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Holomorphic vector fields tangent to foliations in
dimension three

DANÚBIA JUNCA & ROGÉRIO MOL

Abstract: We consider a singular holomorphic vector field in a neighborhood of 0 ∈ C3

and suppose that there is a singular holomorphic foliation of codimension one (outside
its singular set, given by a holomorphic decomposition of this neighborhood into complex
surfaces, called leaves) to which it is tangent. This means that, when both objects are
non-singular, the orbits of the vector field are contained in the leaves of the foliation.
First we consider the desingularizations of both objects, trying to relate their final models.
Then we analyse the situation where the vector field is tangent to three independent
foliations.

Key words: Holomorphic foliations, holomorphic vector fields, pencil of foliations,
invariant varieties.

INTRODUCTION

The main goal of this article is to study, at the origin of C3, germs of holomorphic vector fields that
are tangent to holomorphic foliations of codimension one. If X is a germ of holomorphic vector field
at (C3, 0), inducing a germ of singular holomorphic foliation of dimension one F , and ω is a germ
of holomorphic 1–form which satisfies the integrability condition ω ∧ dω = 0, inducing a germ of
singular holomorphic foliation of codimension one G, we say that X (or F ) is tangent to ω (or to G) if
the one-dimensional leaves induced by X are entirely contained in the two-dimensional leaves of ω,
wherever both objects are defined. We also say that ω (or G) is invariant by X (or by F ). In algebraic
terms, this is identified by the vanishing of the contraction of ω by X, that is, iXω = 0.

One interesting point is that, due to the integrability condition ofω, not every germ of holomorphic
vector field at (C3, 0) is tangent to a homomorphic foliation. Examples of this situation are presented
in two recent studies where the configuration of tangency between a vector field and a foliation is
considered. The first one (Cano & Roche 2014), asserts that a germ of holomorphic vector field X at
(C3, 0) tangent to a foliation has a reduction of singularities. This means that, after a finite sequence
of blow-ups with invariant centers (points or regular invariant curves in general position with the
reduction divisor), the one-dimensional foliation induced by X is transformed into one for which all
singularities are elementary, meaning that they are locally defined by vector fields with non-nilpotent
linear part. Vector fields in a family proposed by F. Sanz and F. Sancho (Cano & Roche 2014) do not
admit a reduction of singularities as above and, hence, are not tangent to any germ of holomorphic
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foliation. In the second one (Cerveau & Lins Neto 2019), it is proved that a germ of holomorphic vector
field with isolated singularity at 0 ∈ C3 that is tangent to a holomorphic foliation always admits
a separatrix, that is, an invariant analytic curve. As a consequence, vector fields in the family of X.
Gómex-Mont and I. Luengo (Gómez-Mont & Luengo 1992), which do not possess separatrices, are not
tangent to holomorphic foliations.

The aforementioned studies suggest that consequences of geometric nature arise when there is
tangency between a vector field and a foliation. This perception is the main motivation for this article
and shall be developed in two different and independent approaches. First, we present the concept
of strongly non-resonant germ of vector field, meaning that its linear part has eigenvalues that do
not satisfy any non-trivial relation of linear dependency with integer coefficients. We characterize the
1–forms that are tangent to vector fields of this type (Prop. 4). Then we consider a germ of integrable
holomorphic 1–form ω at (C3, 0) that leaves invariant a germ of holomorphic vector field X, putting the
following hypotheses on the reduction of singularities of X (which exists by Cano-Roche’s result): it is
composed only by punctual blow-ups (we say in this case X has an absolutely isolated singularity
0 ∈ C3), the divisor associated with this sequence of blow-ups is invariant by the transformed
foliation (that is, X is non-dicritical) and that all final models are strongly non-resonant singularities.
Under these assumptions on X, we prove in Theorem 6 that ω defines a foliation of codimension one
which has no saddle-nodes in its reduction of singularities — we say that ω belongs to the family of
CH-foliations, which is an extension of the widely studied concept of generalized curve foliations in
dimension two (see definitions in the next section).

Finally, in the last section of this article, we investigate the situation where a germ of holomorphic
vector field at (C3, 0) is tangent to three independent foliations, induced by germs of integrable
holomorphic 1–forms ω1,ω2 and ω3. We prove that, in this case, up to multiplication by germs of
functions inO3, these 1–forms define a pencil of integrable 1–forms, that is, a two-dimensional linear
space—which becomes one-dimensional when projectivized— in the space of integrable holomorphic
1–forms. As a consequence, X is tangent to the infinitely many integrable 1–forms in this pencil. In
Theorem 11, we present a geometric characterization of pencil of integrable 1–forms, stated in the
more general context of foliations at (Cn, 0), n ≥ 3, which is a local version of the one given in
(Cerveau 2002). It asserts that either there is a closed meromorphic 1–form θ such that dω = θ∧ω for
all 1–forms ω in the pencil or the axis foliation— that is, the unique foliation of codimension two that
is tangent to all 1–forms in the pencil — has a meromorphic first integral. As a consequence, the axis
foliation always admits an invariant hypersurface. This, translated into our original three-dimensional
context, gives us that a germ of vector field at (C3, 0) that is tangent to three independent germs of
holomorphic foliations leaves invariant a germ of analytic surface.

This paper contains partial results of the Ph.D thesis of the first author. She thanks N. Corral and
the University of Cantabria for hospitality during the development of part of this research.

PRELIMINARIES

In local analytic coordinates (x1, x2, x3) at (C3, 0), we denote a germ of holomorphic vector field at
(C3, 0) by

X = A
∂

∂x1
+ B

∂

∂x2
+ C

∂

∂x3
,

An Acad Bras Cienc (2021) 93(Suppl. 3) e20181390 2 | 17



DANÚBIA JUNCA & ROGÉRIO MOL HOLOMORPHIC VECTOR FIELDS TANGENT TO FOLIATIONS

where A,B, C ∈ O3. We also consider the germ of singular one-dimensional foliation F whose leaves
are the orbits of X. Thus, in order to avoid superfluous singularities, we suppose that A,B and C are
without common factors. The singular set (of X or F ) is denoted by Sing(X) = Sing(F) = {A = B =

C = 0}, being an analytic set of dimension at most one. We denote a germ of of holomorphic 1–form
at (C3, 0) by

ω = adx1 + bdx2 + cdx3,

where a, b, c ∈ O3, which are also supposed to be without common factors. If ω is integrable in
the sense of Frobenius, that is, ω ∧ dω = 0, it induces a germ of singular holomorphic foliation of
codimension one, denoted by G. We have Sing(ω) = Sing(G) = {a = b = c = 0}, also an analytic
set of dimension at most one. A separatrix for a local holomorphic foliation is an irreducible germ of
invariant analytic variety of the same dimension of the foliation. For germs of holomorphic vector
fields and integrable 1–forms at (C3, 0), separatrices are germs of invariant curves and surfaces,
respectively.

