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Some features of solitonic waves propagating in
intermediate waters

LUIZ GALLISA GUIMARÃES

Abstract: This work addresses the problem of weakly non linear ocean waves propagation
in intermediate waters. We have shown that the propagation of waves similar to hole
solitons, as well as progressive waves of high intensity multipeaks are likely to occur
in this non linear regime. In addition, we note that along intermediate waters, these
particular non-linear waves satisfy a wave equation model similar to Korteweg de Vries
equation, and their propagation features strongly depend on the initial conditions
adopted to the present problem.

Key words: ocean waves, extreme waves, non linear waves, solitons in fluids,
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INTRODUCTION

Since the beginning of our early civilizations, the waves propagating in the ocean or even reaching
the coast, have always fascinated the human imagination, whether by the feelings of beauty and fear
that evoke us. From these ancient times to nowadays, human economic and cultural activities have
always expanded and developed across the ocean, especially trade between peoples and countries,
and today a large part of global economic activity involves navigation. Therefore, the study of nature
(Lighthill 1978, Dean & Dalrymple 1991), generation (Holthuijsen 2010, Svendsen 2006), propagation
(Dingemans 1997, Babanin 2011) and wave forecasting models (Osborne 2010, Campos et al. 2018,
2019) in the ocean has long been an active area of interdisciplinary research. Waves are potentially
dangerous, their impact can be tremendously devastating, causing the destruction and disruption
of human activities in coastal areas (Holthuijsen 2010, Svendsen 2006), as well as damaging and
even sinking ships in the deep ocean (Kharif et al. 2008). On the other hand, it is known that the
greater the height of the wave, the greater the energy it carries (Lighthill 1978, Dean & Dalrymple 1991,
Holthuijsen 2010). In addition, nonlinear effects can amplify the height of the wave in both shallow
and deep waters (Dean & Dalrymple 1991, Dingemans 1997, Osborne 2010). In this work we will be
interested in understanding how some of these nonlinear effects occur when the wave propagates in
intermediate waters. More specifically, we will study some characteristics of solitary waves (or simply,
solitons) propagating in intermediate waters (Remoissenet 1999, Drazin & Johnson 1989). To this end,
we will outline this article as follows, in the next section for pedagogical reasons, we will make a
quick review of the main concepts involving linear wave propagation in finite depth oceans, as well
as in the subsequent section, we use these concepts to introduce an alternative approach to analyze
the problem of wave propagation in intermediate waters. Keeping these ideas in mind, in the later
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sections we will obtain a new non-linear differential equation that governs the propagation of waves
in intermediate waters, and we will show also that this differential equation allows hole solitons
(Chabchoub et al. 2012, 2014) as one of its solutions, being the behavior of these solitons extremely
sensitive to the initial conditions proposed for this particular problem (Chabchoub et al. 2012, 2014,
Kibler et al. 2015). Finally, in the last section we will comment and summarize our main results.

MATERIALS AND METHODS

Harmonic waves in intermediate waters

In this section we will review some fundamental features related to harmonic progressive waves
propagation in oceans with finite depth d and impenetrable seabed. Under these conditions, it is
well known that for a given period T , local gravity g and wavelength λ (T , d), these harmonic waves
should satisfy the following dispersion relationship (Lighthill 1978, Dean & Dalrymple 1991):

ω =
√
g k tanh(kd). (1)

Where ω = 2π/T being the circular frequency, while k = 2π/λ is the wavenumber. Furthermore,
solving this dispersion relationship (1) for k(ω , d), it is possible to obtain the phase c = ω/k and
group u = ∂ω/∂k wave velocities, which are respectively related to spatial wavefront displacement
and the energy flow through the ocean. More explicitly we have c and u given by (Lighthill 1978, Dean
& Dalrymple 1991),

c =
√
g
k
tanh(kd) (2)

and
u =

c
2

[
1 +

2kd
sinh(2kd)

]
. (3)

In addition, for harmonic waves η (x, t) = A sin (k [x – ct)]) propagating in the horizontal x–direction,
the horizontal velocity υ of the particles at given depth z is written as (Holthuijsen 2010):

υ (x, z, t) = c
kA cosh [k (z + d)] sin (kx – ω t)

sinh(kd)
. (4)

Being A the wave amplitude and it assumed that the linear approximation for waves with small
amplitudes is hold (Dean & Dalrymple 1991). Continuing our analysis on oceanic wave propagation
and in order to gain some more physical insight about this problem, it is suitable to rewrite the
dispersion relationship (1) as a function of the period T and wavelength λ , namely (Svendsen 2006):

λ (T , d) =
g T2

2π
tanh

[
2π d
λ (T , d)

]
. (5)

Moreover, it is interesting to note that the above transcendental equation(5) has an explicit solution
for the wavelength λ (T , d) in both asymptotic limits related to shallow and deep waters (Dean &
Dalrymple 1991, Lighthill 1978). For instance, in the first case associated with shallow water, in such a
way that it occurs at the limit where the depth d 7→ 0, follows that Eq.(5) solutions λ 7→ λ0 (Dean &
Dalrymple 1991, Lighthill 1978) are given by,

λ0(T , d) = T
√
g d. (6)

An Acad Bras Cienc (2022) 94(2) e20210678 2 | 25



LUIZ GALLISA GUIMARÃES SOLITONIC WAVES IN INTERMEDIATE WATERS

On the other hand in the shallow water limit, we can observe from Eqs.(2 and 3) that the phase c0 and
group u0 velocities behave as,

c0(d) ≈
√
gd ≈ u0(d). (7)

This last result suggests a low dispersion of wave packets in this propagation regime. However,
as in this limit the phase velocity c0 varies with the variation of the depth d, it is expected that these
waves strongly refract during their propagation in shallow waters (Dean & Dalrymple 1991). In addition,
it is important to note that some physical features of the wave propagation in deep waters are quite
different from those in shallow waters. In other words, at the limit of great depths where d 7→ ∞
(Dean & Dalrymple 1991, Lighthill 1978), the solution of the transcendental equation (5) shows that the
wavelengths are given by,

λ 7→ λ∞(T) = c∞T , (8)

where in this situation the wave phase velocity c∞ behaves as,

c∞(T) = gT/2π = 2× u∞(T). (9)

The above equation (9) shows that in deep waters the value of the phase velocity c∞ is twice the
group velocity u∞, this fact suggests that in this case there is a strong dispersion of wave packets
(Dean & Dalrymple 1991, Lighthill 1978), as well as showing that the during the wave propagation its
direction should not vary substantially, since both c∞ and u∞ are only wave period T functions.

