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ABSTRACT

In this paper, we prove that the dimension of the second space of reduced L2 cohomology ofM is finite if

M is a complete noncompact hypersurface in a sphere Sn+1 and has finite total curvature (n ≥ 3).
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INTRODUCTION

For a complete manifold Mn, the p-th space of reduced L2-cohomology is defined, for 0 ≤ p ≤ n in

Carron (2007). It is interesting and important to discuss the finiteness of the dimension of these spaces.

Carron (1999) proved that if Mn (n ≥ 3) is a complete noncompact submanifold of Rn+p with finite total

curvature and finite mean curvature (i. e., the Ln-norm of the mean curvature vector is finite), then each p-th

space of reduced L2-cohomology onM has finite dimension, for 0 ≤ p ≤ n. The reduced L2 cohomology

is related with the L2 harmonic forms (Carron 2007). In fact, several mathematicians studied the space of

L2 harmonic p-forms for p = 1, 2. If Mn (n ≥ 3) is a complete minimal hypersurface in Rn+1 with finite

index, Li and Wang (2002) proved that the dimension of the space of the L2 harmonic 1-forms M is finite

and M has finitely many ends. More generally, Zhu (2013) showed that: suppose that Nn+1 (n ≥ 3) is a

complete simply connected manifold with non-positive sectional curvature and Mn is a complete minimal

hypersurface in N with finite index. If the bi-Ricci curvature satisfies

b−Ric(X,Y ) +
1

n
|A|2 ≥ 0,

for all orthonormal tangent vectors X,Y in TpN for p ∈ M , then the dimension of the space of the L2

harmonic 1-formsM is finite. Furthermore, following the idea of Cheng and Zhou (2009), Zhu (2013) gave

a result on finitely many ends of complete manifolds with a weighted Poincaré inequality by use of the
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space of L2 harmonic functions. Cavalcante et al. (2014) discussed a complete noncompact submanifold

Mn (n ≥ 3) isometrically immersed in a Hadamard manifold Nn+p with sectional curvature satisfying

−k2 ≤ KN ≤ 0 for some constant k and showed that if the total curvature is finite and the first eigenvalue

of the Laplacian operator ofM is bounded from below by a suitable constant, then the dimension of the space

of theL2 harmonic 1-forms onM is finite. Fu and Xu (2010) studied a complete submanifoldMn in a sphere

Sn+p with finite total curvature and bounded mean curvature and proved that the dimension of the space of

the L2 harmonic 1-forms onM is finite. Zhu and Fang (2014) proved Fu-Xu’s result without the restriction

on the mean curvature vector and therefore obtained that the first space of reduced L2-cohomology on M

has finite dimension. Zhu (2011) studied the existence of the symplectic structure and L2 harmonic 2-forms

on complete noncompact manifolds by use of a special version of Bochner formula.

Motivated by above results, we discuss a complete noncompact hypersurfaceMn in a sphere Sn+1 with

finite total curvature in this paper. We obtain the following finiteness results on the space of all L2 harmonic

2-forms and the second space of reduced L2 cohomology:

Theorem 1. Let Mn (n ≥ 3) be an n-dimensional complete noncompact oriented manifold isometrically

immersed in an (n + 1)-dimensional sphere Sn+1. If the total curvature is finite, then the space of all L2

harmonic 2-forms has finite dimension.

Corollary 2. Let Mn (n ≥ 3) be an n-dimensional complete noncompact oriented manifold isometrically

immersed in Sn+1. If the total curvature is finite, then the dimension of the second space of reduced L2

cohomology of M is finite.

Remark 3. Under the same condition of Corollary 2, we conjecture that the p-th space of reduced L2

cohomology of M has finite dimension for 3 ≤ p ≤ n− 3.

PRELIMINARIES

In this section, we recall some relevant definitions and results. Suppose that Mn is an n-dimensional

complete Riemannian manifold. The Hodge operator ∗ : ∧p(M) → ∧n−p(M) is defined by

∗ei1 ∧ · · · ∧ eip = sgnσ(i1, i2, · · · , in)eip+1 ∧ · · · ∧ ein ,

where σ(i1, i2, · · · , in) denotes a permutation of the set (i1, i2, · · · , in) and sgnσ is the sign of σ. The

operator d∗ : ∧p(M) → ∧p−1(M) is given by

d∗ω = (−1)(nk+k+1) ∗ d ∗ ω.