We say that X (or F ) is tangent to ω (or to G) if

iXω = aA+ bB+ cC = 0,

which is equivalent to saying that, outside Sing(X) ∪ Sing(ω), the one-dimensional leaves of F are
contained in the two-dimensional leaves of G. If the germ of vector field X is tangent to the integrable
1–form ω, then Sing(ω) is invariant by X (see, for instance, (Mol 2011, Th. 1)). Thus, the one-dimensional
components of Sing(ω) — if they exist — are separatrices of X.

One particular example of this configuration of tangency is provided by vector fields with first
integrals. A non-constant germ of meromorphic — or holomorphic — function Φ at (C3, 0) is a first
integral for X if, in a small neighborhood of 0 ∈ C3,Φ is constant along the orbits of X. This is equivalent
to saying that X is tangent to the foliation defined by Φ, which is induced by the holomorphic 1–form
obtained by cancelling the components of zeros and poles of the meromorphic 1–form dΦ (we also
say that Φ is a first integral for this foliation). Note that in this case, any fiber of Φ accumulating to
the origin is an X-invariant surface. We should mention that, in the article (Pinheiro & Reis 2014), the
authors study germs of vector fields at (C3, 0) that are completely integrable — that is, that have two
independent holomorphic first integrals — and prove that this property is not a topological invariant.

In dimension two, a germ of holomorphic foliation is induced in local analytic coordinates (x1, x2)
at (C2, 0) by a germ of holomorphic vector field X = A∂/∂x1 + B∂/∂x2 with isolated singularity at
the origin (or by the dual 1–form ω = Bdx1 – Adx2). Recall that such a foliation has a reduction of
singularities, that is, a finite sequence of blow-ups transforms it into one having a finite number of
singularities which are simple or reduced (Seidenberg 1968). Such a singularity is locally induced by a
vector field whose linear part is non-nilpotent, having two eigenvalues λ1 and –λ2 such that, if both
non-zero, do not satisfy any non-trivial relation of the kind m1λ1 + m2λ2 = 0 with m1,m2 ∈ Z≥0.
These simple singularities are called non-degenerate, whereas the ones having one zero eigenvalue
are called saddle-nodes. A foliation at (C2, 0) is said to be of generalized curve type (Camacho et al.
1984) if it has no saddle-nodes in some (and hence in any) reduction of singularities. Several geometric
properties of a foliation of generalized curve type can be read in its separatrices. For example, a
sequence of blow-ups that desingularizes its set of separatrices is also a reduction of singularities for
the foliation itself (Camacho et al. 1984).
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A foliation of codimension one at (C3, 0) also admits a reduction of singularities (Cano & Cerveau
1992, Cano 2004). This means that after a finite sequence of blow-ups with invariant centers — points
and regular curves satisfying a condition of general position with respect to the divisor — the foliation
is transformed into one whose singularities are all simple or reduced, which, in analogy with the
two-dimensional case, are essentially of two kinds: simple non-degenerate singularities and simple
saddle-node singularities (see, for instance, the description in (Cuzzuol & Mol 2018)). Recall that the
dimensional type of a codimension one foliation, τ ≥ 1, is the smallest number of variables needed to
express its defining equation in some system of analytic coordinates. We say that a simple singularity
is non-degenerate if there are analytic coordinates (x1, x2, x3) at 0 ∈ C3 in which the foliation is
defined by a holomorphic 1–form ω whose terms of lowest order are:

� x1x2
(
λ1
dx1
x1

+ λ2
dx2
x2

)
, if τ = 2,

� x1x2x3
(
λ1
dx1
x1

+ λ2
dx2
x2

+ λ3
dx3
x3

)
, if τ = 3,

where the residues λi ∈ C∗ are non-resonant, meaning that there are no non-trivial relations of the
kind m1λ1 +m2λ2 = 0 (for τ = 2) or m1λ1 +m2λ2 +m3λ3 = 0 (for τ = 3), with mi ∈ Z≥0. Evidently,
the model for τ = 2 corresponds to a simple non-degenerate singularity of a foliation in dimension
two.

Now, a foliation G at (C3, 0) induced by an integrable holomorphic 1–form ω is of type CH if it
satisfies one of the two equivalent properties:

� There exists a reduction of singularities of CH-type for G, that is, one for which all final models
are simple non-degenerate (in particular, a simple non-degenerate singularity is of type CH). In
this case, every reduction of singularities of G will be of CH-type.

� for every holomorphic map φ : (C2, 0) → (C3, 0) generically transversal to G (that is, such that
φ
∗
ω has an isolated singularity at 0 ∈ C2) the foliation π∗F induced by φ∗ω is of generalized

curve type.

The equivalence of these properties is proved in (Cano et al. 2015), where these foliations are called
complex hyperbolic. Here we would rather use the initials CH, which makes a reference to this
terminology, also carrying the idea of “generalized curve in higher dimension”. In the non-dicritical
case (that is, when the reduction divisor is invariant by the transformed foliation), (Fernández-Sánchez
& Mozo-Fernández 2009) call these foliations generalized surfaces. They also prove that a foliation of
this kind becomes reduced once its set of separatrices is desingularized.