In general, there are in the literature (Dean & Dalrymple 1991, Lighthill 1978) more explicit
numerical criteria quantifying shallow and deep water limits. These criteria are related to the
asymptotic behavior of “tanh(2πδ )” function as the value of the ratio δ ≡ d/λ varies. For instance,
based on particular mathematical accuracy criteria, the literature suggests that the shallow water
limit δ ≡ δ0 is reached when δ0 = 0.05 (according to Dean & Dalrymple 1991), as well as the value
δ0 = 0.07 can also be accepted (this last one was adopted by Lighthill 1978). On the other hand, in the
other extreme case of deep water where δ ≡ δ∞, it is usual to adopt the numerical accuracy criteria
as δ∞ = 0.50 (Dean & Dalrymple 1991) or δ∞ = 0.28 (Lighthill 1978). In addition, it is assumed that the
wave is propagating in intermediate waters when a specific ratio δi is within the range δ0 < δi < δ∞.
For example, (Lighthill 1978) adopts δi ≈ 0.16 as a typical value for waves propagation on intermediate
waters. Besides, in order to gain a little more physical insights into these issues, as well as strongly
based on many ideas discussed in Lighthill’s seminal textbook about waves in fluids (Lighthill 1978,
Chapter 3, pp. 218, Fig. 53), here as an initial assumption, we assume that the wave are in intermediate
waters when the depth d ≡ di is such that, λ0(T , di) ≈ λ∞(T) or equivalently c0(T , di) ≈ c∞(T). For
instance, see panels a) and b) in Fig. (1) where we exemplify these results for a wave period T = 5s. In
general under these above assumptions, for waves with a given period T and comparing Eqs. (6 and
8), we can adopt that the intermediate depth di behaves as,

di(T) =
λ∞(T)
2π

=
g
ω 2

. (10)

Moreover, the above equation (10) allows us to rewrite the transcendental equation (5) in the following
suitable dimensionless form,

[λ/λ∞] = tanh
(

h
[λ/λ∞]

)
. (11)
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Figure 1. for a wave with period T = 5sT = 5sT = 5s, the panel a) shows the behavior of the wavelengths λλλ and λ0λ0λ0 as a function
of the depth ddd and the deep water wavelength λ∞λ∞λ∞. It is also noted that λ0 = λ∞λ0 = λ∞λ0 = λ∞ at depth dididi. The panel b) shows
that in shallow waters λ/di ≈ 5λ/di ≈ 5λ/di ≈ 5 is limited between δ –10δ

–1
0δ
–1
0 and δ –1∞δ –1∞δ –1∞ , these results are in accordance with those

pioneering discussed in (Lighthill 1978).

Where we define the dimensionless depth scale h as,

h(T , d) ≡ d
di(T)

. (12)

In addition, in the present problem the Snell’s wave refraction law is hold and it means that the wave
should undergo a change in the wavefront propagation direction as its phase velocity c(T , d) ≤ c∞(T)
varies (Dean & Dalrymple 1991), more explicitly for a given period T and depth d we have to,

sin (θ (T , d))
c(T , d)

=
1

c∞(T)
= cte, (13)

where the refraction angle θ indicates the change in wavefront propagation direction from its initial
path in deep water. On the other hand, as λ (T , d) = c(T , d)T , we can also rewrite the Snell law(13) in
terms of wavelength,

λ (T , d) = λ∞(T) sin (θ (T , d)) . (14)

An Acad Bras Cienc (2022) 94(2) e20210678 4 | 25



LUIZ GALLISA GUIMARÃES SOLITONIC WAVES IN INTERMEDIATE WATERS

Using the latter result(14) it is possible to explicitly solve equation (11) in terms of h as a function of
the refraction angle θ ,

h(θ ) = sin(θ ) ln

(√
1 + sin(θ )
1 – sin(θ )

)
, 0 ≤ h <∞; 0 ≤ θ < π

2
, (15)

as well as to calculate the ratio δ ≡ d/λ = h/ (2π sin(θ )) for a given θ . On the other hand, notice that
for a given normalized depth h and explicitly adopting sin θ (h) as an unknown independent variable,
the last equation (15) can be numerically inverted in terms of the refraction angle θ (h). Details about
this numerical procedure are given in Appendix A. Thereafter, it is opportune to continue our analysis
assuming that the refraction angle θ (h) is known. In this way, follows of the Eqs. (3, 13 and 15) that in
this new picture we can rewrite the phase c and group u velocities respectively as,

c(T , θ ) = c∞(T) sin(θ ) (16)

and,

u(T , θ ) = u∞(T)

[
sin(θ ) + cos(θ )2 ln

(√
1 + sin(θ )
1 – sin(θ )

)]
. (17)

Besides based on Eq. (17), it is interesting to note that the group velocity reaches a maximum value
u ≡ umax as the angle of refraction reaches θ = θm, where umax and sin(θm) satisfy the following
equations respectively,

umax(T , θm) =
u∞(T)
sin(θm)

(18)

and
ln
(
1 + sin(θm)
1 – sin(θm)

)
=

2

sin(θm)
. (19)

Thus, comparing the above Eq. (19) with Eq. (15), we have that,

h(θm) = hi = 1. (20)

More specifically, it is important to notice that for wave packets coming from deep waters up to depth
d = di(T), their group velocity reaches at the intermediate depth di(T) a maximum value around
umax(T , θm) ≈ 1.2u∞(T) (see Fig. 2b). Thus, we can give the physical meaning to the intermediate depth
di as the depth at which the wave packets have their maximum group velocity value umax , this value
being around 20% greater than the initial group velocity value in deep waters u∞. Besides, Eqs. (10,
12 and 20) suggest that in this situation, it is possible to assume that the depth di can be adopted as
a typical depth for waves with period T propagating in the intermediate waters. In parallel, the panels
a) and b) in Fig. (2) show that both wave phenomena, dispersion and refraction play a relevant role in
the propagation of waves in intermediate waters. More specifically at the intermediate depth di (see
Fig. 2b), where the wave packet reaches its maximum group velocity value umax . From Eq. (20) and
Fig. (2a), it is observed that at the depth di the refraction angle reaches the following value:

θ (hi) = θm ≈ arcsin (0.83356) . (21)

Therefore it is deduced from the above estimate (21) (see Eqs. 71 and 72 for more numerical details)
that the wave in its course from its generation in deep ocean, until reaching intermediate waters with
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Figure 2. shows in panel a) the wave refraction angle θθθ as a function of the dimensionless depth hhh. The panel b)
shows the behavior of the phase ccc and group uuu velocities as hhh varies. Note that uuu reaches a maximum value umaxumaxumax at
hi ≡ 1hi ≡ 1hi ≡ 1, and that around these intermediate waters (d ≈ did ≈ did ≈ di) the wave refractive and dispersive effects are still very
significant.

depths close to the value di, such wave performs an arc of θm ≈ 5π/16 ≈ 56.5o. Moreover for depths
values around d ≈ di, it also follows from the estimate(21) and Eqs. (16 and 17), that wave packets
propagating in intermediate waters are still quite dispersive, since the ratio between their phase and
group velocities behaves as:

umax(T , θm)
c(T , θm)

=
1

2 sin(θm)2
≈ 0.72. (22)

In addition, although in intermediate waters the interactions of the waves with the seabed are not very
intense, it is possible that refraction and dispersion of the waves combined with non-linear effectsmay
already smoothly alter the shape of the wave. In other words, here we assume that due to the energy of
wave refraction and dispersion, or even soft interaction of the waves with the seabed generating weak
nonlinear effects, the shape and the slope of waves may vary during their propagation in intermediate
waters (Dean & Dalrymple 1991, Holthuijsen 2010, Svendsen 2006, Dingemans 1997). In this way, it is
plausible that these effects may be related to changes in the horizontal component of underwater
particles velocity. Thus, in order to characterize these changes, we will calculate during the half-period
T/2, the mean variation∆υ between the horizontal velocity components for particles that are located
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at z = –A close to the wave trough, and those that are close to the wave crest at the depth z = +A.
Using Eq. (4) we obtain that,

∆υ (x, t, k, d) ≡ [υ (x, A, t) – υ (x, –A, t + T/2)] /2

= c
cosh (kA)
tanh(kd)

k A sin (kx – ω t)

≈ c
tanh(kd)

k η + O(A3) . (23)

Where we have assumed that in intermediate waters the assumption of wave simple shoaling is hold
(Svendsen 2006) and the amplitude A behaves as,

A ≈ A∞
√
u∞/u, (24)

being A∞ the wave amplitude in deep waters. Besides, due to the ratio u∞/u, Eqs. (24 and 23) suggest
that wave dispersion plays a fundamental role in wave shoaling even in intermediate waters and for
u = umax , the Eqs. (24 and 20) show that the wave amplitude A reaches at hi = 1 the minimum value
Amin ≈ 0.9A∞.

