)\right)$ are equal. By Theorem 1.1 in Zhu and Fang (2014), we obtain the desired result.

ACKNOWLEDGMENTS

The author would like to thank professor Detang Zhou for useful suggestions. The work was partially supported by NSFC Grants 11471145, 11371309 and Qing Lan Project.

REFERENCES

CARRON G. 1999. L^{2}-Cohomologie et inégalités de Sobolev. Math Ann 314: 613-639.
CARRON G. 2007. L^{2} harmonic forms on non compact manifolds. arXiv:0704.3194v1.
CAVALCANTE MP, MIRANDOLA H AND VITÓRIO F. 2014. L^{2}-harmonic 1 -forms on submanifolds with finite total curvature. J Geom Anal 24: 205-222.
CHENG X AND ZHOU DT. 2009. Manifolds with weighted Poincaré inequality and uniqueness of minimal hypersurfaces. Comm Anal Geom 17: 135-154.
CIBOTARU D AND ZHU P. 2012. Refined Kato inequalities for harmonic fields on Kähler manifolds. Pacific J Math 256: 51-66.
FU HP AND XU HW. 2010. Total curvature and L^{2} harmonic 1-forms on complete submanifolds in space forms. Geom Dedicata 144: 129-140.
HOFFMAN D AND SPRUCK J. 1974. Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm Pure Appl Math 27: 715-727.
LEUNG PF. 1992. An estimate on the Ricci curvature of a submanifold and some applications. Proc Amer Math Soc 114: 1051-1061.
LI P. 1980. On the Sobolev constant and the p-spectrum of a compact Riemannian manifold. Ann Sci Éc Norm Super 13: 451-468.
LI P. 1993. Lecture notes on geometric analysis. Lecture Notes Series n. 6. Seoul: Seoul National University, Research Institute of Mathematics, Global Analysis Reseach Center, p. 47-48.
LI P AND WANG JP. 2002. Minimal hypersurfaces with finite index. Math Res Lett 9: 95-103.
WANG XD. 2002. On the L^{2}-cohomology of a convex cocompact hyperbolic manifold. Duke Math J 115: 311-327.
YAU ST. 1976. Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ Math J 25: 659-670.
ZHU P. 2011. Harmonic two-forms on manifolds with nonnegative isotropic curvature. Ann Global Anal Geom 40: 427-434.
ZHU P. 2013. L^{2}-harmonic forms and finiteness of ends. An Acad Bras Cienc 85: 457-471.
ZHU P AND FANG SW. 2014. Finiteness of non-parabolic ends on submanifolds in spheres. Ann Global Anal Geom 46: 187-196.