STRONGLY NON-RESONANT VECTOR FIELDS

In this section we work with vector fields whose linear parts have eigenvalues satisfying a stronger
hypothesis of non-resonance. We call them strongly non-resonant vector fields. By assuming
hypotheses on the reduction of singularities of a germ of vector field at (C3, 0) that is tangent to
a holomorphic foliation of codimension one — among them, that the final models belong to this
family of strongly non-resonant vector fields — we can conclude that the foliation is of CH-type.
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Recall that a vector (α1, · · · , αn) ∈ Cn, n ≥ 2, is non-resonant if there are no relations of the form
αj = `1α1+ · · ·+`nαn = 0, with `1, . . . , `n ∈ Z≥0 satisfying

∑n
j=1 `i ≥ 2. A classical result asserts that a

germ of complex analytic vector field X at (Cn, 0) whose associated eigenvalues (i.e. those of its linear
part DX(0)) are non-resonant is linearizable in formal coordinates. We remark that these linearizing
coordinates can be taken to be analytic if these eigenvalues belong to the Poincaré domain — i.e. the
set of vectors (α1, · · · , αn) ∈ Cn such that the origin 0 ∈ Cn is not in the convex hull of {α1, · · · , αn}
(see (Ilyashenko & Yakovenko 2008), sections I.4 and I.5).

In this section, we work with the following notion: a vector (α1, · · · , αn) ∈ Cn is said to be
strongly non-resonant if there are no non-trivial relations of the form `1α1 + · · · + `nαn = 0, with
`1, . . . , `n ∈ Z. Such a non-trivial relation will be called strong resonance. A germ of holomorphic
vector field at (Cn, 0), n ≥ 2, is said to be strongly non-resonant if its associated eigenvalues are
strongly non-resonant.

We denote the family of strongly non-resonant vector fields by Xnr . Clearly, a vector field
in Xnr satisfies the usual condition of non-resonance, being linearizable in formal coordinates.
Further, the associated eigenvalues are non-zero and pairwise distinct, implying that its linear part
is diagonalizable. We also say that a germ of one-dimensional foliation F at (Cn, 0) is strongly
non-resonant if it is induced by a vector field in Xnr . Evidently, this definition does not depend on the
choice of the vector field inducing F .

In the sequel, we restrain ourselves to ambient dimension n = 3. Thus, if X is a germ of
holomorphic vector field at (C3, 0) in Xnr , we can take local formal coordinates (x1, x2, x3) such that

X = α1x1
∂

∂x1
+ α2x2

∂

∂x2
+ α3x3

∂

∂x3
, (1)

where α1, α2, α3 ∈ C∗ are pairwise distinct. Note that if we choose numbers b1, b2, b3 ∈ C, not all of
them zero, satisfying α1b1 + α2b2 + α3b3 = 0, then X is tangent to the formal meromorphic 1–form

ω = x1x2x3
(
b1
dx1
x1

+ b2
dx2
x2

+ b3
dx3
x3

)
.

We start by proving a simple lemma:

Lemma 1. A vector field in X ∈ Xnr has exactly three formal smooth separatrices, which correspond to
the coordinate axes in its diagonalized form.

Proof. We take X in its diagonal form (1). Suppose, without loss of generality, that an X-invariant curve
γ is parametrized as γ(t) = (at + f (t), g(t),h(t)) where a ∈ C∗ and f , g,h ∈ Ô1 are non-units, with f
of order at least two. We have to prove that g = h = 0. Suppose, for instance, g 6= 0. The condition of
invariance is expressed as

Φ(t)(a+ f ′(t), g′(t),h′(t)) = (α1(at + f (t)), α2g(t), α3h(t)),

for some Φ ∈ Ô1 of the form Φ(t) = α1t + ρ(t), where ν0(ρ) ≥ 2. The above equation gives us

α2

Φ(t)
=
g′(t)
g(t)

.

Comparing residues in this formula, we find α2/α1 = m, wherem = ν0(g). This, however, gives a strong
resonance for the vector (α1, α2, α3), in contradiction with our hypothesis. Therefore g = 0 and, in a
similar way, h = 0, giving that γ is contained in the x1-axis.
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Blow-ups preserve the family of strongly non-resonant vector fields. More precisely, we have the
following:

Lemma 2. Let X ∈ Xnr . Then the strict transform of the one-dimensional foliation induced by X by a
blow-up with smooth invariant center is locally given by vector fields in Xnr .

Proof. Take formal diagonalizing coordinates for X. For a punctual blow-up at 0 ∈ C3, consider
coordinates x∗1 = x1, x∗2 = x2/x1 and x∗3 = x3/x1. In these coordinates, the strict transform of X
is

X̃ = α1x∗1
∂

∂x∗1
+ (α2 – α1)x∗2

∂

∂x∗2
+ (α3 – α1)x∗3

∂

∂x∗3
,

having an isolated singularity at (x∗1 , x
∗
2 , x

∗
3) = (0, 0, 0). We only have to check that the eigenvalues of

X̃ are strongly non-resonant. However, a relation of the kind

0 = c1α1 + c2(α2 – α1) + c3(α3 – α1) = (c1 – c2 – c3)α1 + c2α2 + c3α3,

for c1, c2, c3 ∈ Z, is possible if and only if c1 = c2 = c3 = 0, since the eigenvalues of X are strongly
non-resonant.

In the case of a monoidal blow-up, its smooth invariant center must be one of the coordinate
axes, by Lemma 1. For instance, fixing the x3-axis as the blow-up center and taking blow-up charts
x1 = x∗1 , x2 = x∗2 and x

∗
3 = x3/x2, the strict transform of X is

X̃ = α1x∗1
∂

∂x∗1
+ α2x∗2

∂

∂x∗2
+ (α3 – α2)x∗3

∂

∂x∗3
.

Again, the absence of strong resonances for the eigenvalues of X̃ follows from that of X.

As a consequence, we have:

Corollary 3. The only formal separatrices of a vector field in Xnr are those corresponding to the
coordinate axes in its diagonal form.

Proof. Let γ be a formal separatrix for X ∈ Xnr . If γ is smooth, this has been proved in Lemma
1. If γ is singular, we desingularize it through a sequence of punctual blow-ups (the existence
of a desingularization can be seen in (Cano 2012)). By the previous lemma, the strict transform
of the foliation induced by X has local models in Xnr . Its smooth invariant curves are either in
the desingularization divisor or are contained in the strict transforms of the coordinate axis in
diagonalizing coordinates for X. The transform of γ is evidently not in the desingularization divisor.
This means that γ is smooth contained in one of the coordinate axes, which is not our case.