The Laplacian operator is defined by

4ω = −dd∗ω − d∗dω.

A p-form ω is called L2 harmonic if4ω = 0 and∫
M

ω ∧ ∗ω < +∞.

We denote by Hp(L2(M)) the space of all L2 harmonic p-forms onM . Let

Zp
2 (M) = {α ∈ L2(∧p(T ∗M)) : dα = 0}
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and

Dp(d) = {α ∈ L2(∧p(T ∗M)) : dα ∈ L2(∧p+1(T ∗M))}.

We define the p-th space of reduced L2 cohomology by

Hp
2 (M) =

Zp
2 (M)

Dp−1(d)
.

Suppose that x : Mn → Sn+1 is an isometric immersion of an n-dimensional manifold M in an

(n + 1)-dimensional sphere. Let A denote the second fundamental form and H the mean curvature of the

immersion x. Let

Φ(X,Y ) = A(X,Y )−H〈X,Y 〉,

for all vector fieldsX and Y , where 〈, 〉 is the induced metric ofM . We say the immersion x has finite total

curvature if

‖Φ‖Ln(M) < +∞.

We state several results which will be used to prove Theorem 1.

Proposition 4. (Carron 2007) Let (M, g) is a complete Riemannianmanifold, then the space ofL2 harmonic

p-forms Hp(L2(M)) is isomorphic to the p-th space of reduced L2 cohomology Hp
2 (M).

Lemma 5. (Li 1993) If (Mn, g) is a Riemannian manifold and ω = aIωI ∈ ∧p(M), then

4|ω|2 = 2〈4ω, ω〉+ 2|∇ω|2 + 2〈E(ω), ω〉,

where E(ω) = Rkβiβjαiαai1···kβ ···ipe
ip ∧ . . . ∧ ejα ∧ . . . ∧ ei1 .

Proposition 6. (Hoffman and Spruck 1974, Zhu and Fang 2014) LetMn be a complete noncompact oriented

manifold isometrically immersed in a sphere Sn+1. Then

(

∫
M

|f |
2n

n−2 )

n−2

n

≤ C0(

∫
M

|∇f |2 + n2

∫
M
(H2 + 1)f2)

for each f ∈ C1
0 (M), where C0 depends only on n and H is the mean curvature of M in Sn+1.

AN INEQUALITY FOR L2 HARMONIC 2-FORMS

In this section, we show an inequality for L2 harmonic 2-forms on hypersurfaces in a sphere Sn+1, which

plays an important role in the proof of main results.

Proposition 7. Let Mn (n ≥ 3) be an n-dimensional complete noncompact hypersurface isometrically

immersed in an (n+ 1)-dimensional sphere Sn+1. If ω ∈ H2(L2(M)), then

h4h ≥ |∇h|2 + 2h2 − |Φ|2h2 + 3

2
H2h2,

for n = 3 and

h4h ≥ 1

n− 2
|∇h|2 + 2(n− 2)h2 − n− 2

2
|Φ|2h2 + nH2h2,

for n ≥ 4, where h = |ω|.
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Proof. Suppose that ω ∈ H2(L2(M)). Then we have

4|ω|2 = 2|∇|ω||2 + 2|ω|4|ω|. (1)

By Lemma 5, we get that:

4|ω|2 = 2〈4ω, ω〉+ 2|∇ω|2 + 2〈E(ω), ω〉
= 2|∇ω|2 + 2〈E(ω), ω〉. (2)

Combining (1) with (2), we obtain that

|ω|4|ω| = |∇ω|2 − |∇|ω||2 + 〈E(ω), ω〉. (3)

There exists the Kato inequality for L2 harmonic 2-forms as follows (Cibotaru and Zhu 2012, Wang 2002):

n− 1

n− 2
|∇|ω||2 ≤ |∇ω|2. (4)

By (3) and (4), we get that

|ω|4|ω| ≥ 1

n− 2
|∇|ω||2 + 〈E(ω), ω〉. (5)