Natural Boundaries for Intermediate Waters

Complementing the results discussed above, our next step is to characterize the frontiers between
shallow and intermediate waters as well as the natural boundaries between deep and intermediate
waters. To this end, based on the pioneering works (Jogesh Babu et al. 2002, Kakizawa 2004, Bremnes
2019) we will adopt here a similar picture in which we will characterize the possibility of occurrence of
any undulatory physical phenomena such as wave refraction, dispersion and shoaling as a possible
“random” process occurring at a given normalized depth h. In addition, we assume that it is feasible to
associate a cross correlation continuous density function (CCCDF) to these processes as h varies. More
specifically, here as first approximation, we make the roughly assumption that we can associate any
wave propagation phenomenon listed above with a CCCDF, just by relating this to a single Bernstein
polynomial B with degree two (Jogesh Babu et al. 2002, Kakizawa 2004, Bremnes 2019), namely:

B [Θ (h)] = bΘ(h) [1 –Θ(h)] ; 0 ≤ Θ(h) ≤ 1 ,∀ 0 ≤ h <∞, (25)

where b is an arbitrary normalization constant such that,

b ≡

 ∞∫
0

dh Θ2 (1 –Θ)2

–1/2 . (26)

In addition, for a given h the function Θ(h) should describe the successful occurrence possibility of a
specific wave phenomenon at the normalized depth h, while the term [1 –Θ(h)] is the chance of the
opposite situation where such phenomenon does not occur. In this binomial probabilistic framework,
it is important to analyze the behavior of the derivative of B as h varies, where in the present case the
derivative B′ ≡ ∂B/∂h is given by,

B′ [Θ (h)] = –2b
(
Θ(h) –

1

2

)
∂Θ(h)
∂h

. (27)
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On the other hand, for some particular dimensionless depths h∗, we notice from above Eqs. (27 and
25) that B can reach its maximum or minimum values in the following cases where Θ(h∗) = 1/2
or Θ′ (h∗) = 0. In other words, here we assume h∗ as a possible natural depth scale related
to some specific wave phenomenon associated with the behavior of the function Θ(h) (or 1 –
Θ(h)), considering that these natural phenomena have maximum or minimum occurrence chance
at the depth h∗. In order to clarify and illustrate these concepts for some usual ocean undulatory
phenomena, we show in Fig. (3) for such cases the behavior of B and its derivative B′ as the depth
h varies. More specifically, in this figure we relate the wave phenomena refraction, dispersion and
refraction–dispersion with the followings suitable Θ(h) functions, namely:

ΘR ≡ sin (θ )
(
0 ≤ θ < π

2

)
, (28)

ΘD ≡ ∆υ∞
∆υ

, (29)

and
ΘRD ≡ ΘR ×ΘD . (30)
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Figure 3. sketches the behavior of the CCCDF, in the cases associated with refraction and dispersion of waves as well
as for the situation where the refraction and dispersion effects can occur simultaneously. Note that the panels a)
and b) show respectively how in these cases the Bersntein’s polynomial BBB and its derivative B′B′B′ behave as hhh varies.
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In this way, both panels in Fig. (3) suggest that adopting the criterion discussed above, where the
points of maximum or minimum values of Bersntein polynomials(25) are the most probabilistically
relevant points (see Eq. 27), we see for example that in shallow waters ΘR reaches a maximum value
in hs = ln (3) /4 ≈ 0.275. In parallel, we can also notice from both panels in Fig. (3) that in the case of
intermediate waters, ΘD reaches a minimum in hi = 1. Finally, we can associate the beginning of the
transition between intermediate and deep waters in hd = 2.11, since ΘRD reaches a minimum at this
depth. Moreover, in the present framework using the above results and applying the Eqs. (71 and 72),
we can estimate that when the wave leaves deep waters and penetrates into intermediate waters, its
wave front has been refracted at an angle of about θ (hd) ≡ θd ≈ 77o. On the other hand, using again
the same procedure we can note that when the wave is leaving intermediate waters and beginning its
propagation in shallow waters, we can calculate the refraction angle of the wave as θ (hs) ≡ θs = 30o.
Besides, in order to compare the present picture based on Bersntein polynomials(25) schema with
well established criteria (Dean & Dalrymple 1991, Lighthill 1978), we notice that using Eq. (15) we can
conclude that the ratio δ between depth d and wavelength λ , reaches in shallow, intermediate and
deep waters the following values, δ (hs) ≡ δs ≈ 0.087, δ (hi) ≡ δi ≈ 0.191 and δ (hd) ≡ δd ≈ 0.345
respectively (see Table I).

Table I. based on CCCDF summarizes the limits
between the regions here established as
normalized shallow depth hs ≈ 0.275hs ≈ 0.275hs ≈ 0.275, intermediate
depth at hi = 1hi = 1hi = 1 and deep waters a part from
hd ≈ 2.11hd ≈ 2.11hd ≈ 2.11 respectively. Besides, it is also shown the
ratio δ = d/λδ = d/λδ = d/λ and the refraction angle θθθ related to
these waters.

h∗ δ (h∗) θ (h∗)

hs δs ≈ 0.087 θs = 30.0o

hi δi ≈ 0.191 θm ≈ 56.5o

hd δd ≈ 0.345 θd ≈ 77.0o

These above results are in accordance with those reported in Refs. (Dean & Dalrymple 1991,
Lighthill 1978, Holthuijsen 2010, Svendsen 2006). It is also worth mentioning that from now on, we
will restrict our analysis to particular situations on waves propagating in intermediate waters. More
specifically, we will study only some wave propagation cases where the depth h varies between
hs ≤ h ≤ hd. Using semi-classical physics arguments, we will discuss in the next section the features
of weak non linear waves propagating in such intermediate waters regions.

SOLITONIC WAVE PROPAGATION IN INTERMEDIATE WATERS

In the case of oceanic waves, it is well known that during their propagation, the shape and the
skewness of the wave changes (Dean & Dalrymple 1991, Lighthill 1978, Holthuijsen 2010, Svendsen
2006). To better understand these wave transformations in intermediate waters, we think that it is
suitable to adopt a reference frame that moves with the average velocity ∆υ (see Eq. 23), since ∆υ

represents the magnitude of the velocities of particles located between the wave trough and crest, and
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certainly these wave extreme points are sensitive to changes during the wave shoaling process. On the
other hand, to begin this analysis we will use the analogy of this problem with those related to wave
propagation in presence of currents and flows (Dean & Dalrymple 1991, Holthuijsen 2010, Remoissenet
1999, Milewski & Keller 1996, Milewski 2005). In this way, we assume that in this particular referential
frame (Remoissenet 1999, Sec.5.5), the dispersion relationship (1) can be now approximated by,

ω – k ∆υ ≈
√
g k tanh (k [d+ η ]) . (31)

Assuming again the small amplitude approximation (see Eq. 23), we can rewrite Eq. (31) in the following
suitable form,

ω

√
d
g
≈ P (kd) + η k Q (kd) . (32)

Where the functions P and Q are given respectively by,

P (kd) ≡
√
kd tanh (kd), (33)

and

Q (kd) ≡
√
kd tanh (kd) [sinh (2 kd) + tanh (kd)]–1√

tanh (kd) + sech (kd)2 ln [(1 + tanh (kd)) /sech (kd)]
(34)