Our objective now is to prove the following result:

Proposition 4. Let ω be a germ of integrable holomorphic 1–form at (C3, 0) with codim Sing(ω) ≥ 2.
Suppose that there exists a vector field in X ∈ Xnr that is tangent to the foliation defined by ω. Then,
in formal diagonalizing coordinates for X and up to multiplication by a unit in Ô3, we have either

ω = x1x2
(
b1
dx1
x1

+ b2
dx2
x2

)
(I)
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or
ω = x1x2x3

(
b1
dx1
x1

+ b2
dx2
x2

+ b3
dx3
x3

)
, (II)

where b1, b2, b3 ∈ C∗.

Proof. Fix (x1, x2, x3) formal diagonalizing coordinates for X as in (1) and write

ω = adx1 + bdx2 + cdx3, (2)

where a, b, c ∈ Ô3 are without common factors. Since X is tangent to ω, the contraction of ω by X gives

0 = iXω = α1x1a+ α2x2b+ α3x3c. (3)

The integrability condition in turn reads

0 = ω ∧ dω = a(cx2 – bx3) + b(–cx1 + ax3) + c(bx1 – ax2). (4)

The differentiation of (3) with respect to each of the variables x1, x2 and x3 produces the following set
of equations:

α1a+ α1x1ax1 + α2x2bx1 + α3x3cx1 = 0; (5)

α1x1ax2 + α2b+ α2x2bx2 + α3x3cx2 = 0; (6)

α1x1ax3 + α2x2bx3 + α3x3cx3 + α3c = 0. (7)

We have the following (this was shown to us by M. Fernández-Duque):

Assertion 1. In the above conditions, X leaves invariant each ratio of coefficients of ω.

Proof of the Assertion. In fact,

b2X (a/b) = bX(a) – aX(b)

= b(α1x1ax1 + α2x2ax2 + α3x3ax3) – a(α1x1bx1 + α2x2bx2 + α3x3bx3)

= b(–α1a – α2x2bx1 – α3x3cx1) + bα2x2ax2 + bα3x3ax3 – aα1x1bx1
–aα2x2bx2 – aα3x3bx3 (by (5))

= bα3x3(ax3 – cx1) – abα1 – bα2x2bx1 + bα2x2ax2 – aα1x1bx1
–aα2x2bx2 – aα3x3bx3

= bα3x3(ax3 – cx1) + aα3x3(cx2 – bx3) + ab(α2 – α1)

+bα2x2(ax2 – bx1) + aα1x1(ax2 – bx1) (by (6))

= α3x3(c(ax2 – bx1)) + ab(α2 – α1) + (ax2 – bx1)(aα1x1 + bα2x2) (by (4))

= ab(α2 – α1) + (ax2 – bx1)(α1ax1 + α2bx2 + α3cx3)

= ab(α2 – α1) (by (3)).

That is, X (a/b) = (α2–α1)a/b. In a similar way, we find X (a/c) = (α3–α1)a/c and X (b/c) = (α3–α2)b/c,
proving the assertion.

We have just found that

X(a/b) = μ1a/b, X(a/c) = μ2a/c and X(b/c) = μ3b/c,
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where μ1 = α2 – α1, μ2 = α3 – α1 and μ3 = α3 – α2 are in C∗. These equations can be rewritten as

bX(a) – aX(b) = μ1ab, cX(a) – aX(c) = μ2ac and cX(b) – bX(c) = μ3bc. (8)

The first of these equations is equivalent to bX(a) = a(X(b)+ μ1b), where we can see that the factors
of a that do not divide b do divide X(a). Similarly, from the second equation we have cX(a) = a(X(c)+
μ2c), allowing us to conclude that the factors of a that do not divide c do divide X(a). Since a, b and
c do not have common factors we conclude that a divides X(a). Analogously, b divides X(b) and c
divides X(c). Therefore, we can find functions R1,R2,R3 ∈ Ô3 such that

X(a) = R1a, X(b) = R2b and X(c) = R3c.

From equations (8) we have

R1 – R2 = μ1, R1 – R3 = μ2 and R2 – R3 = μ3.

For i = 1, 2, 3, we write Ri = (λi+fi), where λi ∈ C and fi ∈ Ô3 is a non-unit. From the above equations,
we have

λ1 – λ2 = μ1 = α2 – α1, λ1 – λ3 = μ2 = α3 – α1, λ2 – λ3 = μ3 = α3 – α2

and f1 = f2 = f3 = f .
Suppose that a 6= 0 and denote by aν be its initial part, that is, the homogeneous part of order

ν = ν0(a) of its Taylor series. Taking initial parts in both sides of X(a) = (λ1+ f )a and considering the
fact that the derivation by X preserves the degree — actually, the multidegree — of each monomial,
we have

X(aν) = λ1aν.

Further, if κ = b1xi1x
j
2x
k
3 is a non-zero monomial in aν, where b1 ∈ C∗, then X(κ) = λ1κ, which gives

λ1 = iα1 + jα2 + kα3 6= 0. Note that the fact that (α1, α2, α3) is strongly non-resonant implies that
aν = κ.

Assertion 2. aν divides a.

Proof of the Assertion. Write the power series a =
∑

`≥ν a`, where a` assembles the homogeneous
terms of degree `. We will show by induction that aν = b1xi1x

j
2x
k
3 divides each a`. There is nothing

to prove for ` = ν. Let m > ν and suppose that a` is divisible by aν for all ` = ν, . . . ,m – 1. Let
% be a monomial of am. We have X(%) = λ% for some λ ∈ C. Considering the calculation in the
above paragraph, since λ1 has already been determined by the multidegree of aν, we must have
λ 6= λ1. On the other hand, separating all monomials of the same multidegree of % in the expression
X(a) = λ1a+ fa, we have

X(%) = λ1%+ %̃, (9)

where %̃ assembles all monomials coming from fa. Notice that %̃ can be seen as a combination of
monomials of a of order smaller thanm having monomials of f as coefficients. Hence, by the induction
hypothesis, %̃ is divisible by aν. Rewriting (9) as λ% = λ1% + %̃, we find (λ – λ1)% = %̃, from where we
deduce that % is also divisible by aν. We then conclude that aν divides am, proving the general step
of the induction.
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Suppose that the coefficients a, b, and c of ω are non-zero. By Assertion 2, we can write

a = xi11 x
j1
2 x

k1
3 (b1 + g1), b = xi21 x

j2
2 x

k2
3 (b2 + g2) and c = xi31 x

j3
2 x

k3
3 (b3 + g3),

where b1, b2, b3 ∈ C∗ and g1, g2, g3 ∈ Ô3 are non-units. Since X is tangent to ω, we have

α1b1x
i1+1
1 xj12 x

k1
3 + α2b2x

i2
1 x

j2+1
2 xk23 + α3b3x

i3
1 x

j3
2 x

k3+1
3 = 0,

which implies that

i1 + 1 = i2 = i3, j1 = j2 + 1 = j3 and k1 = k2 = k3 + 1.