Now, we give the estimate of the term 〈E(ω), ω〉. Let ω1 = bi1i2e
i2 ∧ei1 ∈ ∧2(M) and ω2 = ci1i2e

i2 ∧ei1 ∈
∧2(M), where bi1i2 = −bi2i1 and ci1i2 = −ci2i1 . By Lemma 5, we obtain that

E(ω1) = Rk1i1j1i1bk1i2e
i2 ∧ ej1 +Rk2i2j2i2bi1k2

ej2 ∧ ei1

+Rk2i2j1i1bi1k2
ei2 ∧ ej1 +Rk1i1j2i2bk1i2e

j2 ∧ ei1

= Rick1j1bk1i2e
i2 ∧ ej1 +Rick2j2bi1k2

ej2 ∧ ei1

+Rk2i2j1i1bi1k2
ei2 ∧ ej1 +Rk1i1j2i2bk1i2e

j2 ∧ ei1 .

So, we get that

〈E(ω1), ω2〉 =Rick1j1bk1i2cj1i2 +Rick2j2bi1k2
ci1j2

+Rk2i2j1i1bi1k2
cj1i2 +Rk1i1j2i2bk1i2ci1j2 ,

which implies that

〈E(ω), ω〉 =Rick1j1ak1i2aj1i2 +Rick2j2ai1k2
ai1j2

+Rk2i2j1i1ai1k2
aj1i2 +Rk1i1j2i2ak1i2ai1j2 . (6)

By Gauss equation, we have that

Rijkl = (δikδjl − δilδjk) + hikhjl − hilhjk.

A direct computation shows that

Rick1j1 = (n− 1)δk1j1 + nHhk1j1 − hk1ihij1 ; (7)
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Rick2j2 = (n− 1)δk2j2 + nHhk2j2 − hk2ihij2 ; (8)

Rk2i2j1i1 = (δk2j1δi2i1 − δk2i1δi2j1) + hk2j1hi2i1 − hk2i1hi2j1 (9)

and

Rk1i1j2i2 = (δk1j2δi1i2 − δk1i2δi1j2) + hk1j2hi1i2 − hk1i2hi1j2 . (10)

Since the curvature operator E is linear and zero order, and hence tensorial, it is sufficient to compute

〈E(ω), ω〉 at a point p. We can choose an orthonormal frame {ei} such that hij = λiδij at p. Obviously,

nH = λ1 + · · ·+ λn.

By (6)-(10), we have

〈E(ω), ω〉 =(n− 1)
∑

(aj1i2)
2 +

∑
nHλk1

(ak1i2)
2 −

∑
λ2
k1
(ak1i2)

2

+(n− 1)
∑

(ai1j2)
2 +

∑
nHλk2

(ai1k2
)2 −

∑
λ2
k2
(ai1k2

)2

+
∑

ai1j1aj1i1 −
∑

λk2λi2
(ak2i2)

2

+
∑

aj2i2ai2j2 −
∑

λj2λi2
(aj2i2)

2

=2
∑
i 6=j

(
(n− 2) + (λ1 + · · ·+ λn)λi − λ2

i − λiλj

)
(aij)

2.

Note that

|A|2 = |Φ|2 + nH2.

For n = 3, we have that

〈E(ω), ω〉 = 2
∑
i 6=j

(
1 + (λ1 + λ2 + λ3)λi − λ2

i − λiλj

)
(aij)

2

=
∑
i 6=j

(
2 + (λ1 + λ2 + λ3)(λi + λj)− (λ2

i + λ2
j )− 2λiλj

)
(aij)

2

=
∑
i 6=j

(
2 +

1

2
(3H)2 − 1

2

3∑
k=1,k 6=i,j

λ2
k −

1

2
(λi + λj)

2
)
(aij)

2

≥
∑
i 6=j

(
2 +

1

2
(3H)2 − 1

2

3∑
k=1,k 6=i,j

λ2
k − (λ2

i + λ2
j )
)
(aij)

2

≥
∑
i 6=j

(
2 +

9

2
H2 − |A|2

)
(aij)

2

= (2 +
3

2
H2 − |Φ|2)|ω|2.
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For n ≥ 4, we obtain that

〈E(ω), ω〉 = 2
∑
i 6=j

(
(n− 2) + (λ1 + · · ·+ λn)λi − λ2

i − λiλj

)
(aij)