On the other hand, before we discuss about some wave propagation features related to the
dispersion relationship (32), we think it is pedagogically useful to analyze the asymptotic limits of both
ultra-deep and ultra-shallow water. More specifically, it is interesting to note that at these extreme
depth limits d 7→ ∞ or d 7→ 0, Eq. (32) permits us respectively obtain the following asymptotic
behaviour of the phase velocity c̃ related to such waves, namely:

c̃∞ ≈ c∞ (1 + 2 k η ) , (35)

and

c̃0 ≈ c0

[
1 –

(kd)2

6
+

3
√
2

4
√
kd
η

A∞

]
. (36)

It is interesting to notice that Eq. (35) resembles the phase velocity of Stokes waves propagating in
ultra deep water (Remoissenet 1999, Drazin & Johnson 1989). On the other hand, Eq. (36) differs from
those related to the phase velocity of nonlinear waves derived from Korteweg–de Vries(KdV) wave
like equations (Remoissenet 1999, Drazin & Johnson 1989). More specifically, in the present asymptotic
model for wave propagation in ultra shallow water, such competition between nonlinearity and wave
dispersion is no longer related to the Ursell number (Remoissenet 1999), but rather to the expression[
9
√
2 η /

(
2 (kd)5/2 A∞

)]
, that is the ratio between the asymptotic leading terms in Eq. (36). In

other words, this latter fact suggests that waves that satisfy the dispersion relationship (32), when
propagating in shallow water, should behave differently from those that are solutions of the usual KdV
wave equation. Hereafter, we will discuss in more detail the propagation of these nonlinear waves in
intermediate waters. For this purpose, it is important take into account that in the present geometrical
framework we can write kd = h/ sin(θ ), and in order to apply semi-classical methods to this problem
for waves in intermediate waters, we notice that it is suitable to expand both functions P and Q in kd
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powers (Remoissenet 1999, Drazin & Johnson 1989, Dingemans 1997). On the other hand, rather than
adopting a methodology for studying the behavior of the above dispersion relationship (32) based
on Padé–Taylor expansions around some specific depth (Remoissenet 1999, Drazin & Johnson 1989,
Dingemans 1997), we will here choose to adopt an analysis that can be accurately satisfactory for any
depth over the full range of intermediate waters. More specifically, for convenience we choose for this
task, ∀h with hs ≤ h ≤ hd, the Chebyshev polynomial basis (Arfken & Weber 1999, Press et al. 2007),
where based on symmetry issues1, we obtain the following explicit expansions in kd monomials odd
powers respectively,

P(kd) 7→ PT(kd) = L1kd+ L3 (kd)3 + L5 (kd)5 , (37)

and
Q(kd) 7→ QT(kd) = N1kd+ N3 (kd)3 . (38)

Being Ln and Nn, respectively, the coefficients of the PT and QT Chebyshev polynomials above. Such
coefficients are listed in Table II. We note from Fig. (4a) that expansion(37) is completely held along
the intermediate waters, but Fig. (4b) suggests that approximation(38) is not well accurate in regions
around very shallow waters for depths h close to hs.

Table II. shows the numerical values of the
coefficients LnLnLn and NnNnNn related to the Chebyshev
polynomials PTPTPT and QTQTQT expansions respectively.

n Ln Nn

1 22660/24111 32381/27242

3 -7741/100000 5827/98707

5 53/12500

On the other hand, in analogy with Non Linear Schrödinger equations framework theories
(Remoissenet 1999, Dingemans 1997, Drazin & Johnson 1989, Osborne 2010), here we will adopt
respectively the following normalized dimensionless horizontal length ξ and time τ scales, namely:

ξ ≡ x
di

(39)

and
τ ≡ 2π

t
T
. (40)

Moreover adopting this procedure, it is possible to rewrite the usual semi-classical mapping k 7→
–i ∂/∂x and ω 7→ i ∂/∂t (Remoissenet 1999, Dingemans 1997, Schiff 1955), in the following suitable
form,

d k 7→ –i h
∂

∂ξ
(41)

and √
d
g
ω 7→ i

√
h

∂

∂τ
. (42)

1In this preliminary analysis, dissipative effects are not taken into account and we assume the ocean surface as a
medium where the T – P symmetries (temporal reversion and spatial inversion) must be preserved (Schiff 1955).
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Figure 4. compares in panels a) and b) the expansions in Chebychev polynomials PTPTPT and QTQTQT for the functions PPP and
QQQ respectively. Note in a) that PTPTPT fits PPP well in the whole range hs ≤ h ≤ hdhs ≤ h ≤ hdhs ≤ h ≤ hd, while the panel b) shows that QTQTQT also
fits QQQ well for depths in deep and intermediate waters, but the difference between QTQTQT and QQQ increases around
shallow waters. In both panels, the full dots delimit the range between deep and shallow waters hs ≤ h ≤ hdhs ≤ h ≤ hdhs ≤ h ≤ hd.

Thus applying the above semi-classical maps(41 and 42) into the Chebyshev polynomial
approximations (37 and 38), we can map the dispersion relationship (32) in a KdV like equation
(Remoissenet 1999, Dingemans 1997, Drazin & Johnson 1989), being this procedure hold for waves
in intermediate waters where hs ≤ h ≤ hd. More specifically, in this framework we obtain that the
waveforms η (x, t) 7→ W(ξ , τ ) should satisfy the following non linear partial differential equation,
namely:

L+ ℵ = 0 . (43)

Where the linear L and non linear ℵ terms of the above differential partial equation (43) are given
respectively by,

L =
∂

∂ξ
W (ξ , τ ) +

1

L1
√
h

∂

∂τ
W (ξ , τ )

–
L3h2

L1
∂3

∂ξ 3
W (ξ , τ ) +

L5h4

L1
∂5

∂ξ 5
W (ξ , τ ) (44)
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and

ℵ = W (ξ , τ )

(
N1
L1h

∂

∂ξ
W (ξ , τ ) –

N3h
L1

∂3

∂ξ 3
W (ξ , τ )

)
. (45)

On the other hand, using the simple and powerful method developed by Jawad (2013), it is possible to
obtain an explicit and analytic W (ξ , τ ) = W (κ ξ – ν τ ) waveform solutions of the above non-linear
partial differential equation (43). More specifically, here we find that these particular solutions can
behave as solitons, namely:

W (κ ξ – ν τ ) = a0 + a2 [sech (κ ξ – ν τ )]2 . (46)

Where, for any above particular solution W (κξ – ν τ ), with complex arbitrary dimensionless
wavenumber κ = < [κ ] + i = [κ ] ∈ C, the coefficients a0, a2 and the dimensionless frequency
parameter ν should satisfy the following equations respectively,

a0(h, κ ) =
h

2N32
(
20 κ 2 h2 L5N3 + 5 L5N1 – 2 L3N3

)
, (47)

a2(h, κ ) = –30 κ 2 h3
L5
N3

, (48)

and

ν (h, κ ) = –
κ

2

√
h

(
48 κ 4h4L5 – 5

L5N12

N32
+ 2

N1L3
N3

– 2 L1

)
. (49)

In order to analyze in more details the behavior of the above waveform solution W(Φ), it is important
to notice that since κ ∈ C, the wave function W argument

Φ ≡ κξ – ν τ
≡ X + i Y (50)

is a complex function either, where its real and imaginary parts are written respectively as,

X(ξ , τ ,h, κ ) ≡ < (Φ)

= ξ < (κ ) – τ < (ν (h, κ )) (51)

and

Y(ξ , τ ,h, κ ) ≡ = (Φ)

= ξ = (κ ) – τ = (ν (h, κ )) . (52)