Since a, b, c do not have common factors, we find directly that i1 = j2 = k3 = 0, giving

i2 = i3 = 1, j1 = j3 = 1 and k1 = k2 = 1.

Now we can write

ω = x2x3(b1 + g1)dx1 + x1x3(b2 + g2)dx2 + x1x2(b3 + g3)dx3

= x1x2x3
(
(b1 + g1)

dx1
x1

+ (b2 + g2)
dx2
x2

+ (b3 + g3)
dx3
x3

)
. (10)

Dividing equation (10) by 1 + g1/b1, we can rewrite, by abuse of notation,

ω = b1x2x3dx1 + x1x3(b2 + g2)dx2 + x1x2(b3 + g3)dx3. (11)

Let us apply the relation X(b/a) = –μ1b/a of (8) to this writing of ω. Write

b
a
=

x1
b1x2

(b2 + g2) =
∑

i,k≥0, j≥–1
αijkx

i
1x
j
2x
k
3

as a sum of meromorphic monomials. Since the derivation by X preserves monomials, we have that
α1i+ α2j+ α3k = –μ1 whenever αijk 6= 0. Again, the fact that (α1, α2, α3) is free from strong resonances
implies that b/a is a monomial. Thus g2 = 0 and

b
a
=
b2x1
b1x2

,

implying b = b2x1x3. In an analogous way, we can also prove that c = b3x1x2. This leads to the form
(II) in the statement of the proposition. The case where one of the coefficients of ω is zero, for example,
c = 0, is treated following the same steps above, giving form (I) in the statement.

Proposition 5. Let ω be a germ of integrable holomorphic 1–form at (C3, 0) invariant by a vector field
in X ∈ Xnr . Then ω is of type CH.

Proof. We apply Proposition 4. If the dimensional type is two, it is straightforward to see that ω is
simple non-degenerate and, hence, of type CH. If the dimensional type is three, then, except for a
possible resonance of its residues, ω has the form of a simple non-degenerate singularity. However,
these resonances can be eliminated by punctual or monoidal blow-ups (Cano 2004, Fernández Duque
2015), obtaining simple non-degenerate singularities. That is, there exists a reduction of singularities
of CH-type for ω, leading us to conclude that ω is of type CH.

An Acad Bras Cienc (2021) 93(Suppl. 3) e20181390 9 | 17



DANÚBIA JUNCA & ROGÉRIO MOL HOLOMORPHIC VECTOR FIELDS TANGENT TO FOLIATIONS

Next result exemplifies how vector fields and codimension one foliations satisfying a relation of
tangency can be geometrically entwined. Before stating it, we set a definition: a germ of holomorphic
vector field — or its associated one-dimensional holomorphic foliation — at (C3, 0) has an absolutely
isolated singularity at 0 ∈ C3 if it admits a reduction of singularities having only punctual blow-ups. We
call the corresponding composition of blow-up maps an absolutely isolated reduction of singularities.

Theorem 6. Let F be a germ of one-dimensional holomorphic foliation at (C3, 0) admitting a
non-dicritical absolutely isolated reduction of singularities whose associated final models are all
strongly non-resonant. If G is a germ of foliation of codimension one invariant by F , then G is of
type CH.

Proof. The proof goes by induction on n, the minimal length of all absolutely isolated reductions
of singularities for F as in the theorem’s assertion. If n = 0 the result follows from Proposition 5.
Suppose then that n > 0 and that the result is true for one-dimensional foliations having non-dicritical
absolutely isolated reductions of singularities with strongly non-resonant final models of length less
than n. Denote by π : (M, E) → (C3, 0) the first punctual blow-up of the corresponding reduction of
singularities of F . If G1 = π∗G were non-singular over the divisor E = π–1(0) ' P2, then Sing(G)
would be an isolated singularity at 0 ∈ C3. As a consequence of Malgrange’s Theorem (Malgrange
1976), in this case G would have a holomorphic first integral, being of type CH. We can then suppose
that Sing(G1) ∩ E 6= ∅ and pick p ∈ Sing(G1) ∩ E. If p ∈ Sing(F1), where F1 = π∗F , then, by the
induction hypothesis, we must have that G1 is of CH-type at p. Suppose then that p is regular for F1.
In this case, since F1 is tangent to G1, the foliation G1 has dimensional type two at p and the leaf
of F1 at p is a curve contained in the one-dimensional analytic set Sing(G1). Since E is invariant by
F1, the component of Sing(G1) containing this leaf is contained in E and, hence, it is an algebraic
curve in E ' P2, that we denote by γ. Now, the sum of Camacho-Sad indices of F1|E along γ is the
self-intersection number γ · γ > 0 (Camacho & Sad 1982, Suwa 1995). This assures the existence of a
singularity q ∈ Sing(F1|E), which is obviously a singularity of F1. By the induction hypothesis, q is of
CH-type for G1. In view of this, the transversal model of G1 along (the generic point of) γ is of CH-type,
leading to the conclusion that G1 is of type CH at p. We have found that each singularity of G1 over E
is of type CH, admitting a CH-reduction of singularities. This means that G itself has a CH-reduction
of singularities, being a foliation of type CH.

INTEGRABLE PENCILS OF 1-FORMS

The goal of this section is to characterize the situation in which a germ of holomorphic vector field at
(C3, 0) is tangent to three independent holomorphic foliations. We show that, when this happens, the
vector field is tangent to infinitely many foliations and it leaves invariant a germ of analytic surface.
To this end, we work with the notion of pencil of integrable 1-forms or pencil of foliations. We will
formulate our results in the broader context of holomorphic foliations of codimension one at (Cn, 0),
n ≥ 3, that leave invariant foliations of codimension two.