2

=
∑
i 6=j

(
2(n− 2) + (λ1 + · · ·+ λn)(λi + λj)− (λ2

i + λ2
j )− 2λiλj

)
(aij)

2

=
∑
i 6=j

(
2(n− 2) + (λ1 + · · ·+ λ̂i + · · ·+ λ̂j + · · ·+ λn)(λi + λj)

)
(aij)

2

=
∑
i 6=j

(
2(n− 2) +

1

2
(nH)2 − 1

2
(

n∑
k=1,k 6=i,j

λk)
2 − 1

2
(λi + λj)

2
)
(aij)

2

≥
∑
i 6=j

(
2(n− 2) +

1

2
(nH)2 − n− 2

2
(

n∑
k=1,k 6=i,j

λ2
k)− (λ2

i + λ2
j )
)
(aij)

2

≥
∑
i 6=j

(
2(n− 2) +

1

2
(nH)2 − n− 2

2
|A|2

)
(aij)

2

=
(
2(n− 2) +

1

2
(nH)2 − n− 2

2
|A|2

)
|ω|2

=
(
2(n− 2) + nH2 − n− 2

2
|Φ|2

)
|ω|2.

By (5), we have that:

h4h ≥ |∇h|2 + 2h2 − |Φ|2h2 + 3

2
H2h2,

for n = 3 and

h4h ≥ 1

n− 2
|∇h|2 + 2(n− 2)h2 − n− 2

2
|Φ|2h2 + nH2h2,

for n ≥ 4.

Remark 8. If ω is 1-form , then the term E(ω, ω) is equal to Ric(ω, ω). The corresponding estimate for

this term was given by Leung (1992).

PROOF OF MAIN RESULTS

In this section, we prove Theorem 1 and Corollary 2.

If η is a compactly supported piecewise smooth function onM , then

div(η2h∇h) = η2h4h+ 〈∇(η2h),∇h〉
= η2h4h+ η2|∇h|2 + 2ηh〈∇η,∇h〉.

Integrating by parts onM , we obtain that∫
M

η2h4h+

∫
M

η2|∇h|2 + 2

∫
M

ηh〈∇η,∇h〉 = 0. (11)
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Case I: n = 3. By Proposition 7 and (11), we obtain that

−2

∫
M

ηh〈∇η,∇h〉 − 2

∫
M

η2|∇h|2 − 2

∫
M

η2h2

+

∫
M

|Φ|2η2h2 − 3

2

∫
M

H2h2η2 ≥ 0. (12)

Note that

−2

∫
M

ηh〈∇η,∇h〉 ≤ a1

∫
M

η2|∇h|2 + 1

a1

∫
M

h2|∇η|2, (13)

for any positive real number a1. Now we give an estimate of the term
∫
M |Φ|2η2h2 as follows: set φ1(η) =(∫

Suppη |Φ|
3
) 1

3

. Then there exists∫
M

|Φ|2η2h2 ≤
(∫

Suppη

(
|Φ|2

) 3

2

) 2

3

·
(∫

M

(
η2h2

)3) 1

3

= φ1(η)
2 ·

(∫
M

(ηh)6
) 1

3

≤ C0φ1(η)
2 ·

(∫
M

|∇(ηh)|2 + 9

∫
M
(H2 + 1)(ηh)2

)
≤ C0φ1(η)

2 ·
(
(1 +

1

b1
)

∫
M

h2|∇η|2 + (1 + b1)

∫
M

η2|∇h|2 + 9

∫
M
(H2 + 1)(ηh)2

)
, (14)

for any positive real number b1, where the second inequality holds because of Proposition 6. By (12)-(14),

we obtain that

A1

∫
M

η2|∇h|2 + B1

∫
M

H2η2h2 + C1
∫
M

η2h2 ≤ D1

∫
M

h2|∇η|2, (15)

where

A1 : = (2− C0φ1(η)
2)− (a1 + b1C0φ1(η)

2),

B1 : =
3

2
− 9C0φ1(η)

2,

C1 : = 2− 9C0φ1(η)
2

and

D1 :=
1

a1
+ C0φ1(η)

2(1 +
1

b1
).

