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Minimum sample size for estimating the Net
Promoter Score under a Bayesian approach

ELIARDO G. COSTA & RACHEL TARINI Q. PONTE

Abstract: At somemoment in our lives, we are probably faced with the following question:
“How likely is it that you would recommend [company X] to a friend or colleague?”.
This question is related to the Net Promoter Score (NPS), a simple measure used by
several companies as indicator of customer loyalty. Even though it is a well-known
measure in the business world, studies that address the statistical properties or the
sample size determination problem related to this measure are still scarce. We adopt
a Bayesian approach to provide point and interval estimators for the NPS and discuss
the determination of the sample size. Computational tools were implemented to use this
methodology in practice. An illustrative example with data from financial services is also
presented.

Key words: Average length criterion, customer loyalty, Dirichlet distribution multinomial
distribution, sample size.

1 - INTRODUCTION

Reichheld (2003) proposed a statistics called Net Promoter Score (NPS) that may be used by a company
as an indicator of customer loyalty. The author applied a questionnaire with some questions related to
loyalty to a sample of customers of some industries, and with the purchase history of each customer
it was possible to determine which questions had the strongest statistical correlation with repeat
purchase or referrals. One of these questions performed better in most industries: “How likely is it
that you would recommend [company X] to a friend or colleague?”. Reichheld (2003) suggested that the
response to the this questions must be on a 0 to 10 rating scale. Then, it is considered “promoters”
the customers who respond with 9 or 10, “passives” the customers who respond with 7 or 8, and
“detractors” the customers who respond with 0 through 6. The idea is that the more “promoters”
company X has, the bigger its growth. An estimate of the NPS is computed as the difference between
the proportions (or percentages) of “promoters” and “detractors”.

Keiningham et al. (2008) discuss the claims that NPS is the single most reliable indicator of a
company’s ability to grow, and that it is a superior metric to costumer satisfaction. Markoulidakis
et al. (2021) approach the customer experience as a NPS classification problem via machine learning
algorithms. Rocks (2016) presents a brief summary of some critiques about the NPS, see references
therein. We may also cite Eskildsen & Kristensen (2011) and Kristensen & Eskildsen (2014) for related
work.
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In the context of statistical modeling, Rocks (2016) focus on estimating intervals for the NPS
in a frequentist approach via Wald intervals and Score methods. Also, the author performs a study
simulation to assess the coverage probability of the proposed interval estimates, and conclude that
variations on the adjusted Wald and an iterative Score method performed better.

In Section 2, we present the frequentist approach to make inference about the NPS. In Section 3,
we present the Bayesian approach with the multinomial/Dirichlet model, the methodologies to obtain
point and interval estimates for the NPS. Also in Section 3, the problem of the minimum sample size
determination is discussed and a study simulation is conducted. In Section 4, we present an illustrative
example with data on financial services. We conclude with some remarks in Section 5.

2 - FREQUENTIST APPROACH

Let X1, X2 and X3 the respective numbers of detractors, passives and promoters in a customer sample
of size n; 𝜃1, 𝜃2 and 𝜃3 the respective proportions in the customer population. Then, the parameter
of interest is Δ = 𝜃3 − 𝜃1, where Δ ∈ [−1, 1], and an estimator for this parameter is given by NPS =
(X3−X1)/n. The Wald interval with 100(1−𝜌)% confidence level is given by NPS± z𝜌/2√

𝜎NPS
n , where z𝜌/2

is the quantile of probability 1−𝜌/2 of the standard normal distribution and 𝜎NPS = 𝜃3 +𝜃1 −(𝜃3 −𝜃1)2

(Rocks 2016). In this context, when NPS is used to estimate Δ, the error |NPS− Δ| is less than or equal
to z𝜌/2√

𝜎NPS
n with confidence 100(1− 𝜌)%. Then, we may obtain n so that we are 100(1− 𝜌)% confident

that the error in estimating Δ is less than or equal to a specified bound (𝜖) on the error, i.e.,

z𝜌/2√
𝜎NPS
n

≤ 𝜖,

which implies that

n ≥ 𝜎NPS (
z𝜌/2

𝜖
)
2
. (1)

Another interval proposed by Rocks (2016) and based on Goodman (1964) is NPS± √q𝜌
𝜎NPS
n , where q𝜌

is the quantile of probability 1− 𝜌 of the chi-squared distribution with two degrees of freedom. In the
same way of the previous interval, we obtain that

n ≥ 𝜎NPS
q𝜌

𝜖2
. (2)

Similar expressions to (1) and (2) for n may be obtained from the other intervals proposed by
Rocks (2016). But note that, in order to obtain the minimum n we have to set a value for 𝜎NPS, which
depends on unknown quantities (𝜃1 and 𝜃3). One solution is to set 𝜎NPS based on previous studies or
consider the maximum value of 𝜎NPS, which is 1 (Rocks 2016). Another problem is that these intervals
are based on the respective asymptotic distribution in each case, i.e., as the n → ∞, and the computed
minimum n may not provide a good approximation to the asymptotic distribution.