We start with a definition. Let ω1 and ω2 be independent germs of holomorphic 1–forms at (Cn, 0),
that is, such that ω1 ∧ω2 6= 0. The pencil of 1–forms with generators ω1 and ω2 is the linear subspace
P = P(ω1,ω2) of the complex vector space of germs of holomorphic 1–forms at (Cn, 0) formed by all
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1–forms ω(a,b) = aω1+ bω2, where a, b ∈ C. We have the following lemma, which is a local version of
(Mol 2011, Lem. 2):

Lemma 7. If the independent germs of holomorphic 1–forms ω1 and ω2 do not have common
components of codimension one in their singular sets, then the 1–forms aω1 + bω2 ∈ P = P(ω1,ω2)
have singular sets of codimension at least two, except possibly for a finite number of values (a : b) ∈
P1.

Proof. Suppose, by contradiction, that the result is false. Then, for infinitely many values of t ∈ C, the
1–form ω1 + tω2 ∈ P has some component of codimension one in its singular set, defined by and
irreducible gt ∈ On. Let us consider these values of t. Writing ω1 =

∑n
i=1 Aidxi and ω2 =

∑n
i=1 Bidxi,

where Ai,Bi ∈ On, we have that, for each pair i, j, with 1 ≤ i < j ≤ n, both Ai+tBi = 0 and Aj+tBj = 0 are
zero over gt = 0, implying that AiBj – AjBi = 0 over this same set. However, the fact that Sing(ω1) and
Sing(ω2) do not have a common component of codimension one implies that independent functions
gt are associated with different values of t. Hence AiBj – AjBi ≡ 0 and, consequently, Ai/Bi ≡ Aj/Bj
for each pair i, j. By setting Φ = Ai/Bi — which is independent of the chosen i — we have a germ of
meromorphic function at (Cn, 0) such that ω1 = Φω2. This contradicts the fact that ω1 and ω2 are
independent 1–forms.

Consider a pair of germs of holomorphic 1–forms ω1 and ω2 as in the lemma. We say that P =

P(ω1,ω2) is a pencil of integrable 1–forms or an integrable pencil if all its elements are integrable
1–forms, that is, ω∧dω = 0 for all ω ∈ P . This is equivalent to the following fact, which will be referred
to as pencil condition:

ω1 ∧ dω2 + ω2 ∧ dω1 = 0. (12)

Observe that, after possibly cancelling codimension one components in the singular set, we associate
with each ω(a,b) ∈ P a germ of singular holomorphic foliation F t, where t = (a : b) ∈ P1.
For this reason, we also treat this object as pencil of holomorphic foliations. The 2–form ω1 ∧ ω2
is also integrable, defining, after cancelling singular components of codimension one, a singular
holomorphic foliation of codimension two which is tangent to all foliations (associated with 1–forms)
in P = P(ω1,ω2). This codimension two foliation is called axis of P .

Example 8. (Logarithmic 1–forms) Take independent irreducible germs of functions f1, . . . , fk ∈ On,
where k ≥ 2. Consider also (λ1, . . . , λk) and (μ1, . . . , μk) two C-linearly independent k-uples of
numbers in C∗. Then, the holomorphic 1–forms

ω1 = f1 · · · fk
(
λ1
df1
f1

+ · · ·+ λk
dfk
fk

)
and ω2 = f1 · · · fk

(
μ1
df1
f1

+ · · ·+ μk
dfk
fk

)
are generators of a pencil of integrable 1–forms. The axis foliation is defined by the 2–form

1

f1 · · · fk
ω1 ∧ ω2 =

∑
1≤i<j≤k

(λiμj – λjμi)hijdfi ∧ dfj,

where hij = f1 · · · f̂i · · · f̂j · · · fk is the product of all gems f` with the exception of fi and fj. Remark that
the germs of analytic hypersurfaces {fi = 0} are invariant by all foliations in the integrable pencil, as
well as by the axis foliation.
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Recall that the integrability of a holomorphic 1–formω at (Cn, 0) is equivalent to the following fact:
there exists a meromorphic 1–form θ such that dω = θ ∧ ω. The sufficiency of this condition is clear.
To prove its necessity, it is enough to take a meromorphic vector field Y such that iYω = 1, contract by
Y both sides of the integrability condition ω∧dω = 0 and take θ = –iYdω. Now, if P = P(ω1,ω2) is an
integrable pencil, we get meromorphic 1–forms θ1 and θ2 satisfying dω1 = θ1∧ω1 and dω2 = θ2∧ω2.
This, inserted in the pencil condition (12), becomes (θ1 – θ2) ∧ ω1 ∧ ω2 = 0. Then, we find germs of
meromorphic functions g1, g2 at (Cn, 0) such that θ1 – θ2 = g1ω1 – g2ω2 (see Proposition 9 below). If
we define θ = θ1 – g1ω1 = θ2 – g2ω2, it is easy to see that

dω = θ ∧ ω ∀ ω ∈ P . (13)

The meromorphic 1–form θ is uniquely defined by equation (13). Its exterior derivative dθ is called
pencil curvature, denoted by k(P).

Before proceeding, we present the following result:

Proposition 9. Let ω1, ω2 and ω3 be independent germs of holomorphic 1–forms at (Cn, 0), n ≥ 3.
Suppose that there exists a non-zero holomorphic 2–form η, locally decomposable outside its singular
set, that is tangent to each of these three 1–forms, i.e., η ∧ ωi = 0 for i = 1, 2, 3. Then there are germs
of meromorphic functions λ1 and λ2 at (Cn, 0) such that ω3 = λ1ω1 + λ2ω2.

Proof. Denote by Tij = Tang(ωi,ωj) = {ωi ∧ ωj = 0} the set of tangencies between ωi and ωj. Note
that Tij contains Sing(ωi)∪ Sing(ωj). Consider the analytic set S = Sing(η)∪ T12 ∪ T13 ∪ T23. In a small
neighborhood of 0 ∈ Cn, for each p 6∈ S, ω1(p),ω2(p) and ω3(p) define hyperplanes which are pairwise
transversal and contain the subspace of codimension two defined by η(p) (η is locally decomposable).
Then, by elementary linear algebra, for each p outside S, we can write ω3 = λ1ω1 + λ2ω2 , for some
uniquely defined λ1, λ2 ∈ C. We thus have functions λ1 and λ2 defined outside S. Wedging the above
expression by ω2, we find ω3∧ω2 = λ1ω1∧ω2. Hence, λ1 can also be obtained as a quotient between a
coefficient ofω3∧ω2 and the corresponding coefficient ofω1∧ω2. This shows that it has ameromorphic
extension to a neighborhood of 0 ∈ Cn, still denoted by λ1. The same reasoning applies to λ2. By
analytic continuation, the relation ω3 = λ1ω1 + λ2ω2 holds in a neighborhood of 0 ∈ Cn, proving the
proposition.