Since the total curvature ‖Φ‖L3(M) is finite, we can choose a fixed r0 such that

‖Φ‖L3(M−Br0
) < δ1 =

√
1

12C0
.

Set

Ã1 : = (2− C0δ
2
1)− (a1 + b1C0δ

2
1),

B̃1 : =
3

2
− 9C0δ

2
1 ,

C̃1 : = 2− 9C0δ
2
1
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and

D̃1 :=
1

a1
+ C0δ

2
1(1 +

1

b1
).

Thus,

Ã1

∫
M

η2|∇h|2 + B̃1

∫
M

H2η2h2 + C̃1
∫
M

η2h2 ≤ D̃1

∫
M

h2|∇η|2, (16)

for any η ∈ C∞
0 (M −Br0). By Proposition 6, we have

1

C0

(∫
M

(ηh)6
) 1

3

≤
∫
M

|∇(ηh)|2 + 9

∫
M
(H2 + 1)(ηh)2

≤ (1 +
1

c1
)

∫
M

h2|∇η|2 + (1 + c1)

∫
M

η2|∇h|2 + 9

∫
M
(H2 + 1)(ηh)2, (17)

for any positive real number c1. By (16) and (17), we have

1

C0

(∫
M

(ηh)6
) 1

3

≤ (1 +
1

c1
)

∫
M

h2|∇η|2 + (1 + c1)

∫
M

η2|∇h|2 + 9

∫
M
(H2 + 1)(ηh)2

≤ (1 +
1

c1
+ (1 + c1)

D̃1

Ã1

)

∫
M

h2|∇η|2 + (9− (1 + c1)
B̃1

Ã1

)

∫
M

H2η2h2

+ (9− (1 + c1)
C̃1
Ã1

)

∫
M

η2h2. (18)

Choose a sufficient large c1 such that

9− (1 + c1)
B̃1

Ã1

< 0

and

9− (1 + c1)
C̃1
Ã1

< 0.

Then (18) implies that

(

∫
M
(ηh)6)

1

3

≤ Ã

∫
M

h2|∇η|2, (19)

for any η ∈ C∞
0 (M −Br0). where Ã is a positive constant.

Case II: n ≥ 4. By Proposition 7 and (11), we obtain that

−2

∫
M

ηh〈∇η,∇h〉 − n− 1

n− 2

∫
M

η2|∇h|2 − 2(n− 2)

∫
M

η2h2

+
n− 2

2

∫
M

|Φ|2η2h2 − n

∫
M

H2h2η2 ≥ 0. (20)

Note that

−2

∫
M

ηh〈∇η,∇h〉 ≤ a2

∫
M

η2|∇h|2 + 1

a2

∫
M

h2|∇η|2, (21)
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for any positive real number a2. We set φ2(η) =
(∫

Suppη |Φ|
n
) 1

n

and obtain that

∫
M

|Φ|2η2h2 ≤
(∫

Suppη

(
|Φ|2

)n

2

) 2

n

·
(∫

M

(
η2h2

) n

n−2

)n−2

n

= φ2(η)
2 ·

(∫
M

(ηh)
2n

n−2

)n−2

n

≤ C0φ2(η)
2 ·

(∫
M

|∇(ηh)|2 + n2

∫
M
(H2 + 1)(ηh)2

)
≤ C0φ2(η)

2 ·
(∫

M
(1 +

1

b2
)h2|∇η|2 + (1 + b2)η

2|∇h|2 + n2

∫
M
(H2 + 1)(ηh)2

)
, (22)

for any positive real number b2, where the second inequality holds because of Proposition 6. By (20)-(22),

there exists

A2

∫
M

η2|∇h|2 + B2

∫
M

H2η2h2 + C2
∫
M

η2h2 ≤ D2

∫
M

h2|∇η|2, (23)

where

A2 : =
(n− 1

n− 2
− n− 2

2
C0φ2(η)

2
)
−
(
a2 +

n− 2

2
b2C0φ2(η)

2
)
,

B2 : = n− n2(n− 2)

2
C0φ2(η)

2,

C2 : = 2(n− 2)− n2(n− 2)

2
C0φ2(η)

2

and

D2 :=
1

a2
+

n− 2

2
(1 +

1

b2
)C0φ2(η)

2.