Thus, follows of the above Eqs. (51 and 52) that the real and imaginary parts of the function sech (Φ)2

are respectively given by,

<
[
sech (Φ)2

]
=

[sech (X) sec (Y)]2
(
1 – [tanh (X) tan (Y)]2

)
(
1 + [tanh (X) tan (Y)]2

) (53)

and

=
[
sech (Φ)2

]
= –2

tanh (X) tan (Y) [sech (X) sec (Y)]2(
1 + [tanh (X) tan (Y)]2

) . (54)
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The above Eqs. (53 and 54) suggest that the general solution (46) is a wave train modulated by
hyperbolic functions, where the phase velocities U< of modulating and U= related to carrier waves
(see Eqs. 51 and Eqs. 52) should respectively satisfy the following equations:

U< =
< (ν )

< (κ )
c∞ ; ∀ < (κ ) 6= 0 (55)

and

U= =
= (ν )

= (κ )
c∞ ; ∀ = (κ ) 6= 0 . (56)

More specifically, we see that Eq. (46) allows the existence of finite modulating waves such as “sech2”
like as well as spatially extended “tanh” like solutions. On the other hand, based on the poles behavior
of the oscillating functions tan(Y) and sec(Y), we notice in Eqs. (53 and 54) that along the wave
propagation path, these carrier waves can present discrete caustics like singularities. It occurs for
some particular points along the wave trajectory (ξ`, τ`) that satisfy the following criteria,

ξ` –
U=
c∞
τ` = ± π

= (κ )

(
`+

1

2

)
;∀= (κ ) 6= 0 and ` = 0, 1, 2, ... (57)

On the other hand, different from the case of linear harmonic waves, Eq. (46) suggests that these
solitonic waves have a non-zero mean level value. Furthermore, during the normalized time range
0 ≤ τ ≤ 2π related to a single harmonic wave period T (see Eq. 40), it is possible to define for these
waves(46) an initial mean level W in the following manner,

W (κξ )≡ 1

2π

∫ 2π

0
dτ W (κξ – ν τ )

= a0 + a2
tanh (κξ ) – tanh (κξ – 2 ν π )

2ν π
. (58)

In general, depending on the κ and “tanh” function behaviors, the mean level W can also reach
complex values as the depth h varies. In addition, in order to avoid some undesirable numerical
instabilities and to be able to better clarify this initial analysis of the present problem, here we
consider it useful to define the waveform mean relative level ∆Ω as the following real function,

∆Ω(ξ , τ , κ ) ≡ <
(
W –W
W

)
+ =

(
W –W
W

)
; ∀ W 6= 0. (59)

NUMERICAL RESULTS

Thereafter, we will study some special features of these solitons propagating in intermediate waters.
To this end, we have to point out that the dimensionless wavenumber κ ∈ C is a free parameter
of this theory. So, we will examine in more detail some particular choices for κ that provide us with
interesting scenarios for these solitonic waves W (see Eq. 46) propagation in intermediate waters. For
instance, we now assume a particular wave propagation condition where the modulating wave phase
velocity U< (see Eq. 55) has the same value of the single harmonic wave group velocity u(h) (see Eq. 3).
In other words, for any waveform W propagating in intermediate waters, we assume that the value of
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its phase velocity is given by U< = u(h). This assumption allows us to obtain the following explicit
equation for κ (h):

κ (h) =
√
3

6 h

[
6

(
5N12

2N32
–
N1L3
L5N3

+
L1
L5

)
–

3

L5
√
h

u
u∞

] 1
4

. (60)

Besides, follows of Eq. (49) that in this case the frequency ν varies with the depth h as,

ν (h) =
u
√
3

12hu∞

[
6

(
5N12

2N32
–
N1L3
L5N3

+
L1
L5

)
–

3

L5
√
h
u
u∞

] 1
4

. (61)

Then by using the data from Table II, we notice that in the above case, both κ (h) and ν (h) are
real positive functions for depths in intermediate waters satisfying hs ≤ h ≤ hd. In addition, for this
case Fig. (5) shows the behavior of the waveform ∆Ω(see Eq. 59) in the (ξ (h), τ ) plane as the depth
h varies. More explicitly, the upper and lower panels of Fig. (5) show the behavior of ∆Ω propagation
along intermediate waters respectively in the scattered plot and level surfaces forms. In both panels
in Fig. (5), it is interesting to note that in deep waters ∆Ω behaves as a deeper trough similar to a
kink, that when it propagates in shallow waters becomes a hole soliton that resembles internal waves
in the ocean (Osborne 2010, Chap. 25). Finally, we note in both panels in Fig. (5) that this hole soliton
waveform disappears in very shallow waters as the dimensionless horizontal propagation distance
ξ → ∞. It is also interesting to note that this curious behavior of ∆Ω(see Eq. 59) is partly due to the
amplitude a2 and the wave argument Φ softly vary during ∆Ω propagation (see respectively Eqs. 48
and 50). In other words, in this particular case where κ satisfies Eq. (60), the variation in the initial
form of ∆Ω from a high water vacancy or very deep kink to a thin hole soliton in shallow water, it is
in part associated with the fact that both a2(h) and Φ(h) are monotonic functions of depth h. This
behavior can also be seen on the∆Ω amplitude grayscale map of Fig. (6), where the darker tonalities
represent the deepest trough. It is also noted in Fig. 6 that for depths below h ≈ 1, the changes in
the form of ∆Ω are more pronounced and that in very shallow waters as h → 0 the hole soliton
disappears.

We also study here another set of physical criteria about the propagation of these solitonic waves.
These criteria revealed some very peculiar characteristics to this type of waves. More explicitly, if we
admit that in a “distant past” the normalized wave strength has a given value S that satisfies,

lim
τ−→ – ∞

W (κξ – ν τ ) ≡ S , (62)

and that in these case assuming in Eq. (46) that the term

lim
τ−→ – ∞

[sech (κξ – ν τ )]2 ≡ 0 , (63)

can be also neglected, then it follows from Eq. (46) that κ must satisfy the following initial condition,

a0 (κ ,h) = S . (64)

Then follows of Eq. (47) that above equation (64) can be solved and the dimensionless
wavenumber κ explicitly is given by:

κ (h, S) =
√
10

10h
√
h

√
N3
L5

S –
(

5N1
2 N3

–
L3
L5

)
h . (65)
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Figure 5. illustrates the propagation behavior of the∆Ω∆Ω∆Ω in the plane (ξ , τ )(ξ , τ )(ξ , τ ). Both
graphs, the first showing the scattered points in the panel (a) and the second related
to the level surfaces represented in the panel (b), show that in deep waters (ξ ≈ 0ξ ≈ 0ξ ≈ 0) the
waveform∆Ω∆Ω∆Ω is a deeper trough (see color scale in bottom panel–b), and it becomes a
hole soliton in intermediate waters (ξ ≈ 1ξ ≈ 1ξ ≈ 1), but it cannot propagate in shallow waters
as ξ → ∞ξ → ∞ξ → ∞.
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Figure 6. shows a grayscale map for the∆Ω∆Ω∆Ω

normalized waveform behavior as the
dimensionless time τττ and depth hhh vary. In this map
the widest and deepest water vacancies are
represented by the darkest shades and they occur
in large scale in deep waters (h� hd ≈ 2.1h� hd ≈ 2.1h� hd ≈ 2.1). It is
also noted that in intermediate waters (h ≈ 1h ≈ 1h ≈ 1), the
hole soliton shape is well defined, and as this
waveform reaches shallow water it becomes
narrower and it disappears as h� hs ≈ 0.28h� hs ≈ 0.28h� hs ≈ 0.28.