In order to circumvent these problems, we propose a Bayesian model in order to make inference
for the NPS and to establish a sample size determination methodology. Even though it is a well-known
and widely used measure in the business world, studies that address the statistical properties or the
sample size determination problem are still scarce. See Rossi & Allenby (2003) for an exposition of
the usefulness of the Bayesian methods in marketing.
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3 - BAYESIAN APPROACH

Let 𝜃 = (𝜃1, 𝜃2, 𝜃3), where 𝜃1, 𝜃2 and 𝜃3 are the proportions of detractors, passives and promoters in the
customer population, respectively. Then, the NPS in the respective population is given by Δ = 𝜃3 − 𝜃1,
whereΔ ∈ [−1, 1], which is the parameter of interest. In a sample of n customers we count the number
of customers in each category based on their responses for the aforementioned question. Let Xn =
(X1, X2, X3), where X1, X2 and X3 are the numbers of customers categorized as detractors, passives and
promoters, respectively, in the customer sample of size n.

3.1 - Multinomial/Dirichlet model

Given 𝜃, we assume a multinomial distribution for the counts Xn, and we denote Xn|𝜃 ∼ Mult(n, 𝜃). The
respective probability distribution is given by

ℙ [X1 = x1, X2 = x2, X3 = x3] = n!
x1!x2!x3!

𝜃x11 𝜃x22 𝜃x33 ,

where x1, x2, x3 = 0, 1, … ,n such that x1 + x2 + x3 = n, and 𝜃1 + 𝜃2 + 𝜃3 = 1.
The natural (conjugate) choice for the prior distribution of 𝜃 is a Dirichlet distribution. We denote

𝜃 ∼ Dir(𝛼) and the respective probability density function is given by

𝜋(𝜃) = Γ(𝛼1 + 𝛼2 + 𝛼3)
Γ(𝛼1)Γ(𝛼2)Γ(𝛼3)

𝜃𝛼1−1
1 𝜃𝛼2−1

2 𝜃𝛼3−1
3 ,

where 𝜃1 + 𝜃2 + 𝜃3 = 1, Γ(⋅) is the gamma function and 𝛼 = (𝛼1, 𝛼2, 𝛼3) is a vector of positive
hyperparameters which must be set by the researcher and must reflect the prior knowledge about
𝜃 at the moment. In Figures 1 and 2 we present the ternary plots for the Dirichlet distribution for
different values for 𝛼. For values of 𝛼 close to zero the distribution of 𝜃 concentrates in the corners
of the plot, which implies that the distribution of Δ = 𝜃3 − 𝜃1 will mostly concentrate around the
values -1, 0 and 1. As the values in vector 𝛼 increase but still smaller than 1, the distribution of 𝜃
will mostly concentrates on the edges. If 𝛼1 = 𝛼2 = 𝛼3 = 1 the distribution of 𝜃 is equivalent to a
uniform distribution over the 2-simplex. For values of 𝛼1, 𝛼2 and 𝛼3 greater than 1, the distribution
of 𝜃 becomes increasingly concentrated in a given region of the plot as the values of 𝛼1, 𝛼2 and 𝛼3
increase, where the determination of the region of concentration depends on the values of 𝛼1, 𝛼2 and
𝛼3.