Since the total curvature ‖Φ‖Ln(M) is finite, we can choose a fixed r0 such that

‖Φ‖Ln(M−Br0 )
< δ2 =

√
1

n(n− 2)C0
.

Ã2 : =
(n− 1

n− 2
− n− 2

2
C0δ

2
2

)
−
(
a2 +

n− 2

2
b2C0δ

2
2

)
,

B̃2 : = n− n2(n− 2)

2
C0δ

2
2 ,

C̃2 : = 2(n− 2)− n2(n− 2)

2
C0δ

2
2

and

D̃2 :=
1

a2
+

n− 2

2
(1 +

1

b2
)C0δ

2
2 .
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Obviously, Ã2, B̃2, C̃2 and D̃2 are positive. Thus,

Ã2

∫
M

η2|∇h|2 + B̃2

∫
M

H2η2h2 + C̃2
∫
M

η2h2 ≤ D̃2

∫
M

h2|∇η|2, (24)

for any η ∈ C∞
0 (M −Br0). Combining with Proposition 6, we get that

1

C0
(

∫
M

|ηh|
2n

n−2 )

n−2

n

≤
∫
M

|∇(ηh)|2 + n2

∫
M
(H2 + 1)(ηh)2

≤ (1 + c2)

∫
M

η2|∇h|2 + (1 +
1

c2
)

∫
M

h2|∇η|2 + n2

∫
M
(H2 + 1)η2h2, (25)

for any positive real number c2. By (24) and (25), we have

1

C0
(

∫
M

|ηh|
2n

n−2 )

n−2

n

≤ (1 +
1

c2
+ (1 + c2)

D̃2

Ã2

)

∫
M

h2|∇η|2 + (n2 − (1 + c2)
B̃2

Ã2

)

∫
M

H2η2h2

+ (n2 − (1 + c2)
C̃2
Ã2

)

∫
M

η2h2. (26)

We choose a sufficient large c2 such that

n2 − (1 + c2)
B̃2

Ã2

< 0

and

n2 − (1 + c2)
C̃2
Ã2

< 0.

Then (26) implies that

(

∫
M
(ηh)

2n

n−2 )

n−2

n

≤ Ã

∫
M

h2|∇η|2, (27)

for any η ∈ C∞
0 (M −Br0), where Ã is a positive constant depending only on n.

By Case I and Case II, we have that

(

∫
M
(ηh)

2n

n−2 )

n−2

n

≤ Ã

∫
M

h2|∇η|2, (28)

for any η ∈ C∞
0 (M −Br0), where Ã is a positive constant depending only on n (n ≥ 3).

Next, the proof follows standard techniques (after inequality (33) in Cavalcante et al. (2014) and uses aMoser

iteration argument (lemma 11 in Li (1980)). We include a concise proof here for the sake of completeness.

Choose r > r0 + 1 and η ∈ C∞
0 (M −Br0) such that

η = 0 on Br0 ∪ (M −B2r),

η = 1 on Br −Br0+1,

|∇η| < c̃ on Br0+1 −Br0 ,

|∇η| ≤ c̃r−1on B2r −Br,
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for some positive constant c̃. Then (28) becomes that

(

∫
Br−Br0+1

h
2n

n−2 )

n−2

n

≤ Ã

∫
Br0+1−Br0

h2 +
Ã

r2

∫
B2r−Br

h2.

Letting r → ∞ and noting that h ∈ L2(M), we obtain that

(

∫
M−Br0+1

h
2n

n−2 )

n−2

n

≤ Ã

∫
Br0+1−Br0

h2. (29)

By Hölder inequality∫
Br0+2−Br0+1

h2 ≤
( ∫

Br0+2−Br0+1

h
2n

n−2

)n−2

n ·
( ∫

Br0+2−Br0+1

1
n

2

) 2

n ,

we get that ∫
Br0+2

h2 ≤ (1 + ÃV ol(Br0+2)
2

n )

∫
Br0+1

h2. (30)

Set

Ψ =

{
|2− |Φ|2 + 3

2H
2|, for n = 3,

|2(n− 2)− n−2
2 |Φ|2 + nH2|, for n ≥ 4.