Next, in the framework of the previous result, we add integrability as an ingredient. We obtain
that if a distribution of codimension two is tangent to three independent foliations, then it is tangent
to infinitely many foliations that are in a pencil. More precisely, we have:

Proposition 10. Let ω1, ω2 and ω3 be independent germs of integrable 1–forms at (Cn, 0), n ≥ 3, with
singular sets of codimension at least two. Suppose that there exists a non-zero holomorphic 2–form
η, locally decomposable outside its singular set, that is tangent to each ωi, for i = 1, 2, 3. Then ω1, ω2
and ω3 define foliations that are in a pencil. Furthermore, η is integrable, defining the axis foliation of
this pencil.

Proof. We start by applying Proposition 9, finding that ω3 = λ1ω1+λ2ω2, where λ1 and λ2 are germs of
meromorphic functions in (Cn, 0). Write λi = ψi/ϕi, i = 1, 2, with ψi,ϕi ∈ On without common factors.
Let ϕ = lcm(ϕ1,ϕ2), where lcm denotes the least common multiple. We then have

ϕω3 = ϕλ1ω1 + ϕλ2ω2.
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Writing
η1 = ϕλ1ω1 =

ϕ

ϕ1
ψ1ω1, η2 = ϕλ2ω2 =

ϕ

ϕ2
ψ2ω2 and η3 = ϕω3,

we have three integrable 1–forms, defining the same foliations as ω1, ω2 and ω3, satisfying

η3 = η1 + η2, (14)

so that the pencil condition (12) holds for η1 and η2. Thus, P(η1, η2) will be an integrable pencil of
1–forms if its generic element has a singular set of codimension at least two. This will follow directly
from Lemma 7 if we prove that Sing(η1) and Sing(η2) do not have common components of codimension
one. Indeed, looking at (14), the possible common irreducible components of codimension one of
Sing(η1) and Sing(η2) are also components of Sing(η3). Fix an equation for such a component. It must
be a factor of ϕ, since codim Sing(ω3) ≥ 2. By definition of least commonmultiple, it cannot be a factor
of both ϕ/ϕ1 and ϕ/ϕ2. Suppose, for instance, that it is not a factor of ϕ/ϕ1. Then it is evidently a
factor of ϕ1 and, since it defines a component of zeroes of η1, it must be also a factor of ψ1. This
gives a contradiction, since ψ1 and ϕ1 were chosen without common factors. Finally, the distributions
of codimension two subspaces induced by η and by the integrable 2–form η1 ∧ η2 coincide outside
Sing(η) ∪ Tang(η1, η2), giving the last part of the proposition’s statement.

In the sequel we present a characterization of pencils of integrable 1–forms at (Cn, 0). It is a local
version of a result by D. Cerveau on pencils of foliations in P3 (Cerveau 2002). The proof given here
essentially follows the same arguments, adapting them to the local setting.

Theorem11. LetP be a pencil of integrable 1–forms at (Cn, 0), n ≥ 3. Then, at least one of the following
conditions is satisfied:

(a) There exists a closed meromorphic 1–form θ such that dω = θ∧ω for every 1–form ω ∈ P . When
θ is holomorphic, all foliations in P admit holomorphic first integrals.

(b) The axis foliation of P is tangent to the levels of a non-constant meromorphic function.

In particular, there exists a germ of hypersurface at (Cn, 0) that is tangent to the axis foliation of P .

Proof. The two cases in the assertion correspond to the pencil curvature k(P) being zero or non-zero.

Case 1 : k(P) = 0, that is, the 1–form θ in (13) is closed. In the purely meromorphic case, we can write,
from (Cerveau & Mattei 1982),

θ =
k∑
i=1

λi
dfi
fi

+ d

(
h

fn11 · · · fnkk

)
,

where fi ∈ On are irreducible equations of the components of the polar set of θ, h ∈ On, λi ∈ C,
ni ∈ N for i = 1, · · · , k, with λi = 0 only if ni > 0. Condition (13) then says that each hypersurface fi = 0

is invariant by every ω ∈ P and, hence, also by the axis of P .
Suppose, on the other hand, that θ holomorphic. Since dθ = 0, there exists h ∈ On such that

θ = dh and hence dω = dh ∧ ω for every ω ∈ P . Setting h′ = exp(h) ∈ O∗
n, we have dh′/h′ = dh and

thus dω =
(
dh′/h′

)
∧ ω. Then d

(
ω/h′

)
= 0, implying that there exists f ∈ On such that ω/h = df .

Hence, each foliation in P has a holomorphic first integral, and this implies that the axis of P is
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completely integrable, that is, it has two independent holomorphic first integrals. In particular, the
axis foliation leaves invariant germs of analytic hypersurfaces.
Case 2: k(P) 6= 0. Let ω1 and ω2 be generators of the pencil. We have the following:

Assertion. There exists a germ of meromorphic function α at (Cn, 0) such that

dθ = αω1 ∧ ω2. (15)

Proof of the Assertion. First note that, taking differentials in both sides of dωi = θ ∧ ωi, we have
dθ∧ωi = 0 for i = 1, 2. Now, let q be a point near 0 ∈ Cn such that (ω1 ∧ω2)(q) 6= 0. This means that
ω1 and ω2 are non-singular and linearly independent at q, so that we can find analytic coordinates
(x1, x2, · · · , xn) at q such that ω1 = A1dx1 and ω2 = A2dx2, where A1, A2 are invertible germs of
holomorphic functions at q. Write dθ = B12dx1 ∧ dx2 +

∑
(i,j) 6=(1,2) Bijdxi ∧ dxj, where each Bij is a

germ of the meromorphic function at q. Since dθ ∧ ω1 = 0 and dθ ∧ ω2 = 0, we must have Bij = 0

whenever (i, j) 6= (1, 2). Then, at q,

dθ = B12dx1 ∧ dx2 =
B12
A1A2

(A1dx1) ∧ (A2dx2) = αω1 ∧ ω2,

where α is a germ of the meromorphic function at q. In this way, we produce a meromorphic function
α, defined outside the set of tangencies Tang(ω1,ω2), which, by comparing coefficients of dθ and
ω1 ∧ ω2 as we did in the proof of Proposition 9, can be extended to a meromorphic function defined
in a neighborhood of 0 ∈ Cn. This proves the assertion.