Let 𝛼0 = 𝛼1 + 𝛼2 + 𝛼3, Adcock (1987) proposes a method to determine 𝛼0 before sampling if
there are two independent estimates e1 = (e11, e12, e13) and e2 = (e21, e22, e23) for 𝜃, and note that the
expected value of Q = (e1 − e2)⊤(e1 − e2) is given by

𝔼 [Q] =
2 [1− ∑3

i=1m
2
i ]

𝛼0 + 1
,

where mi is estimated by (e1i + e2i)/2, i = 1, 2, 3. For example, suppose that e1 = (0.32, 0.26, 0.42) and
e2 = (0.27, 0.32, 0.41), taking D = ∑3

i=1(e1i − e2i)2 as an estimate for 𝔼 [Q] and solving the expected
value equation for 𝛼0, we have that 𝛼0 = [2 (1− ∑3

i=1m
2
i ) /D] − 1 ≈ 211, and multiplying this value

by mi, i = 1, 2, 3, we obtain 𝛼 ≈ (62, 61, 88). On the other hand, if we have that e1 = (0.32, 0.26, 0.42)
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Figure 1. Ternary plots for the Dirichlet distribution with: 𝛼 = (0.1, 0.1, 0.1) and 𝛼 = (0.99, 0.99, 0.99) in the top row;
𝛼 = (1, 1, 1) and 𝛼 = (5, 5, 5) in the middle row; 𝛼 = (50, 50, 50) and 𝛼 = (100, 100, 100) in the bottom row.
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Figure 2. Ternary plots for the Dirichlet distribution with: 𝛼 = (2, 5, 8) and 𝛼 = (4, 10, 16) in the top row;
𝛼 = (8, 20, 32) and 𝛼 = (16, 40, 64) in the bottom row.

and e2 = (0.15, 0.52, 0.33), we obtain that 𝛼0 ≈ 11 and 𝛼 ≈ (3, 4, 4), i.e., 𝛼0 increases as the distance
between e1 and e2 decreases.

Given the multinomial distribution to model the counts and the Dirichlet distribution for 𝜃, the
model may be written hierarchically as follows

Xn|𝜃 ∼ Mult(𝜃); 𝜃 ∼ Dir(𝛼). (3)

In this setting, given a observation xn of Xn, we have that the posterior distribution for 𝜃 is a
Dirichlet distribution with parameter 𝛼+xn, i.e., 𝜃|xn ∼ Dir(𝛼+xn) (Turkman et al. 2019). Also, Bayesian
updating becomes straightforward since the current parameters of the posterior distribution may be
used as the hyperparameters of the prior distribution in the next sampling of Xn. Given a way to
generate random values from the Dirichlet distribution, this provide us a simple way to draw values
from the posterior distribution of Δ in order to obtain, approximately, posterior summaries as the
mean, median, variance, quantiles, etc, and make inferences about the NPS.
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An algorithm to obtain a sample of size N from the posterior distribution of the Δ is outlined as
follows.

1. Set the values of 𝛼, xn and N (e.g., N = 1000).

2. Draw a value of 𝜃 = (𝜃1, 𝜃2, 𝜃3) from the Dirichlet distribution with parameter 𝛼 + xn.

3. Compute Δ = 𝜃3 − 𝜃1 and keep this value.

4. Repeat Steps 2-3 N times.

It is well known that the marginal distributions of a Dirichlet distribution are beta distributions
(Kotz et al. 2000). Let 𝛼∗ = 𝛼 + xn = (𝛼∗

1 , 𝛼∗
2, 𝛼∗

3)⊤. Then, it follows that

𝜃1|xn ∼ Beta(𝛼∗
1 , 𝛼∗

2 + 𝛼∗
3) and 𝜃3|xn ∼ Beta(𝛼∗

3, 𝛼∗
1 + 𝛼∗

2),

which give us that the mean of the posterior distribution of the NPS is

𝔼 [Δ∣xn] = 𝔼 [𝜃3 − 𝜃1∣xn] = 𝛼∗
3 − 𝛼∗

1
𝛼∗
0

, (4)

where 𝛼∗
0 = 𝛼∗

1 + 𝛼∗
2 + 𝛼∗

3 . This mean may be used as a point estimator for the NPS. The respective
variance is given by

Var [Δ∣xn] = Var [𝜃3∣xn] + Var [𝜃1∣xn] − 2Cov(𝜃3, 𝜃1|xn)

= 𝛼∗
1𝛼∗

2 + 𝛼∗
2𝛼∗

3 + 4𝛼∗
1𝛼∗

3
(𝛼∗

0)2(𝛼∗
0 + 1)

. (5)

A credible interval that we may construct is based on (4) and (5), i.e., 𝔼 [Δ∣xn] ± 𝛾√Var [Δ∣xn],
where 𝛾 > 0 is a fixed constant that controls the number of posterior standard deviations within
the credible interval. This type of credible interval may be derived from decision theory, where a loss
function is composed of measures of bias and discrepancy, and 𝛾 is related to the calibration of the
trade-off between these measures (Rice et al. 2008). Also in the context of decision theory, the 𝛾 may
be determined for a fixed coverage probability using asymptotic properties for posterior distributions.
For example, see Costa et al. (2021b, Section 5) for more details. We developed an Excel spreadsheet
that computes this credible interval and a point estimate based on (4) and (5). See Supplementary
Material for more details.