Besides, follows of this Eq. (65) and Eq. (49) that in this particular situation the dimensionless
frequency ν should satisfies the following equation,

νS =

√
10

10h3

√
N3
L5

S –
(

5N1
2 N3

–
L3
L5

)
h ×[(

L1 +
N1L3
5N3

+
L5N12

N32
–
6L32

25L5

)
h2

+

(
6N1
5

–
12L3N3
25L5

)
h S –

6N32

25L5
S2
]

(66)

Our next step is shown below, where depending on the value of S, this above solution can exhibit quite
distinct behaviors for waveform propagation in intermediate waters (see Eq. 46). In this way, we will
discuss in more detail the following particular initial wave propagation situations, the first in which S
is related to the values of a wave trough, such as S = –1, as well as in another case, where the initial
condition S = 11 being able to represent a wave crest, namely.

Case S = -1

In this particular situation such that S = –1, for any depth value in intermediate waters (hs ≤ h ≤ hd),
the data in Table(II) show that the values of κ in Eq. (65) are purely imaginary complex numbers
(< (κ ) = 0 and = (κ ) 6= 0). Therefore, it follows from Eq. (57) that it is possible that the waveform(46)
can present extreme values during its propagation. This fact can be observed in both panels of Fig. (7),
for example in the scatter plot panel(7a) we see in the plane (ξ , τ ) some points with high ∆Ω peak
values. On the other hand, the level surface represented on the panel(7b) shows that the amplitude
of these ∆Ω peaks is intensified when the propagation distance assumes values around x ≈ di, such
that the normalized horizontal distance is close to ξ ≈ 1 (see Eq. 39). On the other hand, it is possible

An Acad Bras Cienc (2022) 94(2) e20210678 17 | 25



LUIZ GALLISA GUIMARÃES SOLITONIC WAVES IN INTERMEDIATE WATERS

2

1

0

0

2

4

6

0
3

6a)
τ

ξ

∆Ω

 

 

2

1

0

0

2

4

6

0

2

4

6

b)

τ
ξ

∆Ω

-0,10

0,50

2,0

3,0

4,0

4,5

5,0

5,5

Figure 7. for S = –1S = –1S = –1 in Eqs. (65 and 66) shows some features of∆Ω∆Ω∆Ω propagation in the
plane (ξ , τ )(ξ , τ )(ξ , τ ). It is observed both in the panel (a) in the form of scattered points, and in
the level surface of the panel (b) that there are patterns of intense peaks regularly
spaced. It is also noted that for ξ ≈ 1ξ ≈ 1ξ ≈ 1 there is a rather extensive barrier of these
intense peaks around these intermediate waters.
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to understand these questions better by studying the wavenumber κ (h) and frequency ν (h) behavior
as a function of depth h. In this way, it is important to notice that in this case for S = –1, we have that
along whole intermediate water region, κ 2 is a negative number, therefore the dimensionless wave
number κ is an imaginary complex number and W(see Eq. 46) is an oscillating propagating wave in
this region. Furthermore, in this particular case where both κ (h) and ν (h) are imaginary, we would
like also to point out that during W propagation in intermediate waters, it reaches a strong barrier
near the dimensionless intermediate depth h ≈ hi = 1. More specifically, in this situation we note
that the phase velocity U=(h) (see Eqs. 56 and 66) have null value as the depth reaches h = hc,–1,
where the depth hc,–1 is written as,

hc,–1 =

(
15L5N1 – 6L3N3 + 5

√
15L52N12 – 6N1L3L5N3 + 6L1L5N32

)
N32

5N1L3L5N3 – 6L32N32 + 25L52N12 + 25L1L5N32

≈ 1.06 . (67)

Figure 8. for the case where S = –1S = –1S = –1 in Eqs. (65 and
66), shows in a grayscale map the temporal
evolution of∆Ω∆Ω∆Ω propagation at depths in the range
hs ≤ h ≤ hdhs ≤ h ≤ hdhs ≤ h ≤ hd. Since in this figure the brightest tones
represent intense amplitudes, it can be observed
that around depths h = hc,–1h = hc,–1h = hc,–1 (see Eq. 67) a barrier
of high wave amplitudes is established, moreover it
can also be observed that the pattern of these
intense peaks are quite different in shallow waters
from those in deeper waters.

Thus, even for the present time dependent non linear problem, the depth hc,–1 behaves as a
classical wave propagation barrier. These interesting features could be better observed in gray scale
map in Fig. (8), where in this figure the waveform ∆Ω time evolution is described as the depth h
varies. Moreover we notice in this figure that in deep waters for h ≥ hd ≈ 2.11, the waveform W(see
Eq. 46) shows a discrete pattern of intense values. Such patterns delimit regions between high and low
wave magnitude in accordance with wave high amplitude criterion stated in Eq. (57). More explicitly,
it is also observed from Figs. (7b and 8) that for depths hc,–1 ≤ h ≤ hd, holes are formed between
and around the multi peaks of W. Notice that a long these troughs the intensity of W(see Eq. 46)
shows very low values. On the other hand, when these waves reaching shallow waters depths h ≤
hs, we can yet observe in Fig. (8) the occurrence of discrete alternating patterns of high and low
magnitudes of the wave W. But now, they present a self-similar structure that resembles the usual
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Talbot patterns in rogue and breather waves interference phenomena (Zhang et al. 2014). Below, we
continue to analyze another interesting feature of these non linear waves propagating in intermediate
waters, more specifically we will study the case where the wave propagation initial condition try to
represent a possible wave crest.

Case S = 11

In this way, adopting S = 11 as an initial value for wave strength in Eqs. (65 and 66) and using the
Table(II) data, we observe that in very deep waters (h � hd) the dimensionless wavenumber κ is
imaginary (κ 2 ≤ 0) and W(see Eq. 46) is an oscillating wave in these regions. In addition, we also
notice that at the depth hκ ,11 the wavenumber has null value κ (hκ ,11)=0. Thus, follows of Eq. (65)
that hκ ,11 should satisfies:

hκ ,11 =
22N32

5L5N1 – 2L3N3
≈ 2.23. (68)

On the other hand, Eq. (65) shows that κ (h) > 0 for depths such that h < hκ ,11, so in this situation
the wave should be evanescent. This fact resembles the wave tunneling effect and in this particular
case, the depth hκ ,11 ≈ hd behaves as a turning point in potentials or penetrable barriers in Quantum
Mechanics (Schiff 1955). In addition, in this particular case where S = 11, Eqs. (55 and 66) show that
regions between deep and intermediate waters the phase velocity U<(h) reaches a null value at
h = hc,11, being hc,11 given by:

hc,11 =

(
66L3N3 – 165L5N1 + 55

√
15L52N12 – 6N1L3L5N3 + 6L1L5N32

)
N32

5N1L3L5N3 – 6L32N32 + 25L52N12 + 25L1L5N32

≈ 1.02 (69)

These results are best visualized in Fig. (9), where a grayscale map for the ∆Ω amplitudes is
shown. In the Fig. (9) we observe that in ultra-deep waters (h � hd), the waveform ∆Ω is oscillatory
and presents a well defined almost periodic pattern of large intensity values (see Eq. 57). However, for
depths in the boundary between deep waters where hd ≈ hκ ,11, Fig. (9) shows that occurs a barrier
that inhibits the existence of intense propagating waves at depths h < hκ ,11 ≈ 2.2, so that in these
regions the wave becomes evanescent and starts to propagate as a hole soliton like. In addition, Fig. (9)
also shows that the propagation of this evanescent wave in typically intermediate waters encounters
an impenetrable barrier at h ≈ hc,11 ≈ 1 (see Eq. 69), which forbids the propagation of these hole
solitons in typical intermediate and shallow waters regions. In the next section we will summarize our
main results.

