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A theoretical view on the stereochemistry 
of 1,3-benzoxazol-2-(3H)-ylidenes obtained 
from double vinylic substitution
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Abstract: 2-(1,3-Benzoxazol-2(3H)-ylidene)-3-oxo-3-phenylpropanenitrile (1) and methyl-
2-(1,3-benzoxazol-2(3H)-ylidene)(cyano)acetate (2) are observed as single isomers by 
NMR spectroscopy. A theoretical study was carried out to investigate if this is due to the 
exclusive presence of the most stable diastereoisomer or if the ene moiety undergoes 
fast rotation, thereby allowing for the observation of an average conformer. Indeed, the 
pronounced stabilization of the E stereoisomer, attributed to intramolecular hydrogen 
bonding, makes it the single obtained product.
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INTRODUCTION
Ketenedithioacetals have widespread use in 
organic chemistry, being important building 
blocks to obtain heterocyclic scaffolds using 
many different methods (Huang et al. 2020, Xu 
et al. 2019). Traditionally, these compounds are 
prepared by a one-pot reaction composed of: i) 
deprotonation of hydrogen active compounds, 
ii) addition to the carbon disulfide, and iii) 
methylation of the sulfide anions (Thomae et 
al. 2009).

Polar ized ketenedithioacetals  are 
substrates to vinylic substitutions, using 
diamines and aminols as nucleophiles 
to easily produce 1,3-diazo and 1,3-oxazo 
heterocycles of the imidazolidines, oxazolidines, 
hexahydropyrimidines, oxazinanes, and 
benzoxazole classes (Sangi et al. 2014, 2019). 

Benzoxazoles play an important role in 
discovering novel agrochemicals of different 
classes, particularly herbicides (Zou et al. 2023), 
and are known for their large spectrum of 

pharmacological properties (Demmer & Bunch 
2015), such as anticancer (Aboulwafa et al. 2023), 
antiviral (Wu et al. 2023) and antimicrobial 
activities (Padalkar et al. 2016); such properties 
are highly dependent on stereochemistry for 
an optimal enzyme induced-fit. Benzoxazole 
derivatives are usually synthesized by 
condensation between 2-aminophenols and 
carbonyl compounds; however, this method has 
limitations regarding their possible substituents 
(Sangi et al. 2014).

In our search for novel biologically active 
benzoxazoles, we synthesized 1,3-benzoxazol-
2(3H)-ylidene-3-oxo-3-phenylpropanenitrile (1) 
and methyl-1,3-benzoxazol-2(3H)-ylidene(cyano)
acetate (2) via double vinylic substitution 
of ketene dithioacetals, as shown in Figure 
1, similarly to the synthetic route previously 
reported (Sangi et al. 2014, 2019, Bocion et 
al. 1977). However, it is uncertain whether the 
E stereoisomer is the exclusive product in 
solution due to the establishment of an NH...
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O=C intramolecular hydrogen bond, giving rise 
to a thermodynamic favored product, or if the 
ene moiety undergoes free rotation due to a 
resonance structure, allowing for conformational 
isomerization and the observation of an average 
conformation. 

MATERIALS AND METHODS
General informations
Al l  chemicals  were purchased f rom 
commercial sources and used without 
any further Purification. 2-aminophenol, 
2-benzoylacetonitrile, methyl 2-cyanoacetate, 
carbon disulfide and iodomethane were 
purchased from sigma aldrich, in pure form. The 
solvents N,N-dimethylformamide and ethanol 
were purchased AR grade from Dinâmica.

Reactions assisted by microwave irradiation 
were carried out in the device Anton Paar 
Monowave 300. Thin layer chromatography 
analyzes were performed on commercial 
aluminum plates with a 0.2 mm layer of silica 
in gel from the Macherey-Nagel brand, and 
visualizations were carried out under ultraviolet 
light (254 nm).

Infrared spectra were obtained using a 
spectrophotometer Bruker, FT-IR Vertex 70 

model, using Attenuated Total Reflectance (ATR) 
mode, mass spectroscopy were performed in a 
Shimadzu GCMS-QP2010 Plus and NMR analyses 
were performed in a Bruker Avance DRX 300 and 
a Varian VNMRS 500MHz.

General procedure for the synthesis of ketene-
dithioacetals
In a round-bottom flask, a mixture of a compound 
containing active hydrogen (benzoylacetonitrile 
(3), 20.6 g or methyl cyanoacetate (4), 17.6 mL) 
(0.2 mol), potassium carbonate (0.2 mol, 27.6 g), 
and dimethylformamide (240 mL) was prepared, 
stirring at room temperature for two hours.

Then, the reaction mixture was cooled to 0 
°C, and carbon disulfide (0.2 mol, 12.1 mL) was 
added, keeping the resulting mixture under 
stirring at room temperature for two hours, with 
salt formation occurring.

Finally, methyl iodide (0.4 mol, 25.0 mL) was 
added, leaving the mixture at room temperature 
for twelve hours for alkylation of the sulfides 
to occur. After twelve hours, the reaction was 
completed with the addition of ice water (400 
mL), leading to precipitation of the products.