Another credible interval may be specified by the highest posterior density (HPD) interval. In this
case we use a Monte Carlo approach to approximate the HPD interval. In other words, we use a sample
drawn from the posterior distribution of Δ, which may be easily done since the posterior distribution
is a Dirichlet distribution. See Turkman et al. (2019, pgs. 47-48) for more details.

3.2 - Minimum sample size

To determine the minimum sample size required to estimate Δ with a pre-specified precision, we
consider a criterion based on the average length of credible intervals. The posterior credible interval
accounts for the magnitude of the NPS and this may help the company to know when to perform a
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gap analysis and create a business action plan in order to improve the NPS, i.e., increase the NPS until
the company has more promoters than detractors (Δ > 0).

Let a(xn) and b(xn) be the lower and upper bounds of the HPD interval for Δ. The rationale here
is to set the minimum Bayesian coverage probability 1 − 𝜌 and obtain the minimum sample size by
requiring that the length of the HPD interval ℓ(xn) = b(xn) − a(xn) be such that

𝔼 [ℓ(Xn)] ≤ ℓmax,

where ℓmax is the maximum admissible length for the HPD interval and the expected value is computed
based on the marginal probability function of the outcomes (Xn). This is called average length criterion
(ALC). See Costa et al. (2021a) and references therein for more details about this criterion.

Since it is impractical to obtain analytically the lower and upper bounds of the HPD interval for
Δ, we use a Monte Carlo approach (Chen & Shao 1999) to obtain the respective bounds as well as the
the respective expected value.

An algorithm to obtain the minimum sample size satisfying this criterion is outlined as follows.

1. Set values for ℓmax, 𝛼, 𝜌 and take n = 1.

2. Draw a sample of size L (e.g., L = 1000) of xn; to draw xn, first draw one value of 𝜃 from the Dirichlet
distribution with parameter 𝛼 and given this value, draw xn from the multinomial distribution
with parameter 𝜃.

3. Obtain the HPD interval of probability 1−𝜌 for each xn and then the respective interval length: for
each vector drawn in Step 2, obtain the lower and upper bounds of the HPD interval of probability
1 − 𝜌 as indicated in Chen & Shao (1999). Then, compute the difference between the upper and
lower bounds for each vector drawn, in order to obtain the interval lengths.

4. Compute the average of the L HPD interval lengths.

5. If this average is lower or equal to ℓmax, stop. The value n obtained in this step is the required
value. Otherwise, set n = n+ 1 and return to Step 2.

We developed an R package (R Core Team 2022) which provides a function to obtain point and
interval estimates via Monte Carlo simulation as discussed in the above section. Also, the package
have a function to compute the minimum sample size to estimate the NPS through HPD interval via
ALC (see Supplementary Material).

In Tables I and II, we present the minimum sample size to estimate the NPS using the HPD interval
computed via ALC for all the scenarios for the prior distribution of 𝜃 presented in Figures 1 and 2, and
some values of ℓmax and 𝜌. In the algorithm to obtain the minimum n, we consider L = 1000 and in
the Step 3 we draw samples of size N = 100 from the posterior distribution of the NPS in order to
obtain the HPD interval bounds. For fixed 𝜌 (ℓmax), the minimum n decreases as ℓmax (𝜌) increases, as
expected (Tables I and II).

Also in Tables I and II, we observe that theminimum n increases when 𝛼 changes from (0.1, 0.1, 0.1)
to (0.99, 0.99, 0.99), which makes sense since the first case represents a Dirichlet distribution
concentrated in the corners that implies a prior distribution for Δ mostly concentrated around the
values -1, 0, and 1; and the second case represents a Dirichlet distribution mostly concentrated on
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the edges. For 𝛼i ≥ 1, i = 1, 2, 3, we observe that the minimum n increases as 𝛼0 = ∑3
i=1 𝛼i increases

until some point and after that point the minimum n decreases. It seems that there is some value k0
in which the minimum n increases as 𝛼0 approaches k0 from left, and for 𝛼0 > k0 the minimum n
decreases as 𝛼0 approaches infinity. Also, we observe that the magnitude of k0 depends on ℓmax, the
smaller the ℓmax, the larger the k0, i.e., when 𝛼0 < k0 the prior knowledge is not enough to make the
minimum n start decreasing and satisfy the ALC for the fixed values of ℓmax and 𝜌. This is consistent
with the interpretation that 𝛼0 is a “prior sample size” and that it may be viewed as a measure of the
quality of the prior knowledge (Adcock 1987).