CONCLUSIONS

In this article we theoretically proposed that waves similar to solitons (see Eq. 46) can propagate in
intermediate waters. More specifically, we notice that for harmonic waves with period T propagating
in an ocean with depth d, we characterize the intermediate water scale at the depths around d ≈ di

An Acad Bras Cienc (2022) 94(2) e20210678 20 | 25



LUIZ GALLISA GUIMARÃES SOLITONIC WAVES IN INTERMEDIATE WATERS

Figure 9. for S = 11S = 11S = 11 in Eqs. (65 and 66), shows in a
gray scale map the behavior of the∆Ω∆Ω∆Ω temporal
evolution as a function of hhh. In this map the
brightest tones represent the greatest amplitude
values of the wave. It is noted that a barrier for
these oscillating waves with high amplitudes occurs
at depth h = hκ ,11h = hκ ,11h = hκ ,11 (see Eq. 68), and that after
evanescently crosses this barrier, the wave
becomes a hole soliton like. Moreover, this hole
soliton reaches another barrier at h = hc,11h = hc,11h = hc,11 (see
Eq. 69) which forbids its propagation in shallow
water.

such that c0(T , di) ≈ c∞(T) (see Eqs. 10 and 12), as well as we shown that di is the depth where
the wave group velocity u reaches a maximum value umax (see Eq. 18 and Fig. 2b). In this context,
instead of we studied some wave propagation features in the wavelength λ (T , d)–domain, based on
the Snell’s law for wave refraction, here we analyze the behavior of the angle of refraction θ (h) as
the dimensionless depth h = d/di varies (compare Figs. 1 and 2). In this way, it was possible to
analyze the wave propagation features only in the θ (h)-domain. In other words, this more geometrical
procedure allowed us to rewrite the dispersion relationship (1) as the transcendental Eq. (15) and
numerically solve it (see Appendix A for details) for depths h in intermediate water restricted to the
interval hs < h < hd (see Fig. 3 and Table I). In addition, for waves propagating in this particular depth
range and adopting a suitable reference frame that horizontally moves with the mean velocity∆υ (see
Eq. 23) related to the particles that are located between the wave crest and the wave trough, we expand
the dispersion relationship (32) of these waves in a Chebyshev polynomial base (see Fig. 4, Eqs. 33
and 34). In this way, this last procedure permitted us to apply the semi-classical connection between
frequency→ temporal derivative and wavenumber→ spatial derivative (see Eqs. 42 and 41) and made
it feasible to derive a new nonlinear wave equation (see Eq. 43) similar to the KdV equation, where one
of its possible solutions is just the waveformW (see Eq. 46). In addition, we shown that the behavior of
the W waveform is strongly dependent on the initial conditions imposed on the propagation of such
waves. For instance, if in intermediate waters W is constrained to propagates with the phase velocity
equal to the wave group velocity u(h) of a single harmonic wave train, it can be seen from Figs. (5
and 6) that in this case, W evolves from a high trough in deep water to a thin hole soliton in shallow
water. Another particular situation studied in this work concerns taking, as an initial condition, the
value of the waveform dimensionless strength S in distant past times (see Eq. 62). More specifically,
we analyze the values of S = –1 and S = 11. For instance, in the case where we adopted S = –1, we
see from Fig. (7) that in some regions along the whole range of intermediate waters, the amplitude of
the waveformW can reach very high multi peaks values (see Eq. 57). Besides, notice that such discrete
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patterns of intense fields in shallow waters is quite distinct from those occurring in deep waters (see
Fig. 8).

Also in this case where S = –1, we see that intermediate waters near the depth h ≈ hc,–1 ≈ 1

present a barrier formed by waves with high amplitudes (see Eq. 67 and Fig. 8). Another particular
situation analyzed in this work, concerns taking S = 11 in Eqs. (65 and 66). In this last case, the
waveformW in deep waters propagates as an oscillating wave and presents high intensity multi peaks
values in this region, however when penetrating in depths around h ≈ hκ ,11 ≈ 2.2, the waveform
W encounters a barrier (see Eq. 68 and Fig. 9) and after crossing this barrier and penetrating in
intermediate waters, W behaves an evanescent wave (see Fig. 9). Besides, in this region these waves
are very similar to a hole soliton, that during their propagation encounter another barrier in depths
close to h ≈ hc,11 ≈ 1 (see Eq. 69 and Fig. 9). However, this last barrier makes it impossible for W to
reach shallow waters (see Fig. 9). In addition, in both cases for S = –1 and S = 11, it is also important
to notice that these waves are quite refractive, since their phase velocity varies strongly with depth h
in such situations (see Eqs. 55 and 56) .

Finally, it is important to point out that some of these theoretical results presented here are
introductory, and in future works other features about the propagation of these particular non linear
ocean waves should be addressed as well. To this end, more specifically we are studying the role of
uniform currents in the propagation of these nonlinear waves in intermediate waters, as well as we
are generalizing the initial conditions for this problem, so that S (with < [S] 6= 0 and = [S] 6= 0) can
admit general complex values in Eq. (64) and if this procedure allows us to introduce some physical
mechanisms related to the dissipation of wave energy. Efforts on these issues are in progress and
planned to be submitted for publication as soon as possible.

Acknowledgments
The author would like to express his deep gratitude to Prof. Carlos Eduardo Parente Ribeiro for his insightful lectures
about the ocean research, without these clear and seminal discussions, it would be impossible to carry out this work.

REFERENCES

ARFKEN GB & WEBER HJ. 1999. Mathematical methods for
physicists. American Association of Physics Teachers.

BABANIN A. 2011. Breaking and dissipation of ocean
surface waves. Cambridge University Press.

BREMNES JB. 2019. Ensemble Postprocessing Using
Quantile Function Regression Based on Neural Networks
and Bernstein Polynomials. Month Weat Rev 148(1):
403-414. doi:10.1175/MWR-D-19-0227.1.

CAMPOS RM, ALVES JHGM, SOARES CG, GUIMARAES LG
& PARENTE CE. 2018. Extreme wind-wave modeling and
analysis in the south Atlantic ocean. OceanModelling 124:
75-93. doi:10.1016/j.ocemod.2018.02.002.

CAMPOS RM, SOARES CG, ALVES JHGM, PARENTE
CE & GUIMARAES LG. 2019. Regional long-term
extreme wave analysis using hindcast data from

the South Atlantic Ocean. Ocean Eng 179: 202-212.
doi:10.1016/j.oceaneng.2019.03.023.

CHABCHOUB A, HOFFMANN NP & AKHMEDIEV N. 2012.
Observation of rogue wave holes in a water wave
tank. Journal of Geophysical Research: Oceans 117(C11).
doi:10.1029/2011JC007636.

CHABCHOUB A, KIMMOUN O, BRANGER H, KHARIF C,
HOFFMANN N, ONORATO M & AKHMEDIEV N. 2014. Gray
solitons on the surface of water. Phys Rev E 89: 011002.
doi:10.1103/PhysRevE.89.011002.

DEAN RG & DALRYMPLE RA. 1991. Water Wave Mechanics
for Engineers and Scientists. Advanced series on ocean
engineering. World Scientific.

DINGEMANS MW. 1997. Water Wave Propagation Over
Uneven Bottoms. Advanced series on ocean engineering.
World Scientific Pub.