Now, we split our analysis in two subcases:
Subcase 2.1: α is constant. We claim that the axis foliation of P is tangent to the levels of a
meromorphic (possibly holomorphic) function. Indeed, α 6= 0, since k(P) 6= 0, so that, from the
exterior derivative of (15), we get that dω1∧ω2 –ω1∧dω2 = 0. This, together with the pencil condition
(12), gives

ω2 ∧ dω1 = ω1 ∧ dω2 = 0.

Hence, using (13), we find that θ ∧ ω1 ∧ ω2 = 0. Applying Proposition 9 to the 1–forms ω1,ω2 and
ω3 = θ and to the 2–form η = ω1 ∧ ω2, we find germs of meromorphic functions μ1 and μ2 at (Cn, 0)
satisfying

θ = μ1ω1 + μ2ω2.

Inserting this in (13), we get

dω1 = –μ2ω1 ∧ ω2 and dω2 = μ1ω1 ∧ ω2.

If μ1 = 0 then dω2 = 0, and hence ω2 = d(g) for some g ∈ On, which turns out to be a holomorphic
first integral for the axis of P . On the other hand, when μ1 6= 0, the above equations give dω1 =

–(μ2/μ1)dω2, which, by differentiation, yields

d(μ2/μ1) ∧ ω1 ∧ ω2 = 0.

When μ2/μ1 is non-constant, we have at once that μ2/μ1 is a meromorphic first integral for the axis
of P . When μ2/μ1 = c for some c ∈ C, we have dω1 = –cdω2. That is to say, ω1 + cω2 is a 1–form
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in P which is closed, and hence exact, yielding once again a holomorphic first integral for the axis
foliation.

Subcase 2.2: α is non-constant. Taking the exterior derivative of (15) and using (13), we obtain(
dα
2α

+ θ

)
∧ ω1 ∧ ω2 = 0. (16)

Now, applying Proposition 9 to ω1,ω2,ω3 = dα/2α+ θ and η = ω1 ∧ ω2, we can find k1 and k2, germs
of meromorphic functions at (Cn, 0), such that

dα
2α

+ θ = k1ω1 + k2ω2. (17)

Observe that, since k(P) 6= 0, we have that either k1 or k2 is non-zero. Taking the exterior derivative
and applying (13), we obtain

dθ = (k1θ+ dk1) ∧ ω1 + (k2θ+ dk2) ∧ ω2.

This, wedged by ω1 and ω2, gives, respectively,(
θ+

dk2
k2

)
∧ ω1 ∧ ω2 = 0 and

(
θ+

dk1
k1

)
∧ ω1 ∧ ω2 = 0. (18)

Subtracting (16), we obtain, respectively,(
–
1

2

dα
α

+
dk2
k2

)
∧ ω1 ∧ ω2 = 0 and

(
–
1

2

dα
α

+
dk1
k1

)
∧ ω1 ∧ ω2 = 0. (19)

This allows us to conclude that he meromorphic functions k21/α and k
2
2/α are constant on the leaves

of the axis foliation of P . If one of these two functions is non-constant, we have a meromorphic first
integral for the axis foliation and the proof of the theorem is accomplished. We claim that this actually
happens. Indeed, suppose, by contradiction, that both k21/α and k

2
2/α are constant. This would imply

that k1/k2 (if k2 6= 0) is also constant. Writing k1/k2 = c1 ∈ C, we get, from (17),

dα
2α

+ θ = k2(c1ω1 + ω2) (20)

and, since k22/α is constant, we find that

θ = –
dk2
k2

+ k2(c1ω1 + ω2). (21)

Then, applying (13) to c1ω1 + ω2 ∈ P , we find

d(c1ω1 + ω2) = –
dk2
k2

∧ (c1ω1 + ω2). (22)

This gives that k2(c1ω1+ω2) is closed. By (21), we would have k(P) = dθ = 0, reaching a contradiction.

Let us put the previous discussion in our initial three-dimensional context:
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Theorem 12. Let X be a germ of holomorphic vector field at (C3, 0) tangent to three independent
foliations of codimension one. Then there exists an integrable pencil P such that X is tangent to all
foliations in P . Furthermore, at least one of the following two conditions holds:

i) there exists a closed meromorphic 1–form θ such that dω = θ ∧ ω for every ω ∈ P ;

ii) X has a non-constant meromorphic (possibly holomorphic) first integral.

In particular, there exists a germ of analytic surface at 0 ∈ C3 which is invariant by X.

We apply the theorem in the following:

Example 13. (Jouanolou’s Example) Consider, for m ≥ 2, the vector field X = xm3 ∂/∂x1 + xm1 ∂/∂x2 +
xm2 ∂/∂x3. Then ω = iRiXΩ, where Ω = dx1 ∧ dx2 ∧ dx3 is the volume form and R = x1∂/∂x1 +

x2∂/∂x2 + x3∂/∂x3 is the radial vector field, is an integrable 1–form, with homogeneous coefficients,
that is invariant by X. Since iRω = 0, ω defines a foliation on the complex projective plane P2C which
leaves invariant no algebraic curve (Jouanolou 1979). This is equivalent to saying that, at 0 ∈ C3,
the vector vector field X leaves invariant no homogeneous surface — that is, a surface defined by the
vanishing of a homogeneous polynomial in the coordinates (x1, x2, x3). Since X itself is a homogeneous
vector field, this implies that X is not tangent to any germ of analytic surface at 0 ∈ C3. By Theorem
12, X cannot be tangent to three independent foliations.

This example illustrates how Theorem 12 can be used to identify vector fields that are not tangent
to three independent foliations. As remarked in the Introduction, the existence of a separatrix and of
a desingularization are necessary conditions for a vector field to be tangent to (at least) one foliation.
It would be interesting to specify conditions that characterize the tangency to (exactly) one or two
foliations.
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