For the adopted model parameters, the running time to compute the minimum n varied from 47
seconds to 5.52 hours, depending on the setting. The smaller the values of ℓmax and/or 𝜌, the larger
the running time. The computers that have been used have the following characteristics: (i) OS Linux
Ubuntu 20.04, RAM 7.7 GB, processor AMD PRO A8-8600B; and (ii) OS Linux Ubuntu 22.04, RAM 5.6 GB,
processor AMD Ryzen 5 5500U.

3.3 - Simulation study

We conduct a simulation study to verify whether the HPD intervals obtained with the sample sizes
proposed in Section 3.2 satisfy the ALC.

For each sample size obtained via the ALC displayed in Tables I and II, and the respective values of
𝛼, 𝜌 and ℓmax, we perform the following steps: (i) we draw 𝜃 from the Dirichlet distribution and compute
the correspondent NPS Δ = 𝜃3 − 𝜃1; (ii) given the 𝜃, we draw xn from the multinomial distribution; (iii)
given 𝛼 and xn, we draw a sample of size 1000 from the posterior distribution of Δ and obtain the
respective HPD interval with probability 1−𝜌; (iv) we compute the length of the respective HPD interval
and verify if Δ belongs to this interval; (v) we repeat the steps (i)-(iv) 1000 times, and we compute the
average of the lengths of the HPD intervals and the proportion of times that Δ belonged to the HPD
interval.

In Tables III-VI we displayed the simulation results. As expected, the ALC based lengths and
coverage probabilities of HPD intervals estimated via the simulation study are close to the respective
values of ℓmax and 1 − 𝜌 for each sample size in Tables I and II. For the estimated ALC based lengths
of HPD intervals, in general the values obtained in the simulation study are slightly larger than the
respective ℓmax, with a difference in the third decimal place. On the other hand, for the estimated ALC
based coverage probabilities, in general the values obtained are slightly smaller than the respective
1− 𝜌.

4 - ILLUSTRATIVE EXAMPLE

In the situation where the sample is not obtained yet, we may determine the sample size to obtain a
HPD interval for the NPS via ALC by setting 𝛼1, 𝛼2, 𝛼3, ℓmax and 𝜌. For example, if we consider 𝛼1 = 𝛼2 =
𝛼3 = 1, ℓmax = 0.10 and 𝜌 = 0.05, the minimum sample size is 655 (Table I), i.e., to obtain a HPD interval
with maximum length equals to 0.10 and respective coverage probability equals to 0.95, we should
ask 655 people the NPS question and then categorize them into detractors, passives and promoters
in order to obtain the observed values of X1, X2 and X3, respectively.
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Table I. ALC based minimum sample size to estimate
the NPS through the HPD interval via
multinomial/Dirichlet model with 𝛼 = (𝛼1, 𝛼2, 𝛼3).

(0.1, 0.1, 0.1) (0.99, 0.99, 0.99)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 4406 2482 1753 28406 16048 11222

0.04 1089 629 415 7073 4033 2836

0.06 531 295 200 3148 1801 1270

0.08 311 167 109 1822 995 690

0.10 202 108 70 1148 639 457

0.12 147 78 48 808 458 319

0.14 110 57 36 593 333 235

0.16 90 43 27 447 258 178

0.18 71 32 23 355 201 141

0.20 57 27 18 290 161 115

(1, 1, 1) (5, 5, 5)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 28199 16034 11328 37737 21516 15157

0.04 7153 4085 2805 9521 5396 3810

0.06 3222 1808 1272 4243 2386 1681

0.08 1786 992 721 2391 1330 944

0.10 1158 655 460 1515 860 599

0.12 807 460 315 1046 590 409

0.14 591 334 234 764 433 298

0.16 452 249 179 585 326 224

0.18 359 203 142 464 254 175

0.20 291 164 114 371 204 139

(50, 50, 50) (100, 100, 100)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 40494 22924 16116 40670 22987 16007

0.04 10085 5666 3951 10004 5532 3796

0.06 4411 2435 1668 4286 2285 1520

0.08 2422 1313 876 2283 1157 728

0.10 1505 781 501 1355 637 358

0.12 991 500 310 848 348 159

0.14 685 326 187 550 178 37

0.16 490 216 107 346 67 2

0.18 357 138 53 208 2 2

0.20 266 82 15 116 2 2

Table II. ALC based minimum sample size to estimate
the NPS through the HPD interval via
multinomial/Dirichlet model with 𝛼 = (𝛼1, 𝛼2, 𝛼3).