Fix x ∈ M and take τ ∈ C1
0 (B1(x)). Proposition 7 implies that

h4h ≥ α|∇h|2 −Ψh2,

where

α =

{
1
2 , for n = 3,

1
n−2 , for n ≥ 4.

Then, for p > 2, there exists∫
M

τ2hp−14h ≥ α

∫
M

τ2hp−2|∇h|2 −
∫
M

τ2Ψhp.

That is,

−2

∫
B1(x)

τhp−1〈∇τ,∇h〉 ≥ (α+ (p− 1))

∫
B1(x)

τ2hp−2|∇h|2

−
∫
B1(x)

τ2Ψhp. (31)

Note that

−2τhp−1〈∇τ,∇h〉 = −2〈h
p

2∇τ, τh
p

2
−1∇h〉

≤ 1

α
hp|∇τ |2 + ατ2hp−2|∇h|2.
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Combining with (31), we obtain that

(p− 1)

∫
B1(x)

τ2hp−2|∇h|2 ≤
∫
B1(x)

Ψτ2hp +
1

α

∫
B1(x)

|∇τ |2hp. (32)

Combining Cauchy-Schwarz inequality with (32), we obtain that∫
B1(x)

|∇(τh
p

2 )|2 ≤
∫
B1(x)

AΨτ2hp + B|∇τ |2hp, (33)

whereA = 1
p−1(

p2

4 + p
2) and B = (1+ p

2)+
1

α(p−1)(
p2

4 + p
2). Choose f = τh

p

2 in Proposition 6. Combining

with (33), we obtain that

(

∫
B1(x)

(τh
p

2 )
2n

n−2 )

n−2

2

≤ pC
∫
B1(x)

(τ2 + |∇τ |2)hp, (34)

where C depends on n and supB1(x)Ψ. Set pk = 2nk

(n−2)k and ρk = 1
2 + 1

2k+1 for k = 0, 1, 2, · · · . Take a
function τk ∈ C∞

0 (Bρk(x)) satisfying: 
0 ≤ τk ≤ 1,

τk = 1 on Bρk+1
(x),

|∇τk| ≤ 2k+3.

Choosing p = pk and τ = τk in (34), we obtain that

(

∫
Bρk+1

(x)
hpk+1)

1

pk+1 ≤ (Cpk4k+4)
1

pk (

∫
Bρk

(x)
hpk)

1

pk

. (35)

By recurrence, we have

‖h‖Lpk+1 (B 1
2
(x)) ≤

k∏
i=0

p
1

pi

i 4
i

pi (C44)
1

pi ‖h‖L2(B1(x)) ≤ D‖h‖L2(B1(x)), (36)

where D is a positive constant depending only on n, V ol(Br0+2) and supBr0+2
Ψ. Letting k → ∞, we get

‖h‖L∞(B 1
2
(x)) ≤ D‖h‖L2(B1(x)). (37)

Now, choose y ∈ Br0+1 such that supBr0+1
h2 = h(y)2. Note that B1(y) ⊂ Br0+2. (37) implies that

sup
Br0+1

h2 ≤ D‖h‖2L2(B1(y))
≤ D‖h‖2L2(Br0+2)

. (38)

By (30), we have

sup
Br0+1

h2 ≤ F‖h‖2L2(Br0+1)
, (39)

where F depends only on n, V ol(Br0+2) and supBr0+2
Ψ. In order to show the finiteness of the di-

mension of H2(L2(M)), it suffices to prove that the dimension of any finite dimensional subspaces of

H2(L2(M)) is bounded above by a fixed constant. Combining (39) with Lemma 11 in Li (1980), we show

that dimH2(L2(M)) < +∞. By Proposition 4, we obtain that the dimension of the second space of reduced

L2 cohomology ofM is finite.
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Remark 9. For the case of n = 3, Theorem 1 can also be obtained by a different method. In fact, Yau (1976)

proved that if ω ∈ H2(L2(M)), then ω is closed and coclosed. By use of the Hodge-∗ operator, we obtain

the dimensions of H2(L2(M)) and H1(L2(M)) are equal. By Theorem 1.1 in Zhu and Fang (2014), we

obtain the desired result.
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