The isolated products are obtained as solids 
after filtration and washing with water and had 
their purity qualitatively assessed by thin layer 

Figure 1. Synthetic route to obtain 1 (R = Ph) and 2 (R = OMe), which resonates allowing for conformational 
isomerization.
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chromatography before being sent for analysis 
by nuclear magnetic resonance.

The data from the nuclear magnetic 
resonance spectra of hydrogen (1H NMR) and 
carbon (13C NMR) that were used to identify the 
synthesized compounds are as follows.

2 - B e n z o y l -3 , 3 - b i s ( m e t hy l s u l fa ny l )
acrylonitrile (5): Yield 73%. 1H NMR (300 MHz, 
CDCl3): δ 7.91-7.87 (m, 2H); 7.57 (tt, J 7.2 and 1.5 Hz, 
1H); 7.49-7.44 (m, 2H); 2.77 (s, 3H); 2.49 (s, 3H). 13C 
NMR (75 MHz, CDCl3): δ 187.3; 179.5; 136.6; 133.3; 
129.1; 128.5; 117.6; 106.0; 20.2; 19.6.

Methyl 2-cyano-3,3-bis(methylsulfanyl)
acrylate (6): Yield 92%. 1H NMR (500 MHz, CDCl3): 
δ 3.76 (s, 3H); 2.68 (s, 3H); 2.53 (s, 3H). 13C NMR (126 
MHz, CDCl3): δ 181.6; 163.0; 116.3; 98.3; 77.4; 77.2; 
77.0; 52.8; 21.2; 19.1.

General procedure for the synthesis of 
(1,3-Benzoxazol-2(3H)-ylidene) 1 and 2
In a glass suitable for microwave reactions, 
polarized dithioacetal (5, 0.249 g  or 6, 0.203 g 
produced in the previous step) (1 mmol) and 
2-aminophenol (1 mmol, 0.109 g) in ethanol (3 mL) 
were added. It was irradiated with microwaves 
for 60 minutes, maintaining a temperature at 
110°C and constant stirring.

After completion of the reaction, the 
products described below were obtained in 
the form of precipitates that were isolated by 
simple filtration, with the products (1, 0.236 g 
and 2, 0.184 g) being obtained in pure form after 
washed with ethanol and water.

The data from the infrared spectroscopy, 
mass spectrometry and nuclear magnetic 
resonance spectra of hydrogen (1H NMR) and 
carbon (13C NMR) that were used to identify the 
synthesized compounds are as follows.

1,3-Benzoxazol-2(3H)-ylidene-3-oxo-3-
phenylpropanenitrile (1): yield 90%. Melting 
point 210 - 212°C. IR (ATR) (v/cm-1): 3186 (v N-H), 
3058, 2205 (v CN), 1609 (v C=O), 1531, 1464, 1307, 

1259, 734, 695. 1H NMR (300 MHz, CDCl3) δ (ppm) 
8.05 – 7.96 (m, 2H), 7.63 – 7.33 (m, 7H). 13C NMR 
(75 MHz, CDCl3) δ (ppm) 186.0 (C=O), 165.7 (C sp2 
β CN), 146.9, 136.2, 132.2, 131.3, 128.4, 128.2, 126.1, 
125.4, 116.8 (CN), 113.9, 111.4, 70.5 (C sp2 α CN). MS 
(m/z, (%)): 262 (M+, 51); 261(71); 105(100); 77(99).

Methyl-1,3-benzoxazol-2(3H)-ylidene(cyano)
acetate (2): yield 85%. Melting point: 267 - 272°C 
(decomposition). IR (ATR) (v/cm-1): 3288 (v N-H), 
2211 (v CN), 1660 (v C=O), 1566, 1443, 1384, 1297, 
1229, 969, 756. 1H NMR (300 MHz, DMSO-d6) δ 
(ppm) 12.95 (s, 1H, N-H), 7.66 – 7.63 (m, 1H), 7.46 
– 7.42 (m, 1H), 7.34 (dt, J 7.5 and 1.5 Hz, 1H), 7.30 – 
7.24 (dt, J 7.5 and 1.5 Hz, 1H), 3,72 (s, 3H, OCH3). 

13C 
NMR (75 MHz, DMSO-d6) δ (ppm) 166.3 (C=O), 165.7 
(C sp2 β CN), 146.1, 130.6, 126.1, 124.5, 116.7 (CN), 
113.0, 111.1, 56.3 (C sp2 α CN), 51.7 (OCH3).

Computational Methods
The C=C rotational barriers in 1 and 2 were 
computed by scanning the N-C=C-C(=O) dihedral 
angle in steps of 10° using the density functional 
theory at the B3LYP/6-31g(d,p) level (Becke 
1988, Lee et al. 1988, Ditchfield et al. 1971). The 
geometries of the energy minima were optimized 
at the B3LYP-D3(BJ)/DGTZVP level (Becke 1988, 
Godbout et al. 1992, Grimme et al. 2011), which 
includes empirical dispersion corrections, and 
no imaginary frequencies were found. The 
conformer/diastereoisomer stabilities were 
analyzed using a natural bond orbital (NBO) 
approach (Glendening et al. 2018). Calculations 
were all performed using the Gaussian 16 
package of programs (Gaussian 16 et al. 2016).