(2, 5, 8) (4, 10, 16)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 28494 16105 11346 29723 16796 11841

0.04 7116 4018 2816 7509 4207 2949

0.06 3198 1790 1258 3303 1857 1304

0.08 1779 1004 698 1847 1033 720

0.10 1137 636 442 1169 645 449

0.12 788 442 307 809 449 305

0.14 577 322 225 586 322 217

0.16 433 243 166 444 236 156

0.18 342 189 130 340 182 119

0.20 275 150 100 275 139 91

(8, 20, 32) (16, 40, 64)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 30537 17235 12072 30811 17349 12124

0.04 7614 4256 2988 7640 4291 2985

0.06 3368 1874 1302 3343 1842 1261

0.08 1840 1034 708 1833 982 654

0.10 1180 643 431 1127 587 373

0.12 801 425 284 742 373 223

0.14 574 297 190 517 242 136

0.16 426 215 133 372 157 76

0.18 323 156 93 264 101 35

0.20 248 116 63 194 56 7
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Table III. ALC based length of HPD intervals estimated
via simulation for some scenarios under the
multinomial/Dirichlet model using sample sizes
displayed in Table I.

(0.1, 0.1, 0.1) (0.99, 0.99, 0.99)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 0.0219 0.0216 0.0227 0.0203 0.0209 0.0210

0.04 0.0429 0.0440 0.0440 0.0407 0.0417 0.0420

0.06 0.0604 0.0660 0.0627 0.0612 0.0623 0.0632

0.08 0.0821 0.0837 0.0828 0.0815 0.0846 0.0848

0.10 0.1016 0.0986 0.1041 0.1005 0.1060 0.1040

0.12 0.1217 0.1235 0.1202 0.1218 0.1239 0.1262

0.14 0.1442 0.1391 0.1445 0.1417 0.1446 0.1441

0.16 0.1542 0.1619 0.1677 0.1638 0.1650 0.1661

0.18 0.1817 0.1861 0.1782 0.1825 0.1857 0.1845

0.20 0.2034 0.2068 0.1959 0.2013 0.2093 0.2055

(1, 1, 1) (5, 5, 5)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 0.0207 0.0212 0.0208 0.0206 0.0207 0.0208

0.04 0.0407 0.0417 0.0426 0.0408 0.0415 0.0412

0.06 0.0612 0.0626 0.0628 0.0608 0.0622 0.0625

0.08 0.0840 0.0856 0.0819 0.0811 0.0829 0.0826

0.10 0.1027 0.1034 0.1044 0.1022 0.1026 0.1035

0.12 0.1230 0.1238 0.1231 0.1225 0.1237 0.1243

0.14 0.1425 0.1463 0.1450 0.1432 0.1438 0.1445

0.16 0.1630 0.1672 0.1665 0.1616 0.1647 0.1659

0.18 0.1818 0.1834 0.1837 0.1821 0.1869 0.1853

0.20 0.2044 0.2056 0.2075 0.2020 0.2051 0.2061

(50, 50, 50) (100, 100, 100)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 0.0204 0.0207 0.0207 0.0203 0.0207 0.0207

0.04 0.0408 0.0414 0.0412 0.0407 0.0413 0.0414

0.06 0.0609 0.0618 0.0620 0.0609 0.0620 0.0622

0.08 0.0813 0.0824 0.0826 0.0811 0.0827 0.0827

0.10 0.1011 0.1031 0.1037 0.1013 0.1030 0.1033

0.12 0.1220 0.1234 0.1234 0.1219 0.1238 0.1235

0.14 0.1426 0.1444 0.1441 0.1415 0.1439 0.1446

0.16 0.1626 0.1644 0.1648 0.1620 0.1645 0.1527

0.18 0.1826 0.1853 0.1855 0.1824 0.1815 0.1525

0.20 0.2017 0.2064 0.2056 0.2022 0.1812 0.1523

Table IV. ALC based coverage probability of HPD
intervals estimated via simulation for some scenarios
under the multinomial/Dirichlet model using sample
sizes displayed in Table I.