An Acad Bras Cienc (2022) 94(2) e20210678 22 | 25



LUIZ GALLISA GUIMARÃES SOLITONIC WAVES IN INTERMEDIATE WATERS

DRAZIN PG & JOHNSON RS. 1989. Solitons: an
introduction. Cambridge Texts in Applied Mathematics.
Cambridge University Press.

HOLTHUIJSEN LH. 2010. Waves in Oceanic and Coastal
Waters. Cambridge University Press.

JAWAD AJM. 2013. Soliton solutions for the Boussinesq
equations. J Math Comput Sci 3(1): 254-265.

JOGESH BABU G, CANTY AJ & CHAUBEY YP. 2002.
Application of Bernstein polynomials for smooth
estimation of a distribution and density function. J Stat
Plan Infer 105(2): 377-392. doi:10.1016/S0378-3758(01)
00265-8.

KAKIZAWA Y. 2004. Bernstein polynomial probability
density estimation. J Nonparam Stat 16(5): 709-729.
doi:10.1080/1048525042000191486.

KHARIF C, PELINOVSKY E & SLUNYAEV A. 2008. Rogue
waves in the ocean. Springer Science & Business Media.

KIBLER B, CHABCHOUB A, GELASH A, AKHMEDIEV N &
ZAKHAROV VE. 2015. Superregular Breathers in Optics
and Hydrodynamics: Omnipresent Modulation Instability
beyond Simple Periodicity. Phys Rev X 5: 041026.
doi:10.1103/PhysRevX.5.041026.

LIGHTHILL MJ. 1978. Waves in Fluids. Cambridge University
Press.

MILEWSKI PA. 2005. Three-dimensional localized
solitary gravity-capillary waves. Communications in
Mathematical Sciences 3(1): 89-99.

MILEWSKI PA & KELLER JB. 1996. Three-Dimensional Water
Waves. Studies in Applied Mathematics 97(2): 149-166.
doi:10.1002/sapm1996972149.

OSBORNE AR. 2010. Nonlinear Ocean Waves and the
Inverse Scattering Transform. ISSN. Elsevier Science.

PRESS W, TEUKOLSKY S, VETTERLING W & FLANNERY B.
2007. Numerical Recipes 3rd Edition: The Art of Scientific
Computing. Cambridge University Press.

REMOISSENET M. 1999. Waves Called Solitons: Concepts
and Experiments. Advanced Texts in Physics. Springer.

SCHIFF LI. 1955. Quantum Mechanics. International series
in pure and applied physics. McGraw-Hill.

SVENDSEN IA. 2006. Introduction to Nearshore
Hydrodynamics. Advanced series on ocean engineering.
World Scientific.

YANG J. 2010. Nonlinear waves in integrable and
nonintegrable systems. SIAM.

ZHANG Y, BELIĆ MR, ZHENG H, CHEN H, LI C, SONG J &
ZHANG Y. 2014. Nonlinear Talbot effect of rogue waves.
Phys Rev E 89: 032902. doi:10.1103/PhysRevE.89.032902.

How to cite
GUIMARÃES LG. 2022. Some features of solitonic waves propagating
in intermediate waters. An Acad Bras Cienc 94: e20210678. DOI
10.1590/0001-3765202220210678.

Manuscript received on May 5, 2021;
accepted for publication on December 13, 2021

LUIZ GALLISA GUIMARÃES
https://orcid.org/0000-0001-5699-1251

Universidade Federal do Rio de Janeiro-UFRJ, Programa de
Engenharia Oceânica-COPPE, Centro de Tecnologia da UFRJ, Av.
Athos da Silveira Ramos, Cidade Universitária, 21941-611 Rio de
Janeiro, RJ, Brazil

E-mail: LuLa@if.ufrj.br; LGG@oceanica.ufrj.br

An Acad Bras Cienc (2022) 94(2) e20210678 23 | 25



LUIZ GALLISA GUIMARÃES SOLITONIC WAVES IN INTERMEDIATE WATERS

APPENDIX A - AN ALTERNATIVE ALGORITHM FOR θ (H)θ (H)θ (H) AND λ (T , θ )λ (T , θ )λ (T , θ ) NUMERICAL
CALCULATIONS

Many of the numerical results shown in this work depend on having previously calculated the
wavelength λ . On the other hand, in the case of harmonic waves with period T propagating in oceans
with finite depth d, the literature (Dean & Dalrymple 1991, Lighthill 1978) shows that for calculate
λ (T , d) it is necessary to solve numerically the transcendental Eq. (5). To perform this numerical task
for a given period T and depth d, very accurate algorithms and approximate formulas were developed
(Dean & Dalrymple 1991, Holthuijsen 2010, Svendsen 2006). However in the present work we adopt a
more geometrical picture, where for a given dimensionless depth h (see Eq. 12) our procedure consists
of previously solving the single parameter transcendental equation (15) for the refraction angle θ (h),
so that later using the Snell’s law (see Eq. 14) we can then calculate the wavelength λ (T , d). In other
words, we will see below, that this algebraic procedure allows us to obtain a general result, that
makes graphically explicit all the possible real solutions of the transcendental equation (15) for θ (h).
In addition, we will also observe (see the Fig. (A1) below) that these numerical solutions for θ (h) (or
sin θ ) do not explicitly depend on the period T . We will discuss these results in more detail below.
More specifically, in order to develop this numerical procedure, first it is suitable to rewrite Eq. (15) as
follows:

sn+1 = 1 –
2

1 + exp (2h / sn)
; n = 0, 1... nprec . (70)

3,0

2,0

1,01,0
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sin(θ)=λ / λ
∞
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Figure A1. Shows for some
wave periods TTT the behavior
of sin θ (h)sin θ (h)sin θ (h) as a function of
the normalized depth hhh. For
an accuracy of 10–610–610–6, the
values of sin(θ )sin(θ )sin(θ ) were
calculated using the
algorithm(70) to solve
numerically Eq. (15). Notice
that the wavelength λ (T ,d)λ (T ,d)λ (T ,d)
satisfies the Snell’s law(14),
λ = λ∞ sin (θ )λ = λ∞ sin (θ )λ = λ∞ sin (θ ).

Such that, for a given dimensionless depth h we can iteratively apply Newton’s method in
the difference equation (70). Where in this Eq. (70) the parameter sn represents the n-th estimate
for sin (θn) value, and nprec is the maximum number of iterations used for a specific required
precision. However, this numerical procedure is sensitive to the initial guess value. Moreover, for
waves propagating in intermediate waters such that ∀h, hs ≤ h ≤ hd , using a suitable Padé rational
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approximation (Press et al. 2007) to rewrite Eq. (15), it was possible to derive the following estimate
for solutions of Eq. (15),

sin (θ ) ≈ h√
3.682 – 9.894h +

√
97.90 – 52.95h + 13.56h2

. (71)

Besides, it was verified numerically stable to use Eq. (71) as an initial guess for implement the
algorithm(70) ∀h, hs ≤ h ≤ hd . For instance (see Eqs. 18 and 19), for an accuracy around 10–6, taking
h = hi = 1 in above Eq. (71) and using such numerical result as initial guess in Eq. (70), we obtained
after nprec = 37 iterations the following estimate for

sin (θm) ≈ 0.83356. (72)

In addition, using the same precision criteria of 10–6, we verified the accuracy and stability of the
above algorithm for other values of the wave period T in the interval 5s ≤ T ≤ 20s, and depths range
beyond the intermediate waters such that 0.1 ≤ h ≤ 3. These results are summarized in Fig. (A1) and
for all of them, the method reaches a satisfactory convergence after a maximum number of iterations
nprec < 100.
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