RESULTS AND DISCUSSION
Considering that stereochemistry is a 
fundamental point to the mode of action 
with biological receptors, this work aims to 
understand why the E stereoisomer is the single 
product in solution, to give support to medicinal 
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and organic chemists to design potential drug 
candidates.

According to the DFT calculations, the 
rotational barriers of both 1 and 2 were 
computed as high as 20 (Z → E) to 35 (E → Z) kcal 
mol-1, which prevents fast, free rotation at room 
temperature (Figure 1). For instance, the rotation 
time constants for ethane and butane are about 
12 ps and 40 ps, respectively (Zheng et al. 2006). 
The C=C rotation barrier of typical alkenes is 
about 60 kcal mol-1, while the corresponding 
value for the N-C(=O) bond of amides is 21 kcal 
mol-1 (Weil et al. 1967). A barrier of 20 kcal mol-1 
corresponds to an interconversion rate of 1.3 × 
10-2 s -1 at 25° C, that is, a half-life (t1/2 ) of about 1 
minute; t1/2 for a barrier of 25 kcal mol -1 at 25° C 
is 66 hours (Eliel & Wilen 1994). Therefore, as the 
isomers of 1 and 2 could be separated at room 
temperature and analytically distinguished by 
NMR spectroscopy, only one form is produced, 
which is the thermodynamically most stable 
isomer E. It is worth mentioning that typical 
carbon-carbon single bonds have a length of 

1.53 Å, while the corresponding value for double 
bonds is 1.34 Å (Robert & Caserio 1977); only the 
transition state of 1 and 2 upon rotation of the 
C=C bond approaches the carbon-carbon bond 
length of a single bond (≈ 1.43 Å). In contrast, 
the stable conformations have shorter carbon-
carbon bond lengths of about 1.39 Å (Figure 2).

The E isomer is the single form observed 
experimentally because it is 8.1 and 6.2 kcal 
mol-1 more stable than the Z isomer (for 1 and 
2, respectively), according to B3LYP-GD3(BJ)/
DGTZVP calculations (Becke 1988, Godbout et al. 
1992, Glendening et al. 2018) (Figure 3); because 
the transition state should experience similar 
interactions to the product, the thermodynamic 
product is likely the kinetic product too. To search 
for the interactions governing the “conformer” 
stabilities, a natural bond orbital analysis 
was carried out, and the Lewis and non-Lewis 
contributions to the overall electronic energies, 
as well as specific donor-acceptor interactions, 
were evaluated for both isomers. The second-
order perturbation analysis of the donor-acceptor 

Figure 2. Angular dependence of the rotational electronic energy and C=C bond length in compounds 1 and 2 
calculated at B3LYP/6-31g(d,p) level.
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interactions of the natural bond orbitals (NBOs) 
indicates that E is more sterically disfavored 
than Z (higher Lewis-type contributions), but 
much more stabilized by electron delocalization 
(non-Lewis contributions), particularly due to an 
nO → σ*NH interaction (Figure 4) corresponding 
to a C=O∙∙∙H−N intramolecular hydrogen 
bonding (IHB). A stabilizing (C=)O∙∙∙O chalcogen 
bonding, such as the interaction governing the 
conformational isomerization of some systems 
containing the formamide and thiophene groups 
(Pascoe et al. 2017), does not appear to compete 
with the strong IHB since a corresponding n (C=)

O → σ*O-C electron delocalization is not effective, 
as shown in the NBO outcomes. This may be 
due to the formation of a five-membered ring, 
which is less favorable than a six-membered 
ring formed through the IHB. 

CONCLUSIONS
The compounds 2-(1,3-Benzoxazol-2(3H)-
ylidene)-3-oxo-3-phenylpropanenitrile (1) 
and methyl-2-(1,3-benzoxazol-2(3H)-ylidene)
(cyano)acetate (2) are observed as single 
isomers by NMR spectroscopy. In this study, 
we carried out a theoretical study to show 
that the rotation barriers are high enough to 
prevent fast rotation, despite the presence of 

pseudo-double bonds, which often allow for 
isomerization. Consequently, the single isomer 
observed in the NMR spectra corresponds to 
the most stable diastereoisomer E, rather than 
an average structure that results from the 
diastereo isomerization in 1 and 2. This stability 
is attributed to the presence of an effective 
intramolecular hydrogen bonding, which 
stabilizes the E isomer, rather than a chalcogen 
bonding, which is absent in the Z isomer.

Figure 3. Stable “conformations” of 1 and 2, and the respective standard Gibbs free energies calculated at B3LYP-
D3(BJ)/DGTZVP level. 

Figure 4. Quantum hydrogen bond in the E isomer of 1 
(R = Ph) and 2 (R = OMe).
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