(0.1, 0.1, 0.1) (0.99, 0.99, 0.99)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 0.982 0.952 0.892 0.992 0.941 0.894

0.04 0.993 0.950 0.900 0.987 0.941 0.904

0.06 0.989 0.946 0.899 0.981 0.942 0.901

0.08 0.977 0.952 0.901 0.990 0.951 0.885

0.10 0.990 0.944 0.887 0.982 0.945 0.901

0.12 0.989 0.953 0.906 0.985 0.932 0.876

0.14 0.987 0.951 0.896 0.991 0.948 0.885

0.16 0.991 0.939 0.882 0.984 0.950 0.883

0.18 0.986 0.941 0.882 0.987 0.944 0.907

0.20 0.987 0.952 0.900 0.996 0.945 0.890

(1, 1, 1) (5, 5, 5)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 0.992 0.942 0.889 0.982 0.939 0.889

0.04 0.989 0.942 0.889 0.996 0.943 0.882

0.06 0.986 0.944 0.901 0.987 0.944 0.894

0.08 0.987 0.942 0.893 0.994 0.944 0.886

0.10 0.989 0.955 0.898 0.988 0.948 0.904

0.12 0.984 0.952 0.883 0.987 0.955 0.903

0.14 0.988 0.950 0.878 0.992 0.944 0.908

0.16 0.988 0.941 0.895 0.985 0.931 0.899

0.18 0.980 0.949 0.908 0.990 0.943 0.890

0.20 0.984 0.955 0.900 0.985 0.949 0.878

(50, 50, 50) (100, 100, 100)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 0.985 0.937 0.906 0.985 0.942 0.897

0.04 0.986 0.935 0.868 0.986 0.939 0.894

0.06 0.994 0.953 0.883 0.991 0.933 0.910

0.08 0.991 0.950 0.898 0.990 0.945 0.892

0.10 0.990 0.939 0.911 0.991 0.931 0.891

0.12 0.988 0.944 0.888 0.983 0.943 0.893

0.14 0.988 0.947 0.894 0.988 0.932 0.889

0.16 0.984 0.952 0.905 0.983 0.950 0.891

0.18 0.990 0.942 0.901 0.985 0.963 0.898

0.20 0.993 0.944 0.899 0.986 0.949 0.875
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Table V. ALC based length of HPD intervals estimated
via simulation for some scenarios under the
multinomial/Dirichlet model using sample sizes
displayed in Table II.

(2, 5, 8) (4, 10, 16)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 0.0205 0.0209 0.0207 0.0205 0.0208 0.0207

0.04 0.0409 0.0417 0.0414 0.0406 0.0415 0.0415

0.06 0.0604 0.0625 0.0620 0.0608 0.0621 0.0620

0.08 0.0818 0.0834 0.0823 0.0816 0.0826 0.0830

0.10 0.1022 0.1038 0.1025 0.1021 0.1038 0.1029

0.12 0.1220 0.1236 0.1232 0.1218 0.1239 0.1233

0.14 0.1415 0.1438 0.1433 0.1419 0.1438 0.1442

0.16 0.1623 0.1632 0.1664 0.1616 0.1650 0.1661

0.18 0.1825 0.1845 0.1833 0.1840 0.1843 0.1852

0.20 0.2003 0.2040 0.2061 0.2024 0.2083 0.2055

(8, 20, 32) (16, 40, 64)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 0.0203 0.0207 0.0208 0.0203 0.0207 0.0208

0.04 0.0408 0.0417 0.0414 0.0405 0.0413 0.0412

0.06 0.0608 0.0620 0.0623 0.0610 0.0617 0.0620

0.08 0.0821 0.0822 0.0829 0.0813 0.0826 0.0828

0.10 0.1013 0.1029 0.1036 0.1012 0.1032 0.1035

0.12 0.1217 0.1238 0.1232 0.1222 0.1234 0.1244

0.14 0.1414 0.1447 0.1443 0.1419 0.1438 0.1439

0.16 0.1616 0.1644 0.1646 0.1610 0.1645 0.1645

0.18 0.1815 0.1852 0.1844 0.1819 0.1840 0.1847

0.20 0.2028 0.2051 0.2061 0.2019 0.2065 0.2040

Table VI. ALC based coverage probability of HPD
intervals estimated via simulation for some scenarios
under the multinomial/Dirichlet model using sample
sizes displayed in Table II.

(2, 5, 8) (4, 10, 16)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 0.990 0.947 0.898 0.981 0.946 0.889

0.04 0.987 0.954 0.891 0.987 0.934 0.893

0.06 0.985 0.930 0.906 0.986 0.946 0.898

0.08 0.985 0.941 0.907 0.988 0.941 0.884

0.10 0.987 0.948 0.899 0.986 0.949 0.891

0.12 0.990 0.939 0.892 0.986 0.947 0.881

0.14 0.981 0.948 0.909 0.989 0.942 0.887

0.16 0.981 0.934 0.897 0.991 0.945 0.897

0.18 0.986 0.956 0.892 0.980 0.938 0.894

0.20 0.988 0.955 0.895 0.993 0.943 0.896

(8, 20, 32) (16, 40, 64)

ℓmax \ 𝜌 0.01 0.05 0.10 0.01 0.05 0.10

0.02 0.990 0.944 0.885 0.989 0.944 0.902

0.04 0.988 0.939 0.903 0.986 0.940 0.881

0.06 0.993 0.944 0.898 0.994 0.939 0.891

0.08 0.984 0.947 0.894 0.985 0.941 0.883

0.10 0.983 0.943 0.890 0.989 0.930 0.874

0.12 0.988 0.954 0.907 0.990 0.950 0.893

0.14 0.989 0.951 0.893 0.987 0.938 0.879

0.16 0.993 0.956 0.899 0.987 0.954 0.887

0.18 0.990 0.945 0.899 0.984 0.956 0.890

0.20 0.985 0.950 0.887 0.984 0.940 0.895

Given the difficult to obtain a real NPS dataset from a company because such a information is
very sensitive, we consider a hypothetical dataset on financial services in three markets in the year
of 2021 (see Supplementary Material) to mimic the application of the methods in a real situation.

To illustrate the methodology and the Bayesian updating, we consider the data from the first
and second quarter of the Mexico market. For the first quarter we have no prior knowledge, then
we set 𝛼1 = 𝛼2 = 𝛼3 = 1. For this quarter the numbers of detractors, passives and promoters are
136, 82 and 188, respectively, which implies a posterior Dirichlet distribution with vector parameter
𝛼∗ = (137, 83, 189)⊤ for 𝜃. Drawing a sample of size N = 1000 from the respective posterior distribution
of the NPS and computing its summaries, we have that a point estimate for the NPS is 0.127 and the
HPD 95% interval is [0.038, 0.206]. For the second quarter, we may use the posterior parameter of the
first quarter as the prior parameter for the current quarter, i.e., 𝛼1 = 137, 𝛼2 = 83 and 𝛼3 = 189. For the
second quarter the numbers of detractors, passives and promoters are 133, 96 and 190, respectively,
which implies a posterior Dirichlet distribution with vector parameter 𝛼∗ = (270, 179, 379)⊤ for 𝜃. Again,
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drawing a sample of size N = 1000 for the respective posterior distribution of the NPS, we have a point
estimate of 0.131 for the NPS and the HPD 95% interval is [0.072, 0.192]. All these results were obtained
via the developed R package. Another way to obtain point and interval estimates for the NPS without
needing simulation methods is to compute (4) and (5) for this data, as discussed in Section 3.1.

5 - CONCLUDING REMARKS

We discussed the sample size determination for estimating the NPS. To approach this problem we
consider a Bayesian approach via a multinomial/Dirichlet model and the average length criterion. We
provide point and interval estimators for the NPS as in closed forms or via drawing a sample from the
posterior distribution of the NPS and computing its summaries. A simulation study is conducted to
verify whether the HPD intervals obtained with the proposed minimum sample sizes satisfy the ALC.
Also, the Bayesian approach makes the inference updating becomes straightforward as illustrated in
Section 4, i.e., a sequential procedure to estimate the NPS. Computational tools were developed to
use these methodologies in practice.

6 - SUPPLEMENTARY MATERIAL

The Excel spreadsheet is available at https://doi.org/10.5281/zenodo.7679211. The R package is
available at https://github.com/eliardocosta/BayesNPS (DOI: 10.5281/zenodo.7617770). The data used
in the illustrative example is available at https://www.kaggle.com/code/charlottetu/net-promoter-
score